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ABSTRACT

The local wild type strain of Sporotrichum thermophile when grown on untreated lignocel-
lulose was found to produce a greater level of B-glucosidase component along with other cel-
lulase/xylanase components than most of the reported wild type potent strains. Culture

= filtrate obtained, when grown on 4% Leptochloa fusca (kallar grass) was used as such and
after concentration by ultrafiltration technique for saccharification purpose. Con-
centrated enzyme titre was increased to 1.2 and 4.0 U/ml for FP-ase and B-glucosidase,
respectively. There were losses in the enzyme titre obtained through ultrafiltration possibly
due to adsorption on to the ultrafiltration membrane. Enzyme preparations used, sac-
charifide 5% kallar grass to 70, 55, 75 and 60% (theoretical basis) from cellulases of S. ther-
mophile concentrate, dilute, T. reesei alone and in supplementation with B-glucosidase from
A. niger, respectively. Analysis by HPLC revealed slightly higher glucose yield from S. ther-
mophile enzyme preparations, whereas higher level of xylose was attained from T. reesei
preparations. Rest of the sugars pooled as Oligo-sugars were found in almost similar con-
centrations.

INTRODUCTION

Initially, it was emphasized on production of increased cellulase titre from microbial sour-
= ces for efficient degradation of cellulose. However, cellulase activity in vivo is not mediated
by a single enzyme. Rather it is a complex of several different enymes which act in concert
(Eveleigh, 1987; Lamed and Bayer, 1988). Hydrolysis of lignocellulosic substrates requires a
complete spectrum of cellulases and hemicellulases for its conve rsion into mono-meric
sugars. Most of the potent strains are misssing one or the other enzyme component required
for effective conversion of the substrate (Saddler et al, 1985). Although Trichoderma reesel
strains are the most promising cellulase producers still they lack a proportionate B-
glucosidase, required for the ultimate conversion of cellulose into glucose (Reese, 1977; Man-
dels, 1982). S. thermophile has been reported to produce a substantial amount of B-
glucosidase along with the other cellulases (Canevascini et al, 1979; Grajek, 1987). Ther-
- mophilic cellulolytic organisms due to their inherent characteristics are thought to be ideal
for elficient bioconversion of lignocellulosic substrates (Romanelli et al, 1975; Coutts and
Smith, 1976; Bhat and Maheshwari, 1987). Moreover, usc of thermostable cellulases from
these organisms might make the saccharification process cost attractive. Durand, 1984;

Chahal. 1985; Grajck, 1986; Margaritis and Merchant, 1983 and 1986).
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In the present studies dilute culture filtrate from S. thermophile was concentrated by
ultrafiltration. This strain had been shown to produce a complete system of cellulase/xylanase
titre (Latif et al, 1989) when grown on kallar grass. In order to elucidate the spectrum of cel-
lulases, concentrated enzyme prepa ration and commercial cellulases were used for sac-
charification purpose.

MATERIALS AND METHODS

Enzyme Source:

The enzyme filtrate from S. thermophile was obtained by cultivation on 4% Kallar grass
using mineral medium of Eggins and Biosaline research sub-station (BSRS) near Lahore,
during peak periods of growth. The enzyme was harvested after 6 days of incubation in an
orbital shaker (Gallenkamp Co. UK) at 45°C. The enzyme filtrate after centrifugation was
refrigerated. Commercial enzyme prepartions from 7. reesei VTT-D-79125 (Novo Baegsvard-
Denmark) and Aspergillus niger (Miles Kalli) were used along with the local enzyme for com-
parison.

Ultrafiltration:

Refrigerated enzyme filtrate (500 ml) of §. thermophile was passed through ultrafiltration
membrane (cut out size 20,000 daltons, Amicon Co. USA) fixed in an ultrafiltration assembly
(RA 2000 Amicon Co. USA). The enzyme filtrate was passed at a back pressure of about 10
Ib/in?, developed at the ultrafiltration membrane. The filtrate was collected in a separaic
flask, while the concentrate was allowed to recycle in the ultrafiltration jar, till it was one

fifth of the total volume. Recovery of the enzyme titre was estimated from concentrate as
well as filtrate.

Enzyme Assays:

For determining activities towards FP-ase, method of Mandel et al (1976) with slight
modification from Saddler et al (1985) was performed. Whatman No. 1 filter paper of 1x6 cm
size was rolled in to 1 ml of 0.05 M citrate buffer, pH 5.0. To this was added 0.5 ml of suitab-
ly diluted enzyme. The enzyme unit was calculated for diluted enzyme to give reducing
sugars in the range of 0.4- 0.8 using 0.1% glucose as a standard. The reducing sugars were es-
timated, according to Miller (1959).

B-glucosidase activity was determined by the modified method used by Rajoka and Malik
(1984). 0.2 ml of suitably diluted enzyme was added to 0.2 ml of (0.05 M citrate buffer) pH
5.0 and 0.2 ml of 15 mM p-nitrophenyl B-glucoside. The assay was carried out for 10 min at

50°C. The release of p-nitrophenyl was determined by adding 3 ml of 2% Na2CO3 and the
absobance was read at 410nm.

Extracellular Protein:

These values were determined from the enzyme filtrate by Lowry’s (1957) method using
bovine serum albumin as standard.
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Saccharification:

The enzyme filtrate from S. thermophile (dilute and concentrate) was used as such in 20
ml volumes in 100 ml flasks. The pH was adjusted to 5.0 with 1 N.HCI. Commercial enzyme
preparation of 7. reesei cellulase alone and with supplementation of B-glucosidase from A.
niger contained FP-ase and B-glucosidase in the ratio of 30:20 and 33:54 units per gram of
substrate, respectively. The freeze dried enzyme from commercial reparations  were
solublised in 0.05 M citrate buffer PH 5.0. Alkali pretreated Kallar grass &a_;oka and Malik,
1984) was used as a substrate at 5% concentration. Sodium azide (0.02%) was added as a
biocide, while aluminium foil was capped on the conical rection flasks for minimising the
Vapor losses. The incubation was carried out at 50°C in a water bath shaker (GFL Co. W.
Germany) at 200 rpm for 70 hours.

Sugar Analysis:

At different intervals of time 0.5 ml of sample was withdrawn from the hydrolysates,
taking care that the slurry density of the withdrawn samples was the same as that in the
remaining sample. The samples in microfuge tubes were centrifuged for 1-2 minutes at 3000
rpm. The reducing sugar concentrations were determined by Dinitrosalicylic acid (DNS
reagent). The sugar composition was determined by HPLC (Gilson’s France). Ion exchange
column, aminex HPX-87H (Biorad Co. USA) with was used an 0.01 N H2SO4 aseluent. The
flow rate was kept at 0.6 ml/min at a column temperature of 85°C. The sugars were detected
on a refractive index detector from Shimadzu Co, Japan, while the column oven was also
from the same company. The recorder unit (Gilson’s Co) was kept at a chart speed of 5
mm/min. The standard’ sugars of D-glucose, D- xylose and cellobiose (all GLC grading
sugars Co) were run to standardize the condition. Samples after suitable dilutions were in-
jected (25ul) through a rheodyne injection valve loop.

The saccharification yield from DNS method was calculated using the equation:

Saccharification % Reducing sugars formed x 0.9 x 100
(based on total =

polysaccharides) carbohydrates in straw
Glucose Yield % Glucose sugar formed x 0.9 x 100
(based on total =

cellulosc) cellulose in straw

RESULTS AND DISCUSSION

Concentration of Enzyme Filtrate:

Crude enzyme filtrate of S, thermophile, when concentrated up to five folds by volume
through ultrafiltration, was of dark brown in colour. The concentrated enzyme showed an in-
crease of 2.4, 3.6 and 2.5 folds for FP-ase, B-glucosidase and extracellular proteins, respec-
tively, over the dilute enzyme. A part of cellulase titre was found to be present in the filtrate
during ultrafiltration process. Fig 1. shows that the filtrate contained FP-ase to a greater ex-
tent than B- glucosidase. The cumulative enzyme activities present in the concentrate and fil-
trate suggested a loss of small portion of enzyme, possibly due to adsorption on the
ultrafiltration membrane. The increased adsorption for the culture filtrate obtained at 4%
substrate concentration, was ascribed to viscosity and pigmentation from substrate (kallar
grass). In fact, there was appearance of a gummy substance which possibly blocked the
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Figure 1: Percentage recovery for the cellulases and extracellular protein after ultrafiltration of

crude extracts from S. thermophile is presented. The recovery was estimated in the concentrate
well as the filtrate.
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The saccharification was carried out for 70 hours at a pH of 5.0 and 50°C
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membrane pores and thus, appreciable amount of cellulase was lost (Fig. 1). Markanen and
Eklund (1975) found that the culture filtrate from T. viride was partially denatured when
passed through ultrafiltration membrane (cut out size, 20,000). Fahnrich and Irrgang (1982)
concentrated the enzyme by ultrafiltration for effective saccharification. The ultrafiltration
technique was adopte:t for concentrating the enzyme filtrate in order to use it at higher
strengths towards incre.ased amounts of substrate.
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Figure 3: Saccharification yield of 5% Kallar grass using different enzyme sources after 70
hours of incubation at 500 C. Reducing sugars were determined by DS method while sugar
composition was evaluated from HPLC.
o Effect of Cellulase Concentration on Saccharification:
The time course study shows a high saccharification rate up to 10 hours, which slowed
down thereafter up to 50 hours, after which the increase was minimal (Fig. 2). The con-
centrated enzyme filtrate from S. thermophile saccharified 5% Kallar grass up to 70%
(theoretical basis) after 70 hours of incubation (Fig. 3) Saccharification yield by the con-
centrated enzyme preparation, although 5% less than that obtained from T, reesei cellulase
supplemented with B-glucosidase from A. niger, contained a slightly higher amount of
glucose. Their was a considerable difference in the cellulase titre, especially for B-
glucosidase used per gram of substrate from all the preparations (see legend to Fig. 3).
S These results were attributed to the concentrated enzyme system of S. thermophile with a
potent B-glucosidase component as also reported by (Grajek, 1986; 1987). T. reesei cellulase
n S. used alone showed higher reducing sugar yields than the control by S.thermophile, however,

iger.
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Figure 5: Percent relative yield for sugars in the hydrolysate after 70 hours of incubation
from different enzyme sources.

the glucose content was of similar level. Analysis by HPLC showed that in fact, the composi-
tion of sugars from the hydrolysates showed 6-7 peaks by the HPLC (Fig 4). Three of the
major peaks namely cellobiose, glucose and xylose were determined from the standards,
whereas rest of peaks were pooled as other sugars/oligo-saccharides (Fig. 4). Cellobiose was
obtained to a small level from the control of S. thermophile, only. Yields for xylose from

supplemented T. reesei were about 2 and 3 fold higher than the concentrate and control from
S. thermophile, respectively.

Fig. 5 shows the composition of various sugars in the hydrolysates. The higher level of
glucose from the enzyme prepa rations of S. thermophile elucidates a higher B- glucosidase
component in the enzyme system (see legend to Fig. 3). However , due to a low xylanase and
endo-glucanase relatively lower saccharification yields were obtained for S. thermophile than
T. reesei cellulase preparations. The relative yield for oligo-sugars was about the same except
the concentrate which showed a lower level in the hydrolysate. This suggested incomplete sac-
charification, which can be attributed to time factor and the presence of weaker cellulase
compenents resulting in incomplete synergistic effect. However, in comparison to much of
the reported work on T. reesei this preparation from strain VTT-D-79125 contained FP-ase :
B- glucosidase in the ratio of 1:0.66 and thus along with a potent endoglucanase and xylanase
it formed a complete system and did not show characteristics of end- roduct inhibition. This
is in agreement for some of the Trichoderma mutants derived étcrnberg et al, 1976;

Rabinovich et al, 1979; Sinitsyn et al, 1982). The enzyme system from S. thermophile on the
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converse lacking in comparable endo-glucanase and xylanase (not reported here) compe-
nsated in retrospect with high B-glucosidase which enhanced the potency of the enzyme sys-
tem. Morcover, the ability of this thermophilic organism to be effective for saccharification at

dilute enzyme concentrations and the thermostable nature of the enzymes needs further ex-
ploitation.
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