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The Bernstein mode instability plays a vital role in tokamaks and space plasma regimes like
Jovian planets and interstellar space. We introduce the contributions of ions along with electrons
with the help of a ring velocity distribution function. We conclude that the ions play a significant
role in shifting the threshold frequency value toward the lower-wavelength regime. In comparison
with the electron Bernstein mode, it is concluded that the electron mode becomes unstable
for higher wavelengths, but on the contrary the ion Bernstein mode tries to be more stable at
low frequencies. The growth rate has been calculated analytically as well as numerically. A
graphical comparison provides us with a detailed view of the unstable regions. The growth rates
demonstrate that the mode becomes more unstable, while increasing the value of the frequency
ratio (ωpi/�c)
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1. Introduction

The subject of heating effects of magnetized plasmas is a deep-rooted topic, dating from the early
1950s with the start of the controlled fusion program. The Bernstein mode can be completely absorbed
on the wings of the cyclotron resonance [1,2]. The ion Bernstein wave, i.e., a hot plasma wave, is used
to carry radio-frequency power to heat a tokamak reactor core. Current-driven electron Bernstein
wave heating in spherical tokamaks has been explored because the high density and low magnetic
field configuration of these machines make the plasma inaccessible to the ordinary and extraordinary
modes used in standard tokamaks [3].

The problem of perpendicularly propagated electron oscillations with an external magnetic field has
been discussed by Gross [4] and Sen [5]. Gross claimed to find Landau damping whose wavelength is
less than the standard Debye length. Later, Bernstein [6] found some errors in Gross’s [4] conclusion.
He calculated the Bernstein mode with a Maxwellian distribution function and observed its stability
analysis. That work also treated fully ionized small amplitude oscillations in collisionless plasma in
the presence of an external magnetic field.

Crawford et al. [7] formulated the dispersion relation of the Bernstein mode with a delta function,
i.e., a transverse electron velocity distribution. This formulation shows that an unstable wave may
lead to the growing wave phenomena in finite plasmas due interaction with slow wave circuits. Even
in an infinite plasma, modes couple with each other, leading to wave growth. Later, Crawford [8]
predicted theoretically that cyclotron harmonic waves should propagate in warm plasma confined by
a magnetic field, showing cutoff and resonance behavior associated with harmonics of the cyclotron
frequency and the upper hybrid resonance frequency.
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Ram et al. [9] proved that the Bernstein mode can be excited by mode conversion of either an extra-
ordinary mode or an ordinary mode. Keston et al. [10] used weakly relativistic plasmas to produce
the dispersion relation for the electrostatic Bernstein mode with full momentum dependence of the
cyclotron frequency. Later, Laing et al. [11] showed that these modes are not completely undamped
but have a small negative definite imaginary component close to the rest cyclotron harmonic.

Cairns et al. [1] explained that the Bernstein waves possess high perpendicular wave numbers
which reduce trapping. Efthimion [12] explained that electron Bernstein waves have the potential to
heat and drive current for high-β plasmas. Deeba et al. [13] also calculated the electron Bernstein
mode with an (r, q) distribution function. Ali et al. [14] investigated the Bernstein mode in relativistic
degenerate plasmas. They discussed the cases in non-relativistic and ultra-relativistic regimes and
proved that Bernstein waves and upper hybrid oscillations can be modified by increasing the number
density.

Crawford [7] and Leuterer [15] reported for the first time the presence of electron Bernstein waves
in a laboratory plasma in 1965 and 1969 respectively. Such waves have also been observed by
spacecraft, having been emitted from the magnetized plasma of Io, a moon of Jupiter [16]. Mace
[17] studied the electron Bernstein wave for an isotropic kappa distribution function.

Bernstein waves, which are electrostatic in nature and are observed in the electron cyclotron
harmonic frequency range, propagate perpendicularly to the ambient magnetic field. These waves
have been observed in Li neutral gas release in the solar wind. Meyer-Vernet et al. [18] discussed that
the weakly banded emission from the Jupiter magnetosphere and between consecutive gyroharmonic
frequencies is quasithermal noise in a Bernstein wave. Recent observations have been made by the
Voyager spacecraft of electrostatic waves in Jupiter’s magnetosphere [19]. Electrostatic electron
and ion cyclotron harmonic waves have been observed by Voyager II in the magnetosphere of
Neptune. The electron Bernstein wave generated by a loss cone distribution is scrambled to Neptune’s
parameters, and a comparison of the theory with the observed electron flux indicates good agreement
[20]. These results were based on Voyager data from the outer planets. Bernhard et al. [21] observed
the transmission of high-power electromagnetic waves from the HAARP facility in Alaska.

It was assumed that Maxwellian plasma always supports the Bernstein wave, so that the real
frequency can be given by classical Bernstein wave solutions. But the growth rate can determined
by a very small number of electrons, so many types of perpendicular distribution function can be
used [22]. For f0 we will use the ring distribution function [23–25]; in a weakly collisional plasma
the ring distribution may be a source of free energy for instabilities, due to effective temperature
anisotropies and streaming [26]:

f0 = 1

2π v̂⊥
δ(v⊥ − v̂⊥)δ(v̂‖ − v‖). (1)

In the literature the distribution function has been used for relativistic calculations of Bernstein
waves [22–24,27]. But evidence of a non-relativistic formulation is also available [22,25]. The parallel
part of the distribution function participates in a relativistic version of the Bernstein mode in a cold
plasma regime but has no contribution to the non-relativistic calculation [22].

The layout of this paper is as follows: In Sect. 2 we use the kinetic theory to calculate the general
dispersion relation for magnetized plasma.We derive analytical expressions for the dielectric constant
by using ring distribution functions. A brief summary of the results and a discussion are given in
Sect. 3.
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2. Mathematical formulation

We follow the general formalism of kinetic theory to evaluate the instability of the Bernstein wave in
a hot magnetized plasma. For the Bernstein wave the relevant component of the generalized dielectric
tensor is [27–31]

εxx = 1 −
∑
α

2π

s
mω2

pα

∫ ∞

−∞
dv‖

∫ ∞

0
v⊥dv⊥χ1

∞∑
n=−∞

Mxx

(s + ik‖v‖ + inωcα)
, (2)

where Mxx = n2

z2
α

v⊥ [Jn(zα)]2, zα = k⊥v⊥
ωcα

, χ1 = ∂ f0
∂ v⊥ + i k‖

s

(
v‖ ∂ f0

∂ v⊥ − v⊥ ∂ f0
∂ v‖

)
, and s = −iω.

Since we are dealing with perpendicular propagation, k‖ = 0 so χ1 = ∂ f0
∂ v⊥ , where ωpα and ωcα

are the plasma and gyro frequencies respectively, and α shows the species, i.e., electron or ion.
Simplifying, we get

1 +
∑
α

4πω2
pαm2

k2⊥

∞∑
n=1

n2ω2
cα

(ω2 − n2ω2
cα)

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥J 2

n (zα)
∂f0
∂v⊥

= 0, (3)

where f0 is the distribution function, and in this case the ring distribution function has been used:

f0 = 1

2π v̂⊥
δ(v⊥ − v̂⊥)δ(v̂‖ − v‖).

As the parallel streaming has no effect on the non-relativistic ion Bernstein mode, we obtain the
dispersion relation for the Bernstein wave after performing simple integrations:

1 −
∑
α

ω2
pα

ω2

∞∑
n=1

2n2Jn(ẑα)J ′
n(ẑα)

ẑα

[
2ω2

(ω2 − n2ω2
cα)

]
= 0. (4)

At a lower frequency range, the harmonics of the ion cyclotron frequency exhibit similar properties
to the electron Bernstein wave. The ion contribution in the dispersion relation can be neglected in
the high-frequency range, but the electron contribution persists even at low frequencies. So, there is
not a complete symmetry between the two types of Bernstein waves [30]. Opening out the sum over
species

∑
α

for electrons and ions:

1 = ω2
pe

ω2

∞∑
n = 1

2n2Jn
(
ẑe

)
J ′

n

(
ẑe

)
ẑe

(
2ω2

ω2 − n2ω2
c

)

+ ω2
pi

ω2

∞∑
n = 1

2n2Jn
(
ẑi
)

J ′
n

(
ẑi
)

ẑi

(
2ω2

ω2 − n2�2
c

)
, (5)

where ωc represents the electron gyro frequency and �c the ion gyro frequency, and ω2
pe and ω2

pi are
the plasma frequencies for electrons and ions respectively. The value of J ′

n

(
ẑi,e

)
as ẑi,e → 0 is given

by J ′
n

(
ẑi,e

) = n

ẑi,e
Jn

(
ẑi,e

)
; for electrons, ẑe = k⊥v̂⊥

ωc
, and for ions, ẑi = k⊥v̂⊥

�c
. By applying the small-ẑ

argument expansion as ẑ → 0, and (per Chen [30]) considering only the n = 1 term,

1 = ω2
pe

ω2 − ω2
c

+ ω2
pi

ω2

∞∑
n = 1

2n2Jn
(
ẑi
)

J ′
n

(
ẑi
)

ẑi

(
2ω2

ω2 − n2�2
c

)
. (6)
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By applying these approximations, the first part of Eq. (6) reduces to the upper hybrid mode, as
explained by Bashir et al. [22]. By following Chen [30] and separating out the n = 1 term for the
ion Bernstein mode, we obtain

1 = ω2
pe

ω2 − ω2
c

+ ω2
pi

ω2 − �2
c

+ ω2
pi

ω2

∞∑
n = 2

2n2Jn
(
ẑi
)

J ′
n

(
ẑi
)

ẑi

(
2ω2

ω2 − n2�2
c

)
. (7)

This result is in good agreement with the Maxwellian results of Chen [30].

3. Results and discussion

By numerically solving Eq. (7), we can separate the real and imaginary parts of the wave as ω =
ωr +iωi. The imaginary part plays a significant role in estimating the threshold value and determining
the purely growing mode, i.e., ωr = 0 [32–34].

Figure 1 shows the stability of the ion Bernstein mode for ωr/�c vs. ẑi = k⊥v̂⊥/�c, showing
that at ω2

pi/�2
c = 11.0 the wave is stable, but Fig. 2 shows that the variation of the frequency range

in the real part of wave creates intersections of branches. The first intersection point can easily be
observed at ω2

pi
/�2

c = 11.5; this is the threshold value for instability of the ion Bernstein wave.
During overlapping of wave branches in real frequencies the wave becomes unstable and gaps are
generated between the harmonics, as discussed by Bashir et al. [22]. According to Bashir et al. [22]
and Crawford [35], the threshold point for the electron Bernstein wave is ω2

pe
/ω2

c = 6.63, while for
the ion Bernstein wave the threshold value is ω2

pi
/�2

c = 11.5, where ω2
pi
/�2

c and ω2
pe

/ω2
c are the

Fig. 1. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 11.0, where ẑ = k⊥v̂⊥/�c is a function of the wavelength
and the magnetic field.
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Fig. 2. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 11.5. The harmonics start to overlap where ẑ = k⊥v̂⊥/�c.

plasma to gyro frequency ratios. Comparison of the electron Bernstein mode with the ion Bernstein
mode shows that the ion mode tries to shift the threshold values for a weak magnetic field.

At ω2
pi/�2

c = 12, the wave is unstable and the gaps generated between the harmonics become more
prominent, as we can observe in Fig. 3. Now, we can reveal that there are gaps between harmonics
by plotting the complex part of the frequency, as we have already considered that ω = ωr + iωi;
this tells us about the imaginary part ωi of the wave which disappears on the real frequency scale.
The study of this complex part of the frequency gives an important result that the wave is growing in
these specific regions, which means that, like the electron Bernstein mode, the ion Bernstein mode
is also unstable for ωpi > �c; however, the numerical threshold value is greater than for the electron
Bernstein wave. In the figures that follow, the solid lines show the real part and the dashed lines
represent the imaginary part of the wave frequency ω.

The results obtained on increasing the value of the ratio ω2
pi/�2

c from 12 to 15 are displayed in Fig. 4.
These results can be directly compared with Bashir et al. [22] and Crawford [32]. The comparison
reveals that the real frequency structure is similar, and unstable regions can be observed between the
harmonics. The appearance of this inter-branch instability becomes more frequent as we increase
the value of ω2

pi/�2
c . Figure 5 shows a group of inter-branch instabilities. There are unstable regions

between the harmonics for the shorter-wavelength area. One of them is a non-resonating or purely
growing mode for which ωr = 0 [32–34]. This mode occurs due to augmentation of the amplitude,
but not with overlapping. In Fig. 5, it can be seen that the unstable regions are growing less, and the
purely growing mode has a small domain. Figures 5 and 6 show harmonics for ω2

pi/�2
c = 50 and

ω2
pi/�2

c = 60 respectively. With higher values of ω2
pi/�2

c , the domain of the purely growing mode
also increases. One can also observe that the instabilities are affected by the value of the magnetic
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Fig. 3. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 12.0. The red dashed lines within the harmonics show the
unstable regions.

Fig. 4. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 15.0. The red dashed lines within the harmonics show the
unstable regions.
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Fig. 5. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 50. The red dashed lines within the harmonics show the
unstable regions, and their respective imaginary parts are also shown in red. The green color shows the purely
growing part where ωr = 0.

Fig. 6. The relation of ωr/�c and ẑ for ω2
pi
/�2

c = 60. The trend is the same as in Fig. . The purely growing
mode where ωr = 0 is shown in the green color.
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field. Decreasing the value of the magnetic field increases the anisotropy, which agrees with the
high-frequency Bernstein mode instability case [22].

The above discussion draws a complete picture of the instabilities at different values of the argu-
ment. On comparison with the electron Bernstein wave, the ion Bernstein wave has a high threshold
value with a low frequency. The direct correlation between value of ω2

pi/�2
c and the overlapping of

wave branches shows that the instability grows with a decreasing value of the magnetic field, and the
wave becomes unstable at a high density. The distribution function provides free energy, which is the
cause of wave instability. Nsengiyumva et al. [26] discussed the ion Bernstein mode with a kappa
distribution function, and according to Ref. [26] the unstable regions shifted to a higher wavenumber
or a lower wavelength by decreasing kappa (κi); this is in good agreement with the results for the ring
velocity distribution function. This comparison shows that the ring velocity distribution reveals the
instability of the Bernstein mode earlier than the kappa distribution function. The Bernstein mode
is a current-driven mode and produces a heating effect [36–38]. Electrostatic waves are observed in
pulsars, and there are a number of trapped modes present in pulsars. This discussion will be useful
in any future treatment of radiation data from pulsars.
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