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Abstract

Crop production is adversely affected by a number of abiotic stresses that arise 
due to anthropogenic activities and inherent edaphic factors. Several agronomic 
strategies have been used to mitigate the abiotic stresses to increase crop yield. 
Recently, researchers have been intrigued by the rhizosphere associated microor-
ganisms from the plants growing in extreme environments. Bacterial strains 
belonging to the phyla Proteobacteria, Actinobacteria, Firmicutes, and archaeal 
strains related to the phyla Crenarchaeota and Euryarchaeota were abundantly 
found in the rhizosphere of plants growing under abiotic stress conditions. The 
well-known PGP strains include Bacillus, Rhizobium, Frankia, Azotobacter, 
Azospirillum, Paenibacillus, Serratia, Pseudomonas, and Klebsiella. Plant asso-
ciated microbial communities promote plant growth under extreme conditions 
by mineral solubilization, phytohormones production, nitrogen fixation, sidero-
phore, and HCN production. A number of rhizobacterial and archaeal strains 
have the ability to enhance plant defense mechanisms against different bacterial 
and fungal pathogens by the production of different antibacterial and antifungal 
compounds. Meta-omics approaches including metagenomics, metatranscrip-
tomics, and metaproteomics are commonly used for microbial diversity analysis 
and microbe-mediated stress alleviation in different crops growing under extreme 
conditions. This chapter gives an overview of the archaeal and bacterial diversity 
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residing in the rhizosphere and root endosphere of plants growing under extreme 
environments and also explained different microbe-mediated mitigation strate-
gies in plants under various abiotic stresses.

Keywords

Biofertilizers · Extreme environments · Meta-omics · Plant–microbe interactions · 
Rhizosphere microbiome

14.1  Introduction

Agricultural land is adversely affected due to various abiotic stresses such as 
drought, salinity, acidity, alkalinity, low/high temperatures, and nutrient starvation 
and this ultimately affects the crop production (Onaga and Wydra 2016; Pareek 
et al. 2009). More than 60% of the area is affected by drought globally, about 6% of 
the global land has been affected by salinity, 15% by acidic soils, 9% by minerals 
deficiency, and 57% by cold environments (Bui 2013; Cramer et al. 2011; Mittler 
2006). In different regions of the world, about 30–70% plant growth is affected by 
abiotic or biotic stresses. Water uptake, biochemical, and physiological processes of 
plants were affected and production of major crops such as wheat, rice, maize, and 
sugarcane is reduced and ultimately a threat to global food security is potentially 
increasing (El-Beltagy and Madkour 2012; Mahalingam 2015; Tigchelaar 
et al. 2018).

Plants growing in extreme environments have adapted different protective, phys-
iological, and genetic strategies to deal with adverse environmental conditions 
(Yolcu et al. 2016; Verma et al. 2019). A number of chemical compounds known as 
plant growth regulators produced by plants are usually used to modulate plant 
growth under different abiotic and biotic stresses (Vineeth et al. 2016; Wakchaure 
et al. 2018; Zhao et al. 2009). Plant hormones such as auxins, cytokinins, gibberel-
lins, abscisic acid, and salicylic acid are considered as important growth regulators 
that control plant growth by playing an important role in plant metabolism and 
ultimately mitigation of abiotic stresses (Hu et al. 2013; Kazan 2013; Teale et al. 
2006; Sharaff et al. 2020). The level of phytohormone production may be changed 
with the increase in abiotic stresses that adversely affect plant growth (Debez et al. 
2001; Khan et al. 2014). Some synthetic compounds, for example, thiourea can be 
used as a plant growth regulator which promotes growth and productivity, particu-
larly under extreme environments (Garg et al. 2006; Iqbal and Ashraf 2013; Islam 
et al. 2016).

Microbial communities associated with the plants growing under extreme condi-
tions play a vital role in plant growth by increasing the nutrients available to the 
plants, help to tolerate abiotic stresses and provide resistance against different plant 
pathogens (Bulgarelli et al. 2012; Liljeqvist et al. 2015; Sessitsch et al. 2012; Turner 
et  al. 2013; Yadav 2017). Extremophilic microorganisms including xerophiles, 
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halophiles, acidophiles, alkaliphiles, and thermophiles have a genetic and physiolog-
ical modification to survive under extreme conditions (Mukhtar et al. 2018a; Souza 
et al. 2015). Plant growth-promoting microbes enhance plant growth by increasing 
the nutrient availability to the plants such as nitrogen (N), potassium (K), phosphorus 
(P), and zinc (Zn), nitrogen fixation, production of phytohormones, including auxins, 
cytokinins, gibberellins, abscisic acid, and salicylic acid, production of siderophores 
and hydrogen cyanide (HCN) (Mukhtar et al. 2017; Yadav et al. 2017a; Yadav et al. 
2020e, f). Root-associated bacteria and archaea also produce a variety of antifungal 
and antibacterial compounds that can be used to control various fungal and bacterial 
plant diseases (Jaisingh et al. 2016; Kumar et al. 2011; Subrahmanyam et al. 2020). 
Plant microbiome also improves plant health by suppressing bacterial and fungal 
pathogens such as Xanthomonas sp., Fusarium sp., Aspergillus flavus, and Alternaria 
sp. (Mehnaz et al. 2010; Khan et al. 2018; Singh et al. 2020a).

With the progress in the next sequencing approaches, interest in the microbial diver-
sity analysis from the rhizosphere of plants growing under extreme environments has 
been increased (Mukhtar et  al. 2018c, 2019a, b; Naik et  al. 2009). Meta- omics 
approaches such as metagenomics, metatranscriptomics, and metaproteomics help us 
to understand the functional characterization of plant-associated microbial communi-
ties from extreme environments (Venter et al. 2004; Wilmes and Bond 2006; Zeyaullah 
et al. 2009; Zhou et al. 2015). These techniques can also be used to study the potential 
of plant growth-promoting bacteria and their role in the mitigation of abiotic stresses 
under various extreme environments (Castro et al. 2013; Liu et al. 2015; Wang et al. 
2016). In this chapter, we have discussed the plant- associated microbial communities 
from various extreme environments and their role in growth promotion of economi-
cally important crops grown in areas that are affected by abiotic stresses.

14.2  Microbial Diversity of Microbes of Plants Growing 
Under Extreme Environments

The plant microbiome can be classified according to plant parts, such as rhizo-
sphere, phyllosphere, and endosphere microbiomes (Fig. 14.1). The plant microbi-
ome plays an important role in plant health and productivity. Rhizosphere and root 
endospheric bacteria, archaea, and fungi enable host plants to survive under extreme 
conditions (Hashem et  al. 2016; Mukhtar et  al. 2018b, c; Verma et  al. 2014). 
Rhizosphere associated microbial communities have the ability to carry out meta-
bolic processes that improve the soil health and promote the plant growth under 
abiotic stresses (Egamberdieva 2009; Khan et al. 2014; Biswas et al. 2018). Plant 
growth-promoting microorganisms can directly enhance plant health and productiv-
ity through mineral solubilization, fixation of atmospheric nitrogen, and production 
of phytohormones (Browne et al. 2009; Mehnaz et al. 2010; Mukhtar et al. 2019e). 
Some PGP microorganisms produce antibacterial and antifungal compounds, such 
as siderophores, HCN, and triazole to protect plants against different bacterial and 
fungal pathogens under extreme conditions. These microbes also trigger plant 
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immunity and increase resistance against pathogens (Khan et  al. 2017; Mehnaz 
et al. 2010; Mukhtar et al. 2019e).

14.2.1  Saline Environments

Abiotic factors, including soil salinity and drought, are affecting the plant’s growth 
and decreases crop yield by more than 40% and it increases day by day (Pitman and 
Lauchl 2002). At least 0.2 M NaCl is required for the growth of halophilic microor-
ganisms from the hypersaline environments. Based on different salt concentrations, 
halophiles are classified as slight, moderate, and extreme halophiles. About 
0.2–0.9 M NaCl concentrations are required for slight halophiles growth, 0.9–3.4 M 
NaCl concentrations are required for moderate halophiles growth, and 3.4–5.2 M 
NaCl concentrations are required for the optimal growth of extremophilic halo-
philes (DasSarma and DasSarma 2015; Mukhtar et al. 2018a). Halophiles have tol-
erance for different salt concentrations and can grow in various saline environments 
(Yadav et al. 2020a). Different parameters, such as pH, salt concentration, nutrients, 
and temperature variations affect the physiology of halophiles (Ruppel and FrankenP 
2013). Halophilic bacteria and archaea use two main strategies to tolerate high 
osmotic stress. Mostly halophilic archaea and methanogenic bacteria use “Salt in” 
strategy. They acquire high KCl ions concentration copes with the high salt stress 

Fig. 14.1 Overview of the halophilic microbiome, their functions, and impact of microbial com-
munities in the rhizosphere, endosphere, and phyllosphere of halophytes, Adapted from Mukhtar 
et al. (2019b)
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environment. Halotolerant and halophilic bacteria have the ability to grow in salt- 
affected environments by using small organic molecules, such as betaine, proline, 
ectoine, glutamine, and trehalose (DasSarma and DasSarma 2015; Oren 2015). 
Plant growth-promoting halophilic bacteria and archaea have also the ability to 
increase plant salt tolerance (Yadav et al. 2019; Yadav et al. 2017b). Halotolerant 
and halophilic bacterial genera including Pseudomonas, Halomonas, Micrococcus, 
Planococcus, Marinococcus, Halobacillus, Virgibacillus, Arthrobacter, 
Nesterenkonia, Brachybacterium, Brevibacillus, and Pantoea have been isolated 
from the rhizosphere of different halophytes as shown in Fig. 14.2 and Table 14.1 
(Meng et al. 2018; Rueda-Puente et al. 2010; Zhao et al. 2016; Yadav et al. 2015d). 
Growth of barley and oat was increased in salinity environment by inoculation of 
Pseudomonas and Bacillus strains (Chang et al. 2014; Orhan 2016; Roy et al. 2014). 
Burkholderia strain PsN also positively affects the salt stress and increase maize 
growth (Naveed et al. 2014). Halobacillus and Halomonas were reported to increase 
of wheat growth and Streptomyces strain for tomato growth under salinity-affected 
environments (Palaniyandi et  al. 2014). Soil and roots of halophytes, such as 
Sporobolus, Dichanthium, Suaeda, and Cenchrus have been used for the isolation 
and characterization of halophilic archaeal strains. Haloarchaeal strains such as 
Halococcus, Halobacterium, Haloarcula, and Haloferax have been studied for their 
plant growth-promoting abilities under hypersaline conditions (Wang et al. 2009; 
Yadav et al. 2015d) (Fig. 14.3 and Table 14.1).

Fig. 14.2 A Conceptual diagram on the plant–microbe interactions under abiotic stress. Adapted 
from Grover et al. (2011)

14 Mitigation Strategies for Abiotic Stress Tolerance in Plants…
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Table 14.1 Plant growth-promoting microorganisms from different extreme environments

Extreme habitats/
microbe PGP attributes Host–plants Reference
Salinity
Virgibacillus P-solubilization and 

siderophore production
Acacia spp. Yadav et al. 

(2015e)
Halomonas IAA production and ACC 

deaminase activity
Salicornia bigelovii Rueda-Puente 

et al. (2010)
Marinococcus P-solubilization, IAA 

production, and nitrogen 
fixation

Salicornia spp. Mapelli et al. 
(2013)

Halobacillus P-solubilization, IAA 
production, and biocontrol 
activity

Salicornia europaea Zhao et al. 
(2016)

Micrococcus P-solubilization and 
siderophore production

Urochloa mutica Mukhtar et al. 
(2016)

Oceanobacillus Mineral solubilization, IAA 
and siderophore production

Atriplex amnicola Mukhtar et al. 
(2019a); 
(Mukhtar et al. 
2019d)

Planococcus P-solubilization and IAA 
production

Triticum aestivum Rajput et al. 
(2013)

Pseudomonas P-solubilization, nitrogen 
fixation, and siderophore 
production

Hordeum vulgare Chang et al. 
(2014)

Salinivibrio IAA and siderophore 
production

Salsola stocksii and 
Atriplex Atriplex 
leucoclada amnicola

Mukhtar et al. 
(2019a); 
(Mukhtar et al. 
2019d)

Arthrobacter Mineral solubilization, IAA, 
and siderophore production

Atriplex leucoclada Ullah and Bano 
(2015)

Nesterenkonia N2 fixation, mineral 
solubilization, IAA, HCN, 
and siderophore production

Salicornia 
strobilacea

Mapelli et al. 
(2013)

Brachybacterium Mineral solubilization and 
IAA production

Salicornia brachiata Jha et al. 
(2012)

Pantoea N2 fixation, IAA, HCN, and 
siderophore production

Suaeda salsa Siddikee et al. 
(2010)

Brevibacillus Mineral solubilization, IAA, 
and siderophore production

Wheat Yadav et al. 
(2018)

Haererohalobacter Mineral solubilization, IAA, 
and siderophore production

Salicornia brachiate Gontia et al. 
(2011)

Lysinibacillus Mineral solubilization, IAA, 
and siderophore production

Prosopis 
strombulifera

Sgroy et al. 
(2009)

Halobacterium P-solubilization and 
Nitrogen fixation

Oryza sativa Wang et al. 
(2009)

Haloferax IAA production and 
biocontrol activity

Suaeda nudiflora Saxena et al. 
(2015)

(continued)
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Table 14.1 (continued)

Extreme habitats/
microbe PGP attributes Host–plants Reference
Halococcus P-solubilization and 

siderophore production
Sporobolus indicus Yadav et al. 

(2015d)
Drought
Bacillus P-solubilization, ACC 

deaminase activity, and IAA 
production

Cupressus dupreziana Jorquera et al. 
(2012)

Kocuria P-solubilization, ACC 
deaminase activity, and 
nitrogen fixation

Zygophyllum 
dumosum

Steinberger 
et al. (1995)

Frankia P-solubilization and nitrogen 
fixation

Aristida plumosa Bhatnagar and 
Bhatnagar 
(2009)

Virgibacillus P-solubilization, IAA, HCN, 
and siderophore production

Triticum aestivum Verma et al. 
(2016)

Azotobacter P-solubilization, IAA 
production, and nitrogen 
fixation

Artemesia sp. Hamdi and 
Yousef (1979)

Rhizobium N2 fixation, IAA and 
siderophore production

Psoralea corylifolia Sorty et al. 
(2016)

Enterobacter P-solubilization, nitrogen 
fixation, IAA, HCN, and 
siderophore production

Phoenix dactylifera Ferjani et al. 
(2015)

Chryseobacterium Nitrogen fixation, HCN, and 
siderophore production

Glycine max Dardanelli et al. 
(2010)

Azoarcus Nitrogen fixation, IAA, and 
siderophore production

Leptochloa fusca Malik et al. 
(1997)

Pantoea N2 fixation, IAA, HCN, and 
siderophore production

Suaeda salsa Siddikee et al. 
(2010)

Halobacterium P-solubilization and nitrogen 
fixation

Oryza sativa Wang et al. 
(2009)

Halococcus P-solubilization and 
siderophore production

Sporobolus indicus Yadav et al. 
(2015d)

Pseudomonas 
libanensis

Alleviation of drought stress 
and plant growth promotion

Wheat, maize, rice, 
sorghum, and finger 
millet

Kour et al. 
(2020b)

Streptomyces 
laurentii

Microbe-mediated 
alleviation of drought stress 
and acquisition of 
phosphorus in great millet 
(Sorghum bicolour L.)

Amaranthus, 
buckwheat, millets, 
and maize

Kour et al. 
(2020a)

Acinetobacter 
calcoaceticus

Amelioration of drought 
stress in foxtail millet 
(Setaria italica L.)

Wheat, maize, foxtail 
millet, and finger 
millet

Kour et al. 
(2020c)

Acidity
Acidithiobacillus P-solubilization, IAA, HCN, 

and siderophore production
Pinus rigida Dang et al. 

(2017)

(continued)

14 Mitigation Strategies for Abiotic Stress Tolerance in Plants…



332

Table 14.1 (continued)

Extreme habitats/
microbe PGP attributes Host–plants Reference
Methylobacterium P-solubilization, ACC 

deaminase activity, IAA, 
HCN, and siderophore 
production

Triticum aestivum Wellner et al. 
(2011)

Lysinibacillus P-solubilization, IAA, HCN, 
and siderophore production

Triticum aestivum Verma et al. 
(2013)

Flavobacterium P and K solubilization and 
biocontrol activity

Hordeum vulgare Verma et al. 
(2014)

Azotobacter P-solubilization, IAA 
production, and nitrogen 
fixation

Artemesia sp. Upadhyay et al. 
(2009)

Pseudomonas P-solubilization, IAA, HCN, 
and siderophore production

Triticum aestivum Verma et al. 
(2013)

Pyrococcus P and K solubilization and 
biocontrol activity

Thermal marine 
sediments

Gao et al. 
(2003)

Alkalinity
Pseudorhodoplanes IAA production, 

P-solubilization, and 
nitrogen fixation

Photinia fraseri Seker et al. 
(2017)

Sphingomonas P-solubilization and IAA 
production

Smallanthus 
sonchifolius

Moraes et al. 
(2012)

Curtobacterium IAA production and 
P-solubilization

Chrysanthemum 
morifolium

Zawadzka et al. 
(2014)

Kocuria P-solubilization, IAA 
production, and nitrogen 
fixation

Dichanthium 
annulatum

Mukhtar et al. 
(2018b)

Burkholderia IAA and ACC deaminase 
production and nitrogen 
fixation

Vitis vinifera Barka et al. 
(2006)

Paenibacillus IAA production, 
P-solubilization, and 
nitrogen fixation

Photinia fraseri Seker et al. 
(2017)

Heat
Bacillus P-solubilization, IAA, and 

siderophore production
Triticum aestivum (Verma et al. 

2018)
Arthrobacter P-solubilization, IAA, and 

biocontrol activity
Triticum aestivum Kumar et al. 

(2011)
Pseudomonas P and Zn solubilization, 

IAA, HCN, and siderophore 
production

Triticum aestivum Vyas et al. 
(2009)

Providencia P and Zn solubilization, IAA 
production, and nitrogen 
fixation

Amaranthus viridis Forchetti et al. 
(2007)

Staphylococcus P-solubilization, HCN, and 
siderophore production

Cupressus dupreziana Jorquera et al. 
(2012)

(continued)
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14.2.2  Arid and Semi-Arid Environments

Moisture content of the soil also affects the microbial communities associated with 
plants growing under arid and semi-arid environments. Moisture content is the main 
abiotic factor that affects microbial diversity associated with xerophytes, such as 
Leptochloafusca, Aristida plumose, Zygophyllum dumosum, Artemesia sp. and 
Cupressus dupreziana (Bhatnagar and Bhatnagar 2009; Buyanovsky et  al. 1982). 
These microorganisms use small organic solutes, such as sugars, amino acids, and 
some other organic molecules including glutamine, ectoine, betaine, and trehalose to 
maintain their internal environment. The rhizosphere microbiome of xerophytes is 
getting more attention than other soil microbiomes since the last decade, due to its 
effectiveness (Jorquera et al. 2012). Microbiome of xerophytes has about 54% micro-
bial diversity of Gram-positive bacteria especially Actinomycetes, such as Kocuria, 
Streptomyces, Frankia, and Micrococcus (Eppard et  al. 1996; Steinberger et  al. 
1995). Some other genera such as Azoarcus, Azotobacter, Bacillus, Enterobacter, and 

Table 14.1 (continued)

Extreme habitats/
microbe PGP attributes Host–plants Reference
Streptomyces P-solubilization and 

biocontrol activity
Vigna unguiculata Dimkpa et al. 

(2008)
Geobacillus P-solubilization, IAA, and 

siderophore production and 
biocontrol activity

Petroleum 
contaminated Kuwait 
soil

Zeigler (2014)
Al-Hassan et al. 
(2011)

Halococcus P-solubilization and 
siderophore production

Sporobolus indicus Yadav et al. 
(2015d)

Cold
Kocuria P-solubilization, IAA 

production, and nitrogen 
fixation

Triticum aestivum Yadav et al. 
(2015a)

Bacillus P-solubilization, IAA, and 
siderophore production

Capsicum annuum Barka et al. 
(2006)

Arthrobacter P-solubilization, IAA, and 
biocontrol activity

Pinus roxburghii Singh et al. 
(2016)

Klebsiella P-solubilization, IAA, and 
siderophore production

Zea mays Rana et al. 
(2017)

Lysinibacillus Mineral solubilization, IAA, 
and siderophore production

Prosopis 
strombulifera

Sgroy et al. 
(2009)

Pseudomonas P-solubilization, nitrogen 
fixation, IAA, HCN, and 
siderophore production

Solanum tuberosum Sati et al. 
(2013)

Methanosarcina P-solubilization, IAA, and 
siderophore production and 
biocontrol activity

Siberian permafrost Morozova and 
Wagner (2007)

Methylobacterium P-solubilization, ACC 
deaminase activity, IAA, 
HCN, and siderophore 
production

Triticum aestivum Saxena et al. 
(2016)

14 Mitigation Strategies for Abiotic Stress Tolerance in Plants…



334

Virgibacillus have also been identified from the rhizosphere of xerophytes (Bhatnagar 
and Bhatnagar 2009; Kour et  al. 2017; Malik et  al. 1997). Bacillus licheniformis 
strain K11 has been reported to increase the growth of pepper plants in drought stress 
conditions (Figs. 14.2 and 14.3; Table 14.1). Kocuria, Bacillus, and Pseudomonas 
being drought-tolerant bacterial genera also have plant growth-promoting abilities, 
such as nitrogen fixation, HCN, P-solubilization, IAA, and siderophore production. 
These bacteria can also be used as bioformulation and biocontrol agents for different 
crops growing in arid and semi-arid environments (Jorquera et al. 2012; Kour et al. 
2017; Lim and Kem 2013; Saxena et al. 2020; Thakur et al. 2020).

14.2.3  Acidic Environments

Soil pH plays an important role in shaping the composition of microbial communi-
ties associated with plants growing in acidic or alkaline environments (Feliatra et al. 
2016; Wellner et al. 2011). Rhizosphere is the most active site for microbial diver-
sity analysis from acidic environments. Many acidophilic and acidotolerant bacteria 
and archaea including Pseudomonas, Azotobacter, Lysinibacillus, Acidithiobacillus, 
Serratia, Flavobacterium, and Pyrococcus have been isolated and characterized 
from the various acidic environments (Dang et  al. 2017; Feliatra et  al. 2016; 
Upadhyay et al. 2009; Wellner et al. 2011). These microorganisms stimulate plants 
to withstand extremely acidic conditions and maintain their internal pH (Figs. 14.2 
and 14.3; Table 14.1). Many PGP bacterial strains identified from the acidophilic 
environments promote plant growth of various crops such as rice, wheat, maize, and 
sugarcane to grow under acidic conditions (Verma et al. 2013; Wellner et al. 2011). 
Acidophilic microorganisms produce siderophores that are important for their 

Fig. 14.3 Overview of microbe-mediated mitigation of abiotic stresses by plants. Adapted from 
Mukhtar et al. (2019c)

S. Mukhtar et al.
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survival under acidic conditions. These microbes have the ability to convert Fe3+ to 
Fe2+ in an acidic environment (Sorty et al. 2016; Vansuyt et al. 2007). Acid-tolerant 
microorganisms have been used as bio-inoculants for crops growing under acid- 
affected soil.

14.2.4  Alkaline Environments

Microbial diversity of different soda lakes around the world have been studied 
extensively during the last decade. The pH range of soda lake water is usually from 
8 to 10 and even sometimes more than 12 (Antony et al. 2013; Grant and Sorokin 
2011). The rhizosphere of plants such as Dichanthium annulatum, Chrysanthemum 
morifolium, Photinia fraseri, and Smallanthus sonchifolius present in the alkaline 
environment has unique microbial diversity as compared to soils with neutral pH 
because alkaline soils have less carbon and more methane and hydrogen content 
(Pikuta et al. 2003; Tiago et al. 2004). These microorganisms maintain their func-
tional and structural integrity of cytoplasmic proteins by using specific proteins and 
enzymes (Jones et al. 1998; Zawadzka et al. 2014). Many alkaliphilic bacterial and 
archaeal strains such as Sphingomonas, Pseudorhodoplanes, Paenibacillus, 
Arthrobacter, Burkholderia, and Curtobacterium have been characterized by alka-
line environments (Figs. 14.2 and 14.3; Table 14.1). A huge number of microbes 
identified from alkaline environments showed phytohormones production and 
P-solubilization ability (Rastegari et al. 2020; Yadav 2020). Rhizosphere microbi-
ome of crops such as wheat, rice, maize, and barley are considered as important 
sources for maintaining the production and yield of these crops. These alkaliphilic 
bacteria having multi PGP abilities can be used for the improvement of plant growth 
in alkaline environments (Mukhtar et al. 2018b; Nautiyal et al. 2000).

14.2.5  Hot Environments

Temperature is one of the important abiotic factors which has effects on seed germi-
nation, photosynthesis rate, and membrane permeability of plants (Xu et al. 2014). 
Various plants growing in hot environments such as Triticum aestivum, Vigna 
unguiculata, C. dupreziana, and Sporobolus indicus have special enzymes and pro-
teins to survive under hot environments. Rhizosphere and root-associated microbial 
communities from these environments have the ability to promote plant growth by 
increasing phytohormones production, nitrogen fixation, HCN and siderophores 
production, and P-solubilization as shown in Fig.  14.2 and Table  14.1 (Mukhtar 
et al. 2017; Vyas et al. 2009; Verma et al. 2018). Many bacteria have the ability to 
solubilize different minerals such as P, Zn, Al, and K by producing different organic 
acids, gluconic acid, formic acid, and citric acid in high temperature (Verma et al. 
2014, 2016). A huge number of microbial genera such as Staphylococcus, 
Arthrobacter, Streptomyces, Pseudomonas, Providencia, and Geobacillus could be 
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used as biofertilizers for plants growth under hot environments (Dimkpa et al. 2008; 
Gao et al. 2003; Zeigler 2014).

14.2.6  Cold Environments

Microbial diversity from cold environments is of particular importance in global 
ecology. A number of lakes and other aquatic ecosystems have very low tempera-
tures permanently or seasonally (Singh 2014; Yadav et  al. 2015b; Yadav et  al. 
2015c). Some plant species such as Pinus roxburghii, Zea mays, Capsicum annuum, 
and T. aestivum can grow under cold conditions by freezing tolerance or avoiding 
cooling of the tissue water (Thomashow 2010). Psychrophilic microorganisms have 
maximum functional activities at low temperatures as compared to mesophiles. 
Cold-tolerant plants have different microbial diversity and ability to tolerate cold 
and drought stress by solubilization of minerals, activation of defense-related and 
cold-active enzymes, production of phytohormones and exopolysaccharides (Ait 
Bakra et al. 2006; Kaushal and Wani 2016; Yadav et al. 2016) (Figs. 14.2 and 14.3; 
Table 14.1).

Many cold-tolerant bacterial strains including Bacillus, Kocuria, Arthrobacter, 
Janthinobacterium, Klebsiella, Lysinibacillus, Paenibacillus, Providencia, 
Methylobacterium, and Methanosarcina were characterized from cold-tolerant 
plants (Selvakumar et al. 2011; Shukla et al. 2016; Singh 2014; Singh et al. 2016; 
Yadav et al. 2015a). A number of endophytic cold-tolerant bacterial strains were 
isolated from crops growing under the low-temperature conditions (Rana et  al. 
2020). These bacterial strains showed the ability to solubilize minerals, produce 
phytohormones, siderophores, and HCN (Rana et  al. 2017). Psychrophilic plant 
growth microorganisms can be used as biofertilizers for improvement of crops such 
as wheat, rice, and sugarcane growing under cold environments (Kour et al. 2020a; 
Kour et al. 2020b; Kour et al. 2020c; Kour et al. 2020d).

14.3  Mitigation Strategies for Abiotic Stress Tolerance 
in Plants

14.3.1  Phytohormones Production

Among the production of many plant beneficial chemicals, the production of phyto-
hormones, such as auxins, cytokinins, gibberellins, ethylene, and abscisic acid, is 
key striking aspects of extremophilic bacteria imparting plant growth promotion 
under the unsuitable salt-affected area (Dodd and Perez-Alfocea 2012). The cellular 
mechanisms of plant growth promotion along with increased root length, due to 
IAA producing PGPR are direct stimulation of cell differentiation and division 
(Desale et al. 2014; Gonzalez et al. 2015; Shakirova 2007; Trindade et al. 2010; 
Tiwari et al. 2020). The genera of halophilic/tolerant bacteria described as PGPRs 
are Bacillus, Enterobacter, Micrococcus, Pseudomonas, and Serratia. These 
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bacteria, when used as inoculants for the host plants, showed improved growth of 
wheat, sugarcane, and corn, improved catalase and peroxidase activity along with 
the increased level of TSS (total soluble sugar) content, some amino acids and K+/
Na + ratio under salt stress (Gontia et al. 2011; Mukhtar et al. 2017a, b; Mukhtar 
et al. 2019d). Cytokinins, the plant growth-stimulating phytohormone, are revealed 
to be produced by hypersaline soil isolated Halobacillus strain which increased 
shoot biomass under salt stress (Figs. 14.3 and 14.4; Table 14.1). The cytokinins 
signaling is not one-way signaling mechanism as shown by many studies, cytoki-
nins producing Bacilli increased shoot biomass but reduced root length which may 
be due to the presence of abscisic acid in the roots (Arkhipova et  al. 2007; 
Ilangumaran and Smith 2017). Some plant-associated methylotrophs, such as 
Methylobacterium and Methylovorusmays, synthesize and excrete indole acetic acid 
and cytokinins (Ivanova et al. 2001).

Fig. 14.4 An overview of mechanisms in microbial phytohormone-mediated plant stress toler-
ance. Rhizosphere-associated microorganisms produce indole-3-acetic acid (IAA), cytokinin 
(CK), gibberellin (GB), abscisic acid (ABA), and salicylic acid (SA) that help plants to withstand 
stress by enhancing its antioxidant potential, by upregulation of the antioxidant system and by the 
accumulation of compatible osmolytes thus reducing oxidative stress-induced damage; improving 
photosynthetic capacity and membrane stability; promoting cell division and stomatal regulation; 
stimulating the growth of root system, and acquisition of water and nutrients. Adapted from 
Egamberdieva et al. (2017)
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14.3.2  Nitrogen Fixation

Nitrogen fixation by microbes is considered as one of the major methods for plant 
growth promotion because these microbes have the ability to fix atmospheric nitro-
gen and change it to nitrate that requires for the healthy and enhanced plant growth 
(Glick 2012; Kour et al. 2020d; Kaur et al. 2020). Frequently documented bacterial 
nitrogen-fixing genera include Azotobacter, Azospirillum, Frankia, Bacillus, 
Klebsiella, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, Salinibacter, and 
Serratia (Ahmad and Kebret 2014; Jaisingh et al. 2016; Kuan et al. 2016). Apart 
from atmospheric nitrogen fixation, most of the plant growth-promoting rhizobac-
teria, root endophytic bacteria, as well as archaea, can produce phytopathogen (bac-
terial or fungal) limiting compounds to be used for biocontrol (Jaisingh et al. 2016; 
Kumar et al. 2011; Mondal et al. 2020). Rhizosphere microbiome was recognized 
as a source of suppressing fungal phytopathogens like, Alternaria sp., Aspergillus 
flavus, and Fusarium sp. making plants resistant to tested pathogens (Mehnaz et al. 
2010). Plants from extreme environments have been explored to exploit associated 
microbiomes and several studies reported successful isolation and use of these iso-
lates for the plant growth promotion. Such N2-fixing reported genera are Azospirillum 
(Omar et al. 2009), Bacillus (Mukhtar et al. 2018a; Sorty and Shaikh 2015; Sorty 
et al. 2016), Bradyrhizobium (Panlada et al. 2013; Swaine et al. 2007), Burkholderia 
(Barka et al. 2006), Enterobacter and Klebsiella (Sorty et al. 2016; Mukhtar et al. 
2017a, b), Frankia (Tani et al. 2003), Micrococcus (Dastager et al. 2010; Oliveira 
et al. 2009; Steinberger et al. 1995), Pseudomonas (Ali et al. 2009; Grichko and 
Glick 2001), Rhizobium (Remans et  al. 2008; Sorty et  al. 2016) with successful 
plant growth promotion (Figs. 14.2 and 14.3; Table 14.1).

14.3.2.1  Mineral Solubilization
Extremophilic microbes used as PGPR can directly enhance plant nutrient uptake 
by the roots (Figs. 14.2 and 14.3; Table 14.1). Apart from nitrogen-fixing microbe, 
many PGPR genera, including Bacillus, Halobacillus, Enterobacter, Micrococcus, 
Pseudomonas, Virgibacillus, Pantoea, Rhizobium, and Serratia have been reported 
for the solubilization of minerals (P, K, Zn) along with plant growth promotion 
(Mukhtar et al. 2017a, b; Sgroy et al. 2009; Yadav et al. 2020b, c). In the case of 
phosphate, PGPR converts its inorganic form into bioavailable organic phosphates 
and they can be used as a biofertilizer for the cultivation of barley, sugarcane, maize, 
rice, and wheat (Farrar et  al. 2014;  Jaisingh et  al. 2016; Mukhtar et  al. 2019d; 
Siddikee et al. 2010). The underlying mechanism for phosphate solubilization by 
microbes is their ability to produce organic acids; acetic acid, oxalic acid, lactic 
acid, and citric acid, responsible for phosphate conversion and the reported genera 
of phosphate solubilizing bacteria are Bacillus, Enterobacter, and Pseudomonas 
(Berendsen et al. 2012; Kumar et al. 2011; Ramaekers et al. 2010). The mineral- 
solubilizing and mobilizing microbes play important role in plant growth promo-
tion, nutrient uptake, and soil health for sustainable agriculture (Kumar et al. 2019; 
Kumar et al. 2017; Singh et al. 2020b).
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Potassium is the third most essential nutrient for plant growth; therefore, potas-
sium solubilizing bacteria are used as biofertilizers in potassium limiting soils for 
agriculture. The reported PGPR genera for potassium solubilization are Bacillus, 
Acidothiobacillus, Paenibacillus, Azospirillum, Marinococcus, Serratia, 
Streptomyces, and Azotobacter (Zhao et  al. 2016; Rana et  al. 2019; Verma et  al. 
2017a, b). Several studies have reported potassium-solubilizing bacteria as biofertil-
izers for the cultivation of wheat, rice, maize, and sugarcane, to reduce the use of 
potassium fertilizer (Badar et al. 2006; Etesami et al. 2017). Zinc solubilizing bac-
teria, isolated from extreme saline environments, showed the ability to convert its 
inorganic form to organic form for plant uptake and utilization. The reported genera 
of zinc solubilization from various extreme environments include Bacillus, 
Pseudomonas, Burkholderia, Brevibacillus, and Gluconacetobacter (Figs. 14.2 and 
14.3; Table 14.1) (Desai et al. 2012). These strains possess potentials to be used as 
chemo-attractants for the plant roots as well as PGPR for enhanced growth (Singh 
et al. 2020a; Singh and Yadav 2020; Yadav et al. 2020d).

14.3.2.2  ACC Deaminase Production
ACC deaminases, a viral compound for helping plants grow in unsupportive envi-
ronmental conditions. Many rhizobacteria including Oceanobacillus, Bacillus, 
Achromobacter, Halobacillus, Micrococcus, Virgibacillus, and Planococcus can 
produce ACC deaminase for lowering the amount of ethylene (Figs. 14.2 and 14.3; 
Table 14.1). Ethylene is a two-step production and enzymatic conversion system; 
ACC synthase converts AdoMet (S-adenosylmethionine) to ACC (1- aminocyclopro
pane- 1-carboxylic acid), and ACC is converted to ethylene with the help of ACC 
oxidase (Etesami et al. 2015; Glick, 2014; Nadeem et al. 2007). The ACC deami-
nase producing plant-associated microbes protect against many abiotic stresses such 
as salinity, drought, heavy metal, water-logging, and petroleum exposure. ACC 
deaminase-producing rhizobacteria act as bioprotectant for maintaining ACC levels 
inside the host plant and its surroundings by hydrolyzing ACC through deaminase. 
It is indirectly involved in root elongation by lowering the inhibitory effects of eth-
ylene on plant roots (Lima et al. 2011; Nikolic et al. 2011; Yadav et al. 2020g).

14.3.2.3  Exopolysaccharides Matrix
The production of EPS (exo-polysaccharides) by extremophilic rhizobacteria 
includes Halobacillus, Pseudomonas, Corynebacterium, Nesterenkonia, 
Acinetobacter, and Planococcus, works by creating a matrix for attachment of soil 
particles to plant roots and associated microbes thereafter creating a complex net-
work in the soil within the plant root vicinity. The formation of such complex plant 
microbe-associated meshwork around the roots helps in establishing successful 
plant-microbe interactions and imparting bioprotection against phytopathogens 
such as protest, fungal, and bacterial (Mapelli et al. 2013; Sorty et al. 2016). Apart 
from providing biological benefits, the production of EPS supports beneficial physi-
cal properties of soil, such as water-holding capacity along with stabilizing the soil 
structure (Figs. 14.2 and 14.3; Table 14.1). Halotolerant PGPR with the ability of 

14 Mitigation Strategies for Abiotic Stress Tolerance in Plants…



340

EPS production has been successfully used under arid and saline conditions for 
chickpea, maize, sugarcane, and wheat (Mukhtar et al. 2019d; Oren 2015).

14.3.2.4  Siderophores Production and Biocontrol
Iron is considered one of the most crucial elements for the plant’s growth. It is 
involved in many plant growth essential mechanisms such as nitrogen fixation, res-
piration, and photosynthesis (Figs. 14.2 and 14.3; Table 14.1). Iron availability for 
plant decreased in sodic, saline, arid, and acidic soils hindering healthy plant growth 
(Abbas et al. 2015). Many PGPR has the ability to produce siderophores which help 
in iron chelation thus, helping in iron availability for plants (Kour et al. 2019a, b). 
Production of siderophores by PGPR indirectly provides biocontrol to host plants, 
many PGPRs such as Halobacillus, Bacillus, Pseudomonas, Halovibrio, Klebsiella, 
and Rhizobium isolated from the arid and saline environments have the ability to 
produce siderophores (Singh et al. 2015).

The most fascinating aspect of PGPRs is the production of antifungal and anti-
bacterial compounds; HCN (hydrogen cyanide), 2,4-diacetylphloroglucinol, pyolu-
teorin, gliotoxin, pyrrol-nitrin, and tensin. The reported extremotolerant PGPRs 
genera for antipathogenic compounds include Aeromonas, Rhizobium, Bacillus, 
Halomonas, Acinetobacter, Pseudomonas, and Enterobacter (Bhattacharyya and 
Jha 2012; Singh et al. 2015). The application of these bacteria has successfully pro-
tected the plants against tested fungal and bacterial pathogens. Hydrogen cyanide 
(HCN) is one of the most frequently reported antifungal compounds and has been 
reported in a number of PGPRs isolated from diversified environments (Barea et al. 
2005). Apart from imparting antifungal protection, HCN-producing PGPRs have 
been reported for mineral (Zn, P, K) mobilization in soils (Frey et al. 2010; Rai et al. 
2020; Suman et al. 2016). Some studies have shown that HCN-producing PGPRs in 
acidic soils play a vital role in iron sequestration, phosphate mobilization, thus 
increasing the bioavailability of phosphate for the host plants (Ström et al. 2002).

14.4  Conclusion and Future Prospects

Food production has increased as the world population doubled during the last few 
decades. Plants growing under harsh environments have special genetic and physi-
ological modifications. Microbe-mediated stress alleviations have been extensively 
studied during the last few years. PGP microorganisms isolated and characterized 
from the rhizosphere and roots of plants growing under extreme environments can 
be used as bio-inoculants for increasing crop production under various abiotic 
stresses. A number of bacterial, archaeal, and fungal strains have the potential to be 
used as biocontrol agents against different bacterial and fungal diseases. Microbe- 
mediated abiotic stresses alleviation in crops may also be involved in the production 
of different organic compounds, especially extracellular enzymes, and can be used 
to improve soil properties, promote plant growth, and provide as signaling mole-
cules to the plants. By using meta-omics approaches, plant growth-promoting 
microorganisms can be studied and utilized in a better way for crop improvement 
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and production under abiotic stresses. New information from metagenomics, meta-
transcriptomics, and metaproteomics will help us to find out new roles of plant- 
associated microorganisms under extreme environments. Different microbial 
osmoregulatory and other stress-tolerant genes identified from a number of extreme 
environments may be used for the development of stress-tolerant transgenic crops in 
the future.
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