Bull. Math. Soc. Sci. Math. Roumanie
Tome 6x (10x) No. x, 201x, xx—yy

Hamiltonicity in Directed Toeplitz Graphs T,,(1,3;1,t)
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Abstract

A square matrix of order m is called a Toeplitz matrix if it has constant val-
ues along all diagonals parallel to the main diagonal. A directed Toeplitz graph
Tn(s1y...,8k;t1,...,t;) with vertices 1,2,...,n, where the edge (¢, 7) occurs if and
onlyif j —i =spori—j =t; forsomel <p < kand1l < q <[ is a digraph
whose adjacency matrix is a Toeplitz matrix. In this paper, we study hamiltonicity
in directed Toeplitz graphs T},(1,3;1,t). We obtain new results and improve existing
results on Tn,(1,3;1,¢).
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1 Introduction

Let G be a finite vertex-labeled graph with vertex set V(G) = {v1,...,v,} and edge
set E(G). A graph G’ is called a subgraph of G if V(G') C V(G) and E(G') C E(G). If
E(G) = {(v1,v2), (v2,v3), ..., (Vn—1,Vn), (Un, v1)}, where v; # v; for all distinct 4, j, then G
is called a cycle. A cycle minus one edge is called a path. A cycle that visits each vertex of a
graph H is called hamiltonian, and H is then called a hamiltonian graph. We consider here
simple graphs, as multiple edges and loops play no role in hamiltonicity. The adjacency
matriz A = (@i;j)nxn Of G is the matrix in which a;; = 1 if v; is adjacent to v; in G, and
a;; = 0 otherwise. The main diagonal is zero, i.e., a;; = 0 as G has no loop.

A Toeplitz matriz, named so after Otto Toeplitz (1881-1940), is a square matrix which
has constant values along all diagonals parallel to the main diagonal. The main diagonal of a
Toeplitz adjacency matrix of order n will be labeled 0. The n—1 diagonals above and below
the main diagonal will be labeled 1, 2,...,n — 1. Let s1, So,..., sk be the upper diagonals
containing ones and t1, ta,...,%; be the lower diagonals containing ones, such that 0 < s1 <
Sg <+ <sg<mand 0 <ty <ty <---<t; <n. Then, the corresponding Toeplitz graph
will be denoted by T,,(s1, $2, ..., Sk; t1,t2,...,t;). That is, T,,(s1, 2, ..., Sk;t1,ta,...,t;) is
the graph with vertices 1, 2,...,n, in which the edge (¢, j) occurs, if and only if j —¢ = s,
ori—j =t forsomepandq (1 <p<k,1<q<I),seeanexample in Figure 1. The edges
of T,,(s1,82,...,8k;t1,t2,...,t) are of two types: increasing edges (u, v), for which u < v,
and decreasing edges (u, v), where u > v. We define the length of an edge (u,v) to be |u—uv|.
Note that any increasing edge has length s, for some p, and any decreasing edge has length
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t, for some q. If the Toeplitz matrix is symmetric, then s; = ¢; for all 4, so the corresponding
Toeplitz graph is undirected and can be denoted as T;,(s1, ..., sk). Hamiltonicity results
obtained in the undirected case for a Toeplitz graph have a direct impact on the directed
case. Hamiltonicity of T),(s1, $2, ..., Sx) means hamiltonicity of T}, (s1,...,Sk;t1,...,t).

Remark that T5,(s1, ..., 8:5t1,...,t;) and T, (t1, .. ., £55 81, . . ., S;) are obtained from each
other by reversing the orientation of all edges.
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Figure 1: Toeplitz graph T5(2,4,5;1,2,5)

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connec-
tivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric
dimension have been studied in [1]-[6], [8]-[12], [14]-[15], and [24] . Hamiltonian properties
of Toeplitz graphs were first investigated by R. van Dal et al. in [7] and then studied in
[13, 23, 25], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik
and T. Zamfirescu in [22], by S. Malik in [16], by S. Malik and A.M. Qureshi in [21], and
then by S. Malik in [17]-[20].

Suppose that H is a hamiltonian cycle in T, {s1, S, ..., Sk;t1,t2,...,¢). The hamilto-
nian cycle H is determined by two paths Hy_,, (from 1 to n) and H,_,1 (from n to 1), i.e.,
H=H_,UH,.

In [18], the hamiltonicity of the Toeplitz graphs T, (1, 3; 1,¢) was investigated. In this pa-
per, we improve upon [18]. In [18], it was shown that: For odd ¢, T),(1,3;1,¢) is hamiltonian
if and only if n is even. For even t < 6, T, (1, 3;1,t) is hamiltonian for all n. For even ¢ > 8,
T,.(1,3;1,t) is hamiltonian if n 2 0,2,4,6,5,7,9,...,t —3mod(t—1), or if n = 3mod(t — 1)
and t = 0,2mod3. Here we prove that, for even ¢ > 8 and ¢ = 1mod3, T,,(1,3;1,t) is
hamiltonian if n 2 3mod(t — 1), which together with a result in [18], says that, for even
t > 8, T,,(1,3;1,t) is hamiltonian if n = 3mod(t — 1). We also prove that, for even ¢ > 8,
T,.(1,3;1,t) is hamiltonian if n = 1mod(t — 1). For even t > 8, we also discuss the hamil-
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tonicity of T,,(1,3;1,¢) for n = 8,10,12,...,t — 2mod(t — 1). We see that T, (1, 3;1,t) is
hamiltonian for n = smod(t — 1) if t 2 smod 6, where s € {8,10,12,...,t — 2}. The paper
will be concluded with a conjecture that, for even ¢ > 8, T,(1,3;1,t) is non-hamiltonian
for n = 8,10,12,...,t — 2mod(t — 1) if t 2 smod6, which completes the hamiltonicity
investigation in Toeplitz graphs T, (1, 3;1,¢).

For any vertex a and b > a, of the Toeplitz graph T,,(1,3;1,t), we define a path P,_,;
in T,,(1,3;1,t) from a to b as Pyyp = (a,a+3,a+4,a+7,...,a+4k,a+ 4k + 3,...,b),
where k is a non-negative integer, see Figure 2.

a+dk a+4k+3 b
a . axd . e o o o

Figure 2: P,

2 Toeplitz Graphs T,(1,3;1,t)

Lemma 1. If T, (1,3;1,t) has a hamiltonian cycle containing the edge (n —2, n— 1), then
Th+t—1(1,3;1,t) has the same property.

Proof. Let T,,(1,3;1,t) have a hamiltonian cycle containing the edge (n—2, n—1). We
transform this hamiltonian cycle to a hamiltonian cycle in T),4:-1(1,3;1,t), by replacing
the edge (n — 2, n — 1) with the path (n —2,n+1,n+2,...,(n+t—1)—2,(n+t—1) —
1,n+t—1,n—1), see Figure 3. This shows that T, +;—1(1,3;1,¢) has the same property.
This finishes the proof.O

n-2 nin n-2\n-1 n Ao n+t-3  nst-1

Figure 3:

In [18], it was proved that, for event > 8, T,,(1,3; 1,¢) is hamiltonian if n =2 5,7,9,...,t—
3mod(t — 1), and it was also proved that, for even ¢ > 8 and ¢t = 0,2mod 3, T,,(1,3;1,t)
is hamiltonian if n = 3mod(t — 1). Here we prove that, for even ¢ > 8 and t = 1mod 3,
T, (1,3;1,t) is hamiltonian if n = 3mod(t —1). This shows that, for even ¢t > 8, T,,(1, 3; 1,t)
is hamiltonian if n = 3mod(t — 1). We also prove that for even ¢ > 8, T,,(1,3;1,¢) is
hamiltonian if n = 1mod(t — 1).
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Theorem 1. For event > 8, T,,(1,3;1,t) is hamiltonian if n =2 1mod(t — 1).

Proof. Let n = 1mod(t — 1), then the smallest possible value for n is ¢ which we can
not consider as n > t. So the next value for n is t 4+ (¢t — 1), i.e., n =2t — 1.

Case 1. If t =2 0mod 4, then a hamiltonian cycle in Ty,—0:—1(1,3;1,¢) is (Piyp—t—2,n —t+
I,n—t+4,n—t+5,....n—2,n—1,n,n—t,n—1t+3=1t+2,2, P3 ,p_¢t g4,n—t—1,n—1t4+2 =
t+1,1), see Figure 4.

Figure 4: A hamiltonian cycle in T,,—9;—1(1,3;1,t), where ¢t = 0mod 4

Case 2. If t = 2mod4, then a hamiltonian cycle in T)—0;—1(1,3;1,¢) is (Piyn—t—s,n —
t—5n—-t—2n—-t+1ln—-t+4n—-t+5....n—-2n—-1nn—tn—=t+3 =
t+2,2,P5 s tg,n—t—3n—t—4n—t—1,n—t+2=1t+1,1), see Figure 5.

Figure 5: A hamiltonian cycle in T,,—0;—1(1,3;1,t), where ¢t & 2mod 4

Note that (n — 2, n — 1) is an edge in both of the above hamiltonian cycles. Suppose
T,(1,3;1,t), with n = (2t — 1) + r(¢ — 1), has a hamiltonian cycle containing the edge
(n — 2, n— 1), for some non-negative integer . By Lemma 1, T,;:-1(1,3;1,t) enjoys the
same property. This finishes the proof.O

Theorem 2. For even t > 8, T,(1,3;1,t) is hamiltonian if n = 3mod(t — 1).

Proof. By Theorem 6 in [18], for even t > 8 and ¢ = 0,2mod 3, T,,(1,3;1,t) is hamil-
tonian if n = 3mod(t — 1). Here we show that, for even ¢ > 8 and ¢ = 1mod 3, it is also
hamiltonian if n 2 3mod(t — 1).

Let t > 8 (even) and t = 1mod 3. Assume n = 3mod(t — 1); then the smallest possible
value for n is t 4+ 2, which is an even number.
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Case 1. If n 2 0mod 12, then a hamiltonian cycle in T,—¢42(1,3;1,¢) is (P1pn-3,n,n—1t =
2,Ps ypn-5,mn—2,n—1,n—1—t=1), see Figure 6.

Figure 6: A hamiltonian cycle in T;,—¢4+2(1,3;1,¢); n = 0mod 12

Case 2. If n 22 0mod 12, then a hamiltonian cycle in Ty,—¢12(1,3;1,¢) is (P1—n—9,n— 6,1 —
3nn—t=2,Ps,p7,n—4,n—-5n—-2n—1n—1—t=1), see Figure 7.

Figure 7: A hamiltonian cycle in Tj,—¢4+2(1,3;1,¢); n 2 0mod 12

Note that (n — 2, n — 1) is an edge in both of the above hamiltonian cycles. Suppose
T,(1,3;1,t), with n = (¢t + 2) + r(t — 1), has a hamiltonian cycle containing the edge
(n — 2, n — 1), for some non-negative integer r. By Lemma 1, T),;:—1(1,3;1,t) enjoys the
same property. This finishes the proof.O

In [18], it was proved that, for event > 8, T,,(1, 3; 1, ¢) is hamiltonian if n 2 0, 2, 4, 6 rod(t—
1). Now, for even ¢t > 8, we will discuss the hamiltonicity of T},(1, 3; 1, t), if n = 8,10,12, ..., t—
2mod(t — 1). Clearly, here t > 10.

Theorem 3. For even t > 10, and n = smod(t — 1) where s € {8,10,12,...,t — 2},
T.(1,3;1,t) is hamiltonian if t —s = 0mod6 or (t —s = 4mod6 and s # 8) or (t —s =
2mod6 andn # s+t —1).

Proof. For even ¢t > 10, let n = smod(t — 1), where s € {8,10,12,...,t — 2}. The
smallest possible value for n is s+t —1, i.e., n = s +t — 1, which is an odd number.
Case 1. Let t — s = 0mod6.
(i) If s =2 0mod4, then a hamiltonian cycle in Ty—gys—1(1,3;1,¢) is (Piyp—t—2,n — t +
In—t+4,...,t+3,t+4,....n—2,n—1nn—t,n—1t+3,...,t+2,2, P3,p_4_4,n—1t—
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Figure 8: A hamiltonian cycle in Tj,—s1+—1(1,3;1,¢), where s = 0mod4

IL,n—t+2,...,t+1,1), see Figure 8.

(#1) If s = 2mod4, then a hamiltonian cycle in Tp—s1¢—1(1,3;1,¢) is (Pispn—t—s,n —t —
5n—t—2,...,t+3,t+4,....n—2,n—1,nn—t,n—t+3,...,t4+2,2, Pyt g,n—t—
3yn—t—4n—t—1n—t+2,...,t+1,1), see Figure 9.

Figure 9: A hamiltonian cycle in Tj,—s1¢—1(1,3;1,¢), where s = 2mod4

Note that (n —2, n— 1) is an edge in both of the hamiltonian cycles in Case 1. Suppose
T.(1,3;1,t), with n = (s +t — 1) + r(t — 1), has a hamiltonian cycle containing the edge
(n — 2, n— 1), for some non-negative integer r. By Lemma 1, T,,;;—1(1,3;1,t) enjoys the
same property.

Case 2. Let t — s 2 4mod6 and s # 8.

(i) If s 2 0mod4 and s # 8, then a hamiltonian cycle in Ty,—s1¢—1(1,3;1,¢) is (P1os—11,5—
8,s—5b,. ..., t+3,t+4,...,s+t—4,s+t—1,s+t—2,s+t—3,5s—3,s,...,t+2,2, P3_,5_9,5—
6,s—7,s—4,...,t+1,1), see Figure 10.

(#4) If s = 2mod4, then a hamiltonian cycle in Tj—sq+—1(1,3;1,¢) is (Pis—5,8 — 2,8 +
1,...,t+3,t4+4,...,s+t—4,s+t—1,s+t—2,s+t—3,5—3,s,...,t+2,2, P3_,5_7,5—
4,s—1,...,t+1,1), see Figure 11.

Since (s +¢t — 1,8+t — 2) is an edge in both of the hamiltonian cycles in Case 2,
in Tsy:-1(1,3;1,t), we transform each of this hamiltonian cycle to a hamiltonian cycle in
Ts4t—1)+t—1=s+2¢—2(1,3; 1, 1), by replacing the edge (s +t — 1,5 + ¢ — 2) with the path
(s+t—1,8s+t,...,s+2t—4,s+2t—3,s+ 2t — 2,5+t —2), which contains the edge
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Figure 10: A hamiltonian cycle in Tsy+—1(1,3;1,t), where s 2 0mod4, s # 8

Figure 11: A hamiltonian cycle in Ty1¢—1(1,3;1,¢), where s = 2mod4

(s+2t—4,s+ 2t —3), see Figure 12. Suppose T,,(1,3;1,t), withn = (s+t—1)+r(t—1),
has a hamiltonian cycle containing the edge (n — 2, n — 1), for some non-negative integer
r. By Lemma 1, T,,1+—1(1, 3;1,¢) enjoys the same property.

s+t-4  s4t-2 : s+t-4 s+ L
s+t-1 S+t~ s+2t-4 S+2t2

Figure 12: Transformation of the edge (s+t—1, s+t —2) to the path (s+¢t—1,s+¢,...,s+
2t —4,s+2t—3,5s+2t— 2,5+t —2)

Case 3. Let t —s = 2mod6 and n # s+t — 1.
In this case, the smallest possible value for n different from s + ¢ — 1, will be (s +¢ —
1)+ (t—1), i.e., n = s+ 2t — 2, which is an even number.

(7) If s 2 0mod4.



Shabnam Malik 13

For s = 8, a hamiltonian cycle in Ty 2—0-2r16(1,3;1,t) is (2t +6,2t+5,2t +4,t+4,t+
3,3,2,1,4,5,...,t+2,t+5,t+6,...,2t + 3,2t + 6), see Figure 13.

Figure 13: A hamiltonian cycle in Tat16(1,3;1,t)

For s # 8, a hamiltonian cycle in Tsyo;—2(1,3;1,t) is (P1s—7,8 — 3,8,...,t + 3,t +
4,...,s+t—6,s+t—-3,s+t—2,...,84+2t —-5,5+2t —2,s4+2t —-3,s+2t —4,5s+1 —
4,s+t—5,8s—5,5—2,...,t+2,2, Py s 9,8s—6,5—3,...,t+1,1), see Figure 14.

Figure 14: A hamiltonian cycle in Ts10;—2(1,3;1,t), where s 2 0mod4 and s # 8

(#) If s =2 2mod4.

For s # 10, a hamiltonian cycle in Tsi0:—2(1,3;1,¢) is (P1os—13,8 — 10,8 — 7,...,t +
3,t+4,...,54+t—6,s+t—-3,s+t—2,...,8+2t—5,5+2t—2,5+2t—-3,s+2t —4, s+t —
4,5+t—5,5=5,5—2,...,t4+2,2, P35 11,5—8,5—9,5—6,5—3,...,t+1,1), see Figure 15.

Figure 15: A hamiltonian cycle in Ts40;—2(1,3;1,t), where s =2 2mod4 and s # 8
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~

For s = 10. If t & 0mod4, then a hamiltonian cycle in Tsyor—o—0r48(1,3;1,t) is
(1,2,5,8, .. t+ 2, Prisyopp1, 26+ 4,2t + 5,2t + 8,2t + 7,2t + 6,1 + 6, Pry7sorsz, t+ 3, £+
4,4, Py 4 5,t — 2,t — 3,t,t + 1,1), see Figure 16. And if ¢ = 2mod 4, then a hamiltonian
cycle in T2t+8<173; 1,t> is (1, 2, P5_>t_1,t + 2, Pt+5—>2t—57 2t — 2, 2t + 1, 2t + 4, 2t + 57 2t 4
8,204+ 7,2t+6,t+6, Pyr_yor—3,2t,2t — 1,2t + 2,2t 4+ 3,t + 3,t +4,4, P3_y411, 1), see Figure
17.

Figure 17: A hamiltonian cycle in Tos15(1,3;1,t), where t 2 2mod 4

Since (s + 2t — 2,5 + 2t — 3) is an edge in all the hamiltonian cycles, in Case 3, in
Tot2t—2(1,3;1,t), we transform each of this hamiltonian cycle to a hamiltonian cycle in
T(s42t—2)+t—1=s+3t—3(1,3; 1,1), by replacing the edge (s 4 2t — 2, s + 2t — 3) with the path
(s+2t—2,s+2t—1,...,5s+3t—5,s+ 3t —4,s+ 3t — 3,5+ 2t — 3), which contains the
edge (s + 3t —4,s + 3t — 3). Suppose T,,(1,3;1,t), withn = (s+3t—3)+r(t—1), has a
hamiltonian cycle containing the edge (n — 2, n — 1), for some non-negative integer r. By
Lemma 1, T,,4++-1(1,3;1,t) enjoys the same property.

This finishes the proof.O

In Theorem 3, it was proved that, for even ¢ > 10, and n = smod(t — 1) where s €
{8,10,12,...,t — 2}, T,,(1,3;1,¢) is hamiltonian if t — s = 4mod 6 and s # 8. Here we will
discuss the case with s = 8.

Theorem 4. For even t > 10, n = 8mod(t — 1), and t — 8 = 4mod6. T,(1,3;1,t) is
hamiltonian for all n different from t + 7.

Proof. For even t > 10, let n = 8 mod(t — 1) and t — 8 2 4mod 6 = t = 0mod 6.
Assume n # ¢t + 7. Then the smallest possible value for n is t + 7 4+ (¢ — 1), i.e.,
n = 2t + 6. A hamiltonian cycle in To16(1,3;1,¢) is (2t + 6,2t + 5,2t + 4,t + 4, +
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3,3,2,1,4,5,...,t+2,t+5,t+6,..., 2t + 3,2t +6). Since (2t + 6,2t +5) is an edge in this
hamiltonian cycle in T y6(1, 3;1,t), we transform this hamiltonian cycle to a hamiltonian
cycle in Ty,—(2¢46)+t—1=3t+5(1,3; 1, ), by replacing the edge (2t 4 6,¢ + 5) with the path
(2t+6,2t+7,...,3t+3,3t+4,n =3t+5,2t 4+ 5), which contains the edge (n —2,n—1) =
(3t + 3, 3t + 4), see Figure 18. Suppose T,,(1,3;1,t), with n = (3t +5) + r(t — 1), has a
hamiltonian cycle containing the edge (n — 2, n — 1), for some non-negative integer r. By
Lemma 1, Ty4+—1(1,3;1,t) enjoys the same property. This finishes the proof.O

2t+3 2t+6
2t+4
m m
N2 s o t+3 e \2t+4 ’ 3t+3  3t+5

Figure 18: A hamiltonian cycle in Th:46(1,3;1,¢) and then its transformation to a hamil-
tonian cycle in T5¢15(1,3;1,t)

Conjectures:
1. Let t > 10 and ¢t = 0mod 6. Then T;y7(1,3;1,t) is non-hamiltonian.
2. Let t > 10 and t — s = 2mod 6, where s € {8,10,12,...,¢t — 2}. Then T,(1,3;1,¢) is

non-hamiltonian if n = s +¢ — 1.

Concluding Remark: An affirmative resolution of the conjecture above for T,,(1,3;1,t)
would complete the study of hamiltonicity of T,,(1,3; 1,¢).

Acknowledgement . Thanks are due to the referee, who helped us to better organize
the paper.
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