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Chapter 2
Harnessing the Plant Microbiome 
for Improved Abiotic Stress Tolerance

Syed Sarfraz Hussain, Samina Mehnaz, and Kadambot H.M. Siddique

Abstract  The benefits of the green revolution in agriculture are over because cur-
rent agricultural productivity has touched its limits of effectiveness in increasing 
plant yield. This problem is complicated by shrinking farmland, high labour costs 
and biotic and abiotic stresses. In fact, global agriculture and increased production 
would depend on the application and utilisation of microorganisms of agricultural 
importance, which will serve as an alternative strategy for higher crop productivity 
in the future. Efficient microbes play a key role in integrated management practices 
such as biotic and abiotic stresses and nutrient management to reduce chemical use 
and improve cultivar performance. On the other hand, high food demand and ever-
increasing population increase pressure and urgency of how to exploit the microbi-
ome for high crop yields and reduced losses caused by environmental stresses. This 
chapter highlights the importance of the designer plant microbiome, a strategy that 
may provide an effective and sustainable increase in crop yield and ultimately leads 
to food security by efficiently tackling biotic and abiotic stresses.
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2.1  �Introduction: An Overview of Abiotic Stresses in Plants

A plethora of abiotic stresses affects crop plants including drought, extreme tem-
peratures, salinity, nutrient deficiency and flooding which are expected to intensify 
due to climatic changes (Hussain et al. 2012; Timmusk et al. 2013, 2014; Rolli et al. 
2015). Abiotic stresses represent a significant threat to agricultural productivity 
(Capell et al. 2004). A global water shortage due to significant climatic changes is 
the leading cause of these abiotic stresses. Drought is the most significant abiotic 
stress, adversely affecting the productivity and distribution of crop plants world-
wide (Hussain et al. 2012; Marasco et al. 2013). For example, drought alone effects 
up to 45% of the global agricultural land, characterised by high human population 
(38%) with increased food demands (Bartels and Hussain 2008; Hussain et  al. 
2012). Plant growth and development face deleterious effects even with short-term 
water imbalance. Plants exhibit a plethora of responses at physiological, metabolic 
and molecular levels to survive or tolerate adverse conditions which include stoma-
tal closure, increased aquaporin and H+-pyrophosphatase activity and accumulation 
of a variety of compatible solutes (Bartels and Sunkar 2005; Shinozaki and 
Yamaguchi-Shinozaki 2007; Marasco et  al. 2013; Hussain et  al. 2016). Several 
studies have revealed overall effects of drought on plant growth and development; 
however, it is difficult to understand the damage caused to plants at the cellular and 
molecular levels under water deficit conditions (Zhu 2002; Chaitanya et al. 2003; 
Chaves and Oliveira 2004).

Salinity limits agricultural production in arid and semiarid areas, characterised 
by low annual precipitation, where agriculture is dependent on irrigation (Agrawal 
et al. 2013). Increased salt ion concentrations (such as Na+ and Cl−, but also others 
including Ca2+, K+, CO3

2−, NO3
−, SO4

2−) in soil reduce water uptake by roots which 
ultimately results in the accumulation of toxic salt ions within plant cells (Tester and 
Davenport 2003). Plants have the ability to tackle this problem such as low Na+ 
concentration by actively maintaining translocation into vacuolar compartments via 
ATP-dependent ion pumps. However, excessive NaCl in irrigation water results in 
osmotic stress (Zhang et al. 2009a, b). Any misbalance in intracellular ion homeo-
stasis leads to the damaging effects, for example, cell signalling pathways including 
those that lead to the synthesis of osmotically active metabolites, specific proteins, 
nutritional disorders, assimilation, membrane disorganisation, reduced cell division 
and expansion, genotoxicity and certain free radical scavenging enzymes that con-
trol ion and water flux (Zhang et al. 2009a, b) which ultimately impaired optimal 
growth and development.

Abiotic stresses such as drought, salinity and extreme temp are often intercon-
nected and induce a similar set of plant responses by activating the same or interacting 
pathways (Shinozaki and Yamaguch-Shinozaki 2000; Seki et al. 2001, 2002; Kreps 
et al. 2002). A general response such as compatible solute accumulation and the syn-
thesis of stress proteins and antioxidants at cellular level in many crop plants have 
been reported for all these stresses (Cushman and Bohnert 2000; Bartels and Sunkar 
2005; Chinnusamy et al. 2005; Bartels and Hussain 2008; Hussain et al. 2011, 2012). 
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Efforts to enhance plant performance under abiotic stress have met with little success 
due to an incomplete understanding of the stress tolerance mechanisms in plants. 
Several groups have studied the complex mechanisms involved in stress response and 
adaptation—such as stress signalling, readjusting metabolism and reprogramming 
gene expression—to improve stress tolerance (Ma et al. 2011; Marasco et al. 2016; 
Thao and Tran 2016). However, for agricultural and environmental sustainability, the 
development of stress-tolerant plants is a viable approach, which seems imperative to 
fulfil the growing demands for quality food (Castiglioni et al. 2008). However, current 
breeding methods lack suitable methodological means to manage crop production in 
stress environment (Ashraf and Foolad 2007). In contrast, genetic engineering of crop 
plants can play a major role in developing stress-tolerant plants. Combining trans-
genic approaches with current breeding methods can be used to develop enhanced 
stress tolerance of crop plants (Capell et al. 2004). Current transgenic approaches aim 
to transfer to the target plant one or several different genes involved in several path-
ways including regulatory transcription factors, compatible solutes/osmoprotectants 
(proline, glycine betaine, polyamines) and proteins (LEA, heat shock, aquaporin) for 
generating stress-tolerant plants (Wang et  al. 2003; Vinocur and Altman 2005; 
Valliyodan and Nguyen 2006; Bhatnagar-Mathur et al. 2007; Kathuria et al. 2007; 
Sreenivasulu et al. 2007; Marasco et al. 2016; Thao and Tran 2016). The bottleneck of 
transgenic approaches has been and continues to be the identification of key genes and 
their use in transgenic crops with improved stress tolerance without sacrificing yield 
(Bartels and Hussain 2008).

The last century has witnessed several significant, diverse and unexpected dis-
coveries related to the plant-associated microbiome by molecular and omics tools 
combined with novel microscopic techniques (Mendes et al. 2011; Bulgarelli et al. 
2012; Lundberg et al. 2012; Bhattacharyya et al. 2016; Berg et al. 2016; Timmusk 
et al. 2017). A wide range of agriculturally important microbiomes has been exten-
sively exploited for increased growth and disease management in plants. It is 
expected that plant-associated beneficial microbiomes can significantly contribute 
to alleviating abiotic stresses using a variety of mechanisms (Hayat et  al. 2010; 
Mapelli et al. 2013; Vejan et al. 2016). The sustainability of crop plants challenged 
by environmental stresses becomes more important and needs nonconventional 
solutions such as the use of microbiomes (Schaeppi and Bulgarelli 2015). 
Strengthening microbial traits beneficial to plants, the environment or both offers a 
promising avenue for the development of sustainable future agriculture. Microbial 
collection and utilisation can serve as a valuable tool and key determinants in man-
aging plant health and productivity under an array of biotic and abiotic stresses 
(Celebi et al. 2010; Mengual et al. 2014; Rolli et al. 2015; Berg et al. 2016; Marasco 
et al. 2016). The identification, characterisation and utilisation of beneficial micro-
biomes which enhance abiotic stress tolerance in plants would help to sustain the 
next generation in agriculture worldwide (Jorquera et al. 2012; Nadeem et al. 2014). 
Diverse mechanisms which these microbes use to confer stress have been reviewed 
elsewhere (Lugtenberg and Kamilova 2009; Yang et al. 2009; Grover et al. 2010; 
Zelicourt et  al. 2013; Nadeem et  al. 2014). In this chapter, we will highlight 
advantages of the plant-associated microbiome approach, in particular, increasing 
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plant tolerance to different abiotic stresses, which pose a serious threat to global 
crop productivity.

2.2  �Exploring the Plant-Associated Microbiome 
for Improving Abiotic Stress Tolerance in Plants

2.2.1  �Drought Stress

Recent data have revealed that the plant-associated microbiome can influence sev-
eral plant traits including growth and biotic and abiotic stress tolerance (Mendes 
et al. 2011; Lau and Lennon 2012; Marasco et al. 2012, 2013; Bainard et al. 2013; 
Sugiyama et al. 2013; Berg et al. 2014; Rolli et al. 2015; Panke-Buisse et al. 2015). 
Drought stress represents a serious threat to agriculture worldwide. The contribu-
tion of the plant-associated microbiome to plant adaptation to drought stress is 
poorly understood. Rolli et al. (2015) tested in vivo eight isolates, over 510 strains, 
for their ability to support grapevine and Arabidopsis growth under drought stress; 
they demonstrated that plant growth-promoting activity is stress dependent and not 
a per se feature of the strains. Similarly, a pepper plant inoculated with selected 
strains under irrigated and drought conditions exhibited a stress-dependent plant 
growth-promoting pattern by increasing shoot and leaf biomass and shoot length 
and enhancing photosynthesis in drought-challenged grapevine, with a profound 
positive effect on drought-sensitive rootstock. Overall, these results indicate that the 
tested bacteria significantly contributed to plant adaptation to drought via stress-
induced plant growth promotion. Certain PGPR, such as Achromobacter piechaudii 
ARV8, enhance drought stress tolerance in pepper and tomato by 1-aminocyclopro
pane-1-carboxylate (ACC) deaminase. The mechanisms which render drought 
stress tolerance in plants remain largely speculative. However, it is possible that the 
breakdown of plant ACC by bacterial ACC will inhibit ethylene synthesis which 
ultimately reduces plant stress and enables normal plant growth (Glick et al. 2007; 
Arshad et al. 2008; Duan et al. 2009; Yang et al. 2009). Another study highlighted 
the positive influence of bacterial priming on wheat seedlings under drought stress 
(Timmusk et  al. 2014, 2017); this method increased plant biomass by 78% and 
improved photosynthesis fivefold under severe drought. Furthermore, three of seven 
volatiles from bacterially primed drought-stressed wheat seedlings have been used 
to assess plant performance under drought stress in early stages of stress develop-
ment (Timmusk et  al. 2014). Wheat inoculated with Burkholderia phytofirmans 
PsJN had an increased photosynthesis, better water use efficiency, and high chloro-
phyll content and grain yield than the control under water deficit in the field condi-
tions (Naveed et al. 2014a). Similarly, maize inoculated with both B. phytofirmans 
and Enterobacter sp. FD17 performed better compared to controls (Naveed et al. 
2014b). Three bacterial strains isolated from extremely water-stressed soil, viz. 
Pseudomonas putida, Pseudomonas sp. and Bacillus megaterium, stimulated plant 
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growth under drought conditions (Marulanda et al. 2009). Similarly, Sandhya et al. 
(2009) reported that inoculation of sunflower seedlings with Pseudomonas sp. strain 
GAP-45 enhanced survival and plant biomass under drought stress. It is possible 
that inoculated bacteria can efficiently colonise the root-adhering soil resulting in 
stable soil aggregates and ultimately enhanced stress tolerance. In a similar study, 
maize plants inoculated with Pseudomonas strain GAP-45 showed increased com-
patible solutes and antioxidant under water deficit conditions (Sandhya et al. 2010). 
In tomato, grapevine, olive and pepper plants, microbes isolated from roots of plants 
growing under extreme dry conditions improved the growth of another host species 
under similar growth conditions (Marasco et al. 2013). This stress-resistance solu-
tion strategy has the potential to save time, effort and costs. Kohler et al. (2008) 
inoculated lettuce with Pseudomonas mendocina and arbuscular mycorrhizal fungi 
(Glomus intraradices or G. mosseae) which resulted in antioxidant catalase activity 
under severe drought conditions pointing to possible use of microbes in alleviation 
of oxidative stress. Similarly, the accumulation of 14-3-3 protein along with gluta-
thione and ascorbate has played important roles in maintaining plant metabolic 
functions and conferring protection under drought conditions. Lavender plants 
inoculated with Glomus intraradices and Glomus sp. strain accumulated these com-
pounds and exhibited high drought tolerance by improving water contents, root bio-
mass and N and P contents (Porcel et  al. 2006; Marulanda et  al. 2007). Plant 
growth-promoting bacteria have improved growth in sunflower, pea, sorghum, 
tomato, pepper, rice, common bean and lettuce under drought conditions (Alami 
et al. 2000; Creus et al. 2004; Mayak et al. 2004; Dodd et al. 2005; Cho et al. 2006; 
Marquez et al. 2007; Figueiredo et al. 2008; Arshad et al. 2008; Kohler et al. 2008; 
Sandhya et al. 2009; Kim et al. 2013; Perez-Montano et al. 2014; Marasco et al. 
2016).

2.2.2  �Salinity Stress

Extreme climatic conditions and the misuse of agricultural land over the past few 
decades have led to high salinity, which is a limiting factor to global crop productiv-
ity (Wicke et al. 2011). Several approaches, in addition to molecular technologies, 
have been implicated for addressing salinity such as soil reclamation and manage-
ment practices. However, these methods are expensive and not always practical and 
sustainable for controlling salinity. In contrast, the use of natural plant growth-
promoting bacteria as inoculants for crop plants growing on salt-affected land is 
gaining momentum (Tiwari et al. 2011; Shabala et al. 2013; Paul and Lade 2014; 
Qin et al. 2014; Ruiz et al. 2015). A growing body of research has shown that micro-
bial communities increase productivity and improve plant health following adverse 
environmental stresses (Berendsen et  al. 2012; Zuppinger-Dingley et  al. 2014; 
Sloan and Lebeis 2015).

It is proposed that microbes inhabiting sites exposed to frequent stress condi-
tions develop adaptive tolerant traits and are potential candidates as plant growth 
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promoters under stress conditions (Yang et al. 2016b). Halotolerant microbes thrive 
under soil salinity stress and express traits to help plants to survive high salinity. 
Upadhyay et al. (2009) isolated 130 rhizobacterial strains from wheat plants sown 
under saline conditions and showed that 24 isolates tolerated relatively high levels 
(8%) of NaCl stress. The authors attributed this tolerance to different genes, hor-
mones and proteins such as nifH, indole-3-acetic acid (IAA), siderophores and gib-
berellin. Similarly, halotolerant bacterial strains isolated from Korea enhanced plant 
growth under salinity stress by reducing ethylene production via ACC deaminase 
activity (Siddikee et  al. 2010). The availability of new halotolerant diazotrophic 
bacteria, with traits such as IAA, phosphorus solubilisation and ACC deaminase 
activity, isolated from roots of Salicornia brachiate (extreme halophyte) represents 
other potential candidates (Jha et al. 2012). Arora et al. (2014) demonstrated that 17 
of 20 bacteria isolated from halophytes and other salt-tolerant plant species happily 
grew in 7.5% NaCl in culture and two of these grew in 10% NaCl. Plant-associated 
microbiomes have improved growth in canola, pepper, tomato, bean, wheat and let-
tuce (Yildirim and Taylor 2005; Barassi et al. 2006; Upadhyay et al. 2009; Ali et al. 
2014; Leite et al. 2014; Zhao et al. 2016).

There are reports that the involvement of arbuscular mycorrhizal fungi (AMF) 
has increased host plant tolerance to salinity stress. Co-inoculation of AMF plants 
with Glomus sp. has increased growth in saline soils possibly due to increased phos-
phate and decreased Na+ concentration in shoots compared to uninoculated controls 
(Giri and Mukerji 2004). AMF treatment has improved salt tolerance in maize, 
mungbean, clover, tomato and cucumber due to P acquisition, improved osmoregu-
lation by proline accumulation and reduced NaCl concentration (Jindal et al. 1993; 
Al-Karaki et al. 2001; Feng et al. 2002; Ben Khaled et al. 2003; Grover et al. 2010; 
Velazquez-Hernandez et al. 2011). However, research on the ability of bacterial and 
AM species to induce protective proteins and osmoprotectants is needed. The above 
reports suggest that plants under stress may readily recruit diverse bacterial strains 
with broad implications for plants grown under salt stress. This phenomenon has 
been collectively termed induced systemic tolerance (Yang et al. 2009).

2.2.3  �Extreme Temperature Stress (Low and High)

The Intergovernmental Panel on Climate Change (IPCC: 2007) reported that global 
temperatures are predicted to increase by 1.8–3.6 °C by the end of this century due 
to climate changes. High temperatures are a major obstacle in crop production as 
well as microbial colonisation, which results in major cellular damage such as pro-
tein degradation and aggregation. All organisms respond to high temperature by 
producing a specific group of polypeptides known as heat shock proteins (HSPs). 
Stress adaptation in microorganisms represents a complex multilevel regulatory 
process that may involve several genes (Srivastava et al. 2008), such that microbes 
develop different adaptation strategies to combat the stress. Certain microbes per-
form better at high temperatures, and these microbes may be important for crop 
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plants under high temperature (Yang et al. 2016a). Srivastava et al. (2008) isolated 
P. putida strain NBR10987, which exhibited thermotolerance in the drought-stressed 
rhizosphere of chickpea and was attributed to the stress sigma factor δs overexpres-
sion and thick biofilm formation. Certain bacterial strains combat stress by produc-
ing exopolysaccharides (EPS) which possess unique water holding and cementing 
characteristics and play vital roles in stress tolerance by water retention and biofilm 
formation. Sorghum seedlings inoculated with Pseudomonas AKM-P6 strain had 
improved tolerance to heat stress through enhanced physiological and metabolic 
performance indicating a unique interaction of inducible proteins in heat tolerance 
using microbes (Ali et al. 2009).

Low-temperature stress is an important limiting factor to crop productivity 
because it adversely affects plant growth and development. Grapevines inoculated 
with B. phytofirmans PsJN increased tolerance to low nonfreezing temperatures and 
resistance to grey mould. Similarly, endophyte inoculation resulted in higher and 
faster accumulation of stress-related proteins and metabolites, which lead to more 
effective resistance to low temperature, indicating a positive priming effect on plants 
(Theocharis et al. 2012). Similarly, Barka et al. (2006) noted that grapevine roots 
inoculated with B. phytofirmans PsJN resulted in better root growth, higher plant 
biomass and increased physiological activity at low temperature (4  °C). Further 
analysis revealed that bacterised plantlets significantly increased proline, starch and 
phenolic levels compared with uninoculated control plantlets, which enhanced 
grapevine plantlets to tolerate low temperature. Low temperature usually inhibits 
soybean symbiotic activities (nodule infection and nitrogen fixation), but inocula-
tion of soybean with both Bradyrhizobium japonicum and Serratia proteamaculans 
resulted in faster growth at 15 °C (Zhang et al. 1995, 1996). Switchgrass inoculated 
with B. phytofirmans PsJN had enhanced growth under glasshouse conditions (Kim 
et  al. 2012). According to Mishra et  al. (2009), wheat seedlings inoculated with 
Pseudomonas sp. strain PPERs23 highly improved root and shoot lengths resulting 
in dry root/shoot biomass and total phenolics, chlorophyll and amino acid contents. 
Furthermore, inoculated wheat seedlings had enhanced physiologically available 
iron, anthocyanins, proline, protein and relative water contents and reduced Na+/K+ 
ratio and electrolyte leakage, resulting in enhanced cold tolerance (Mishra et  al. 
2009). Many studies have explored several bacterial strains for enhanced cold stress 
tolerance in plants (Selvakumar et al. 2008a, b, 2009, 2010a, b). It is apparent from 
the above studies that B. phytofirmans PsJN has a wide host spectrum, which 
includes grapevines, maize, soybean, sorghum, wheat and switchgrass with promis-
ing results under different abiotic stresses.

2.2.4  �Heavy Metal Stress

Heavy metal contamination due to increased industrialisation has recently 
received attention because heavy metals cannot be degraded (Kidd et al. 2009; Ma 
et  al. 2011; Rajkumar et  al. 2012). Various physiochemical and biological 
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techniques developed to remove contaminants have failed due to being expensive, 
environmentally unsafe and unacceptable by the public (Boopathy 2000; Vidali 
2001; Doble and Kumar 2005). Phytoremediation using plants to eliminate soil 
contaminants is cost-effective and environmentally friendly with high public 
acceptance technology (Hadi and Bano 2010; Beskoski et al. 2011; Fester et al. 
2014; Arslan et al. 2015). Another viable and promising alternative is the applica-
tion of plant-associated microbiomes whereby microbial activities in the rhizo-
sphere increase plant metal uptake by several ways like altering mobility and 
bioavailability of metals (Rajkumar et al. 2010; Ma et al. 2011; Aafi et al. 2012; 
Yang et  al. 2012). Several plant growth-promoting substances, such as plant 
growth hormones (IAA, cytokinins and gibberellins), siderophores and ACC 
deaminase, are produced by plant-associated microbiomes to improve plant 
growth in heavy metal-contaminated soils (Babu and Reddy 2011; Luo et  al. 
2011, 2012; Wang et al. 2011; Bisht et al. 2014; Kukla et al. 2014; Waqas et al. 
2015; Ijaz et al. 2016; Santoyo et al. 2016). High soil contamination could reduce 
plant growth including root growth and expansion mainly due to oxidative stress, 
which limits the rate of phytoremediation (Gerhardt et al. 2009; Hu et al. 2016). 
The lack of nutrients and reduced microbial density also limit phytoremediation 
(Gerhardt et al. 2009). Common heavy metals include manganese (Mn), cadmium 
(Cd), lead (Pb), chromium (Cr), zinc (Zn), aluminium (Al) and copper (Cu). Some 
metalloids also show toxicity such as antimony (Sb) and arsenic (As) (Duruibe 
et al. 2007; Park 2010; Wuana and Okieimen 2011; Pandey 2012).

Rhizosphere bacteria deserves close attention among the microbes involved in 
phytoremediation  (Arora et  al. 2005) as these can directly improve process effi-
ciency by altering soil pH and oxidation/reduction reactions (Khan et al. 2009; Kidd 
et al. 2009; Uroz et al. 2009; Wenzel 2009; Rajkumar et al. 2010; Afzal et al. 2011; 
Ma et al. 2011). Microbacterium sp. G16 and Pseudomonas fluorescens G10 signifi-
cantly increased the solubility of lead (Pb) in Brassica napus compared with unin-
oculated controls and were mainly attributed to IAA, siderophores, ACC deaminase 
and phosphate solubilisation (Sheng et al. 2008). Similarly, co-inoculation of Zea 
mays with Azotobacter chrococcum or Rhizobium leguminosarum improved plant 
growth and biomass in Pb-contaminated soil (Hadi and Bano 2010; Hussain et al. 
2013). Several endophyte genera like Bacillus sp., Serratia, Enterobacter, 
Burkholderia sp., Agrobacterium and others have increased the phytoremediation 
rate and biomass production in metal-contaminated soils (Wani et al. 2008; Kumar 
et al. 2009; Mastretta et al. 2009; Luo et al. 2012; Nonnoi et al. 2012; Afzal et al. 
2014; Glick 2014, 2015; Hardoim et al. 2015; Ijaz et al. 2016; Singh et al. 2016; 
Zheng et al. 2016; Feng et al. 2017).

Moreover, mycorrhizal fungi play significant role in phytoremediation due to 
hyperaccumulators of heavy metals with heavy metal tolerance (Zarei et al. 2010; 
Orłowska et al. 2011).
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2.2.5  �Nutrient Deficiency Stresses

Beneficial microbes can be used to enhance the sustainability of current agricultural 
systems. Members of the rhizosphere microbiome are playing significant roles in 
plant nutrient management (Adhya et  al. 2015). Well-known examples include 
nitrogen-fixing rhizobia and mycorrhizal fungi involved in phosphorus uptake 
(Hawkins et al. 2000; Richardson et al. 2009; Miransari 2011). Plants usually get 
nutrients from the rhizosphere and from the phyllosphere (Turner et al. 2013). Plant 
nutrient management requires optimal use of soil, water, atmospheric factors and 
NPK fertilisers (Miao et  al. 2011), along with a beneficial microbiome to help 
improve nutrient use efficiency. A plethora of research is available on the usefulness 
of symbionts such as mycorrhizal fungi for channelling nutrients and minerals such 
as phosphorus, water and other essential macro- and microelements from soil to 
growing plants (Gianinazzi et al. 2010; Adeleke et al. 2012; Johnson and Graham 
2013; Salvioli et al. 2016) and for modelling and improved soil structure and aggre-
gates (Miller and Jastrow 2000) in crops such as cereals, pulses, fruits and oilseeds 
to meet their nutritional requirements (Jeffries and Barea 2001; Johnson et al. 2012; 
Salvioli and Bonfante 2013). Apart from Rhizobium and Bradyrhizobium, several 
other bacterial endophytes have been reported to establish symbiosis with plants for 
bioavailable nitrogen fixation in unspecialised host tissues even in the absence of 
nodules (Zehr et al. 2003; Gaby and Buckley 2011; Guimaraes et al. 2012; Santi 
et al. 2013). For example, Cyanobacteria are in symbiotic association with a range 
of plants from different clads, such as gunnera, cycads and lichens, and form hetero-
cysts suitable for biological nitrogen fixation (BNF) with nitrogenase (Berman-
Frank et al. 2003; Santi et al. 2013). Another study revealed that 74 and 77 of 102 
bacteria associated with sugarcane roots successfully fix nitrogen and solubilise 
phosphorus, respectively (Leite et al. 2014). Similarly, analysis of the cowpea rhi-
zosphere using 16S rRNA sequencing revealed that Burkholderia and Achromobacter 
species along with Rhizobium and Bradyrhizobium can nodulate cowpea and sup-
port BNF (Guimaraes et al. 2012). Some reports have indicated that algal genera 
such as Anabaena, Aphanocapsa and Phormidium can fix atmospheric nitrogen in 
paddy fields (Shridhar 2012; Hasan 2013).

Considering the importance of essential plant nutrients, it would be logical to 
discover bacterial species that affect macro- and micronutrient uptake in plant spe-
cies under different deficient and toxic conditions (Leveau et al. 2010; Mapelli et al. 
2012). Microbiomes can also facilitate the uptake of several trace elements such as 
iron (Zhang et al. 2009a, b; Marschner et al. 2011; Shirley et al. 2011) and calcium 
(Lee et  al. 2010). Collectively, members of the plant microbiome play essential 
roles in degrading organic compounds which are required not only for their survival 
but also for plant growth in nutrient-poor soils (Leveau et al. 2010; Mapelli et al. 
2012; Turner et al. 2013; Bhattacharyya et al. 2015).
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2.2.6  �Establishing a Functional Plant Microbiome 
in Agriculture

It is important to understand microbe–microbe and plant–microbe interactions to 
generate/develop a beneficial soil microbiome. However, it is unknown whether 
such beneficial microbial communities would be stable in agricultural soils. Under 
natural conditions, two factors, i.e. soil type and plant roots, usually determine the 
composition and association of microbial communities with plant roots. The influ-
ence of soil type and plant roots on the rhizomicrobiome has been reviewed exten-
sively (Berg and Smalla 2009; Philippot et al. 2013; Bulgarelli et al. 2013, 2015; 
Lareen et al. 2016). Physiochemical properties of soils have a direct influence on 
specific microbes and plant root exudates (Hamel et al. 2005; Dumbrell et al. 2010) 
whereby soil type mostly determines the soil biome and plant root exudates tend to 
establish a favourable rhizobiome. Collectively, soil type and plant species are 
important players which determine the composition of rhizosphere and recruit 
diverse microbial communities for the establishment of a favourable rhizobiome to 
increase crop yields and reduce losses to biotic and abiotic stresses (Bulgarelli et al. 
2012, 2015; Peiffer et al. 2013; Philippot et al. 2013; Schlaeppi et al. 2014; Tkacz 
et al. 2015; Lebeis et al. 2015; Yeoh et al. 2016). These factors significantly contrib-
ute to the selective enrichment of beneficial microbes in the rhizobiome, which may 
help to identify heritable traits to improve plant health and productivity (Tkacz and 
Poole 2015). Consequently, this mechanistic approach has the potential to create a 
microbiome that can improve plant traits following species or genotype-driven 
selection in the composition of rhizobiome structure as revealed in maize, barley, 
potato, Arabidopsis, Brassica rapa and sugarcane (Rasche et al. 2006; Bulgarelli 
et  al. 2012, 2015; Lundberg et  al. 2012; Peiffer et  al. 2013; Lebeis et  al. 2015; 
Panke-Buisse et al. 2015; Yeoh et al. 2016).

2.3  �Customised Adjustment of the Plant Microbiome: 
A Revolution in Progress

Recent studies have highlighted the potential of customised or synthetic microbial 
communities to reap maximum benefits in crop production in terms of plant growth, 
yield and resistance to abiotic and biotic challenges (Mendes et al. 2011; Lau and 
Lennon 2012; Berendsen et  al. 2012; Bainard et  al. 2013; Bulgarelli et  al. 2015; 
Lebeis 2015). Using the plant microbiome in crop production is not a new concept. 
The plant microbiome is a key determinant of plant health and productivity (Berendsen 
et al. 2012; Ziegler et al. 2013; Chaparro et al. 2014) and has received considerable 
attention in recent years (Lebeis et al. 2012; Bulgarelli et al. 2013). Manipulation of 
the plant microbiome can increase tolerance to biotic and abiotic stresses (Barka et al. 
2006; Jha et al. 2012; Jorquera et al. 2012; Berg et al. 2013), increase agricultural 
production (Yang et al. 2009; Bakker et al. 2012; Turner et al. 2013), reduce chemical 
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inputs (Adesemoye et al. 2009; Adesemoye and Egamberdieva 2013; Jha et al. 2015) 
and reduce greenhouse gas emissions (Singh et al. 2010), resulting in more sustain-
able agricultural productivity. This is vital for sustaining the ever-growing global 
population. Furthermore, identified naturally occurring beneficial microbes are now 
being used in agriculture for significant improvement of crop plant performance 
(Zolla et al. 2013; Nadeem et al. 2014).

Despite the fact that the richness of species and diversity of microbial communi-
ties recruited in plant microbiomes are mostly unknown, assembling a specific trait-
associated microbiome is critical into new plant hosts for the development of 
improved production systems. There is ample evidence that many molecules, 
microbes, plant species and mechanisms support the establishment of a rhizobiome 
with the potential to play significant roles in enhanced plant productivity in the 
future (Berendsen et al. 2012; Miller and Oldroyd 2012; Bakker et al. 2013; Oldroyd 
2013; Qiu et al. 2014; Zhang et al. 2015). Some strategies have been worked out to 
reshape the rhizobiome and redirect microbial activity by bringing about change in 
root exudates using conventional and modern breeding approaches (Bakker et al. 
2012). Efforts to develop PGPB and/or PGPF consortia by mimicking or partially 
reconstructing the plant microbiome/rhizobiome are in progress. Tomato plants 
inoculated with these PGP consortia (Bacillus amyloliquefaciens IN937a, Bacillus 
pumilus T4, AMF Glomus intraradices) in greenhouse conditions resulted in full 
yield with 30% fewer inputs (Adesemoye et al. 2009). Similarly, Atieno et al. (2012) 
reported increased biomass in two soybean cultivars after inoculation with B. japon-
icum 532C, RCR3407 and B. subtilus MIB600. In another study, co-inoculation of 
soybean with B. japonicum E109 and Bacillus amyloliquefaciens LL2012 indirectly 
improved soybean nodulation efficiency. Phytohormones produced by Bacillus 
amyloliquefaciens LL2012 helped to improve nodulation efficiency in B. japonicum 
E109 (Masciarelli et al. 2014). Mengual et al. (2014) employed a consortium of B. 
megaterium, Enterobacter sp., Bacillus thuringiensis and Bacillus sp. along with 
composted sugar beet residues on Lavandula dentata L. to help restore soils by 
increasing phosphorus bioavailability, soil nitrogen fixation and foliar NPK con-
tents. Hence, the success of a rational design of a plant microbiome depends on 
several factors including smart integration of all players in the system. In this con-
text, genetic diversity of the local soil microbiome can help to improve and stabilise 
the effects of microbial inoculants. Therefore, it is recommended that microbiome 
profiling be implemented for the determination, monitoring and targeted application 
of microbial inoculants under field conditions.

2.4  �Conclusion and Future Perspectives

The growing body of research relating to the plant microbiome is bringing into 
focus its importance for plant health, growth and productivity. While most research 
findings are preliminary, intensive research is required to unravel the intricacies of 
this highly complex phenomenon to understand microbe community dynamics and 
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communication to exploit this largely untapped resource. Opportunities for exploit-
ing the plant microbiome for raising crops are numerous and diverse. Plant-
associated microbes would play a significant role in stress management in plants 
and provide excellent models for understanding stress tolerance mechanisms. 
Another strategy would be to generate transgenic plants harbouring beneficial genes 
from microbes, similar to transgenic plants harbouring ACC deaminase gene from 
bacteria. However, considering the timeframe and other issues involved in the 
development of transgenic plants, it would be more cost-effective and environmen-
tally friendly to develop easy-to-handle microbial inoculants to alleviate abiotic 
stresses.

While several studies have shown significant improvements to stress tolerance 
using PGPM to crops under field conditions (Celebi et  al. 2010; Mengual et  al. 
2014; Rolli et  al. 2015), others have revealed inconsistent or negative results 
(Nadeem et al. 2014). One promising strategy for a stable beneficial outcome is to 
use a microbial consortium in the field to tailor the rhizobiome to respond to specific 
biotic and abiotic stresses without compromising plant growth and productivity 
(Trabelsi and Mhamdi 2013). Therefore, the mechanisms by which microbes confer 
stress tolerance to their hosts need further research to develop suitable microbial 
consortia for ready-to-use formulations under different biotic and abiotic stresses. 
However, this will require concerted efforts at interdisciplinary levels from micro-
biologists, molecular biologists, plant physiologists, plant breeders, soil scientists 
and agronomists. Recent developments in this field provide opportunities to under-
stand how the microbe–microbe and plant–microbe interactions mediate the func-
tional relationship between different players.
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