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Abstract

This study reviews the importance of gelatin, nanoparticles and their interactions in
the formulation of biodegradable composite films. Gelatin is widely used in packag-
ing because of its unique characteristics, i.e., film-forming ability and barrier prop-
erties. However, high moisture sensitivity and hydrophilic nature of gelatin restrict
its application in food packaging. Therefore, gelatin is used in the formulation of
composite films with better functional and barrier properties for food packing. The
incorporation of nanoparticles (NPs) in gelatin film-forming solution improves the
mechanical, thermal, barrier and optical characteristics of gelatin composite films.
Furthermore, this review compiles the functional properties of gelatin extracted
from different sources and functional characteristics of gelatin composite films
incorporated with different NPs.

Keywords Gelatin composite films - Nanoparticles - Biodegradable packaging

Introduction

Plastic products of petrochemical origin are widely used in food packaging indus-
try because of their excellent structural, barrier properties, cheap cost and aesthetic
qualities. However, there is a growing concern about the associated negative attrib-
utes of these materials as they are not derived from sustainable sources. As a result,
most of the conventional foods packaging materials due to their non-biodegradable
nature are sent to recovery sites for incineration or to landfill for dumping [1].
Biodegradable films made from biopolymers play an important role in reducing the
environmental impact of conventional plastic packaging materials [2]. Proteins and
polysaccharides are the main biopolymers used in the development of biodegradable
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packaging material [1]. Commonly studied proteins for biodegradable films are milk
proteins such as whey proteins [3], gelatin [4, 5] and soy protein [6]. Among polysac-
charides carboxymethyl cellulose [7], starch [2] and chitosan [8] are mostly used for
food-based biodegradable packaging.

The annual world production of gelatin is approximately 326,000 tonnes [9]. While
the most important resources of gelatin production are pigskin (46%), cattle skin (29%),
cattle and pig bones (23%) and other sources (2%) [10], gelatin has been extensively
studied for its functional properties, as a barrier to protect food from drying, exposure
to light and oxygen [8]. Gelatin is produced by the hydrolysis of collagen from bones,
skin and connective tissues which are generated as a by-product/waste during slaugh-
tering and processing [9]. The diverse functionalities of gelatin as a gelling agent,
film-forming material, generally recognized as safe (GRAS) food additive and biode-
gradable polymer, have increased its utilization in food industry [11]. The gelatin films
exhibit satisfactory mechanical properties, intermediate relative humidity and excellent
oxygen barrier properties, but these characteristics are impaired by high moisture sen-
sitivity and hydrophilic nature of gelatin, thus limiting its broader applications [12].
Therefore, the current trends in designing gelatin-based biodegradable packaging mate-
rials are based on optimization of functional properties of packaging material by study-
ing the effects of different nanoparticles (NPs) (1-100 nm), i.e., silver, gold, titanium
dioxide (TiO,), zinc oxide (ZnO), montmorillonite (MMT) and copper, etc. [13-21].
Various researchers reported improved barrier and mechanical properties of gelatin
nanocomposite films as compared to gelatin films [13, 18, 22]. Metal oxide NPs such
as TiO, have also gained much attention in recent years because of its cheaper price,
non-toxic and photostable properties [23]. The addition of TiO, NPs into gelatin films
significantly improved tensile strength (TS) and elongation at break (EAB) of the films
and reduced the water vapor permeability (WVP) due to creation of twisted pathways
across film [23]. However, a higher concentration of NPs is disadvantageous for perfor-
mance enhancement due to aggregation of NPs in film matrix, thus leading to reduced
mechanical strength [16]. Hosseini et al. [24] reported an increase in TS from 7.44 to
11.28 MPa, and EAB was decreased from 102.04 to 32.73% with increasing chitosan
NP content from 0 to 8% (w/w) due to reinforcement effect of NPs and strong hydrogen
bonding between NPs and gelatin matrix. Furthermore, several NPs (i.e., silver, copper,
MMT and gold) have been reported to impart their antimicrobial activity to gelatin-
based films against food-borne pathogens [13-21].

Due to growing interest in biodegradable gelatin composite films, this review
aims to explain the importance of gelatin sources, structure and functional proper-
ties in the formulation of composite films; moreover, the effect of NPs on mechani-
cal, permeability, structural, antibacterial and biodegradable properties of gelatin
films was also studied.

Components of biodegradable/edible films
At least one film-forming macromolecule (proteins, polysaccharides and/or lipids),

a plasticizer, a solvent and a surfactant are involved in preparation of biodegradable
or edible films [25]. An edible biodegradable film is produced by using dry or wet
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manufacturing process, typically from food-derived ingredients. The resulting sheet
should be a free-standing one that can be put on or between food components [26].
By controlling the transfer of oxygen, moisture, carbon dioxide, flavor and aroma of
the food components, the biodegradable films offer a great potential to improve food
quality and to extend the shelf life [1].

According to Suderman et al. [11], biopolymers used for the preparation of edible
films can be classified into three different categories: polysaccharides, proteins (ani-
mal and plant based) and lipids. Before the formulation of biopolymer-based edible
films, some important factors such as solubility, microbiological stability, wetta-
bility, transparency, cohesion, oil and grease resistance, permeability to water and
gases, sensory and mechanical properties need to be considered [27]. In order to
reduce surface tension and adhesion of plasticized films, surfactants are incorporated
in film-forming solution (FFS) [28]. In the formulation of edible films, most widely
investigated biomaterials are the hydrocolloids (proteins and polysaccharides) [11].

Among all the biopolymers, proteins, because of their good functional proper-
ties, are the most commonly used food packaging material [27]. Proteins typically
occur either as globular or fibrous proteins and are polymers of proteinogenic amino
acids linked through amide bonds with high intermolecular binding potential [29].
Globular proteins are folded into complex structures having covalent, ionic and
hydrogen bonds, while fibrous proteins are responsible for making fibers as a result
of close association with each other through hydrogen bonding [30]. Protein-based
packaging films exhibit lower mechanical strength and poor water resistance when
compared with synthetic packaging films. Still, polysaccharides are generally infe-
rior as compared to the proteins in their film-forming abilities with inferior barrier
and mechanical properties [31]. Compared to other protein-based biopolymers (i.e.,
soy protein, corn zein, wheat gluten and pea protein) having high melting tempera-
tures, gelatin presents thermoreversible nature, low melting temperature with ability
to melt-in-mouth [1].

Gelatin extraction

Gelatin is most commonly extracted from porcine, bovine, marine and poultry
sources. Gelatin extracted from poultry and marine sources can serve as a bet-
ter option as compared to bovine and porcine sources not only because of reli-
gious and social reasons, but also due to the fact that proteins derived from these
sources (marine and poultry) have never had any association with bovine spongi-
form encephalopathy, which is a zoonotic degenerative neural disease reported from
bovine sources [24, 32]. Various research studies reported the extraction of gelatin
from fish and chicken mainly involving alkaline and acidic pretreatment followed by
final extraction [4, 5, 33, 34].

Briefly, for extraction of gelatin, defatted freeze-dried skin samples are soaked in
various concentrations of NaOH (0.01-0.2 M) at room temperature for 30—60 min
followed by centrifugation at 4500-6500xg for 10 min or washed with distilled
water depending upon sample source, respectively, i.e., chicken and/or fish [5,
35-37].
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After alkaline pretreatment, samples are soaked in acetic acid (0.05-0.2 M) for
3—4 h at 4 °C or blend with 0.15% H,SO, before citric acid (0.007-0.036 M) pre-
treatment for 30 min at 25 °C followed by washing with distilled water in order to
remove residual matter [5, 35, 37-39].

Finally, pretreated samples are soaked in distilled water at 45-50 °C for 12-17 h
to extract gelatin from skin. The solubilized gelatin solutions are filtered with cheese
cloth or Whatman No. 4 filter paper and the filtrate is concentrated by using a vac-
uum rotary evaporator followed by freeze drying. The dry matter obtained is referred
as gelatin powder [5, 38, 39].

The bones from slaughtered cattle are usually degreased, dried, sorted and
crushed to a particle size of 1-2 cm. The bone pieces are washed with hydrochloric
acid to remove minerals. The resulting spongy material is known as ossein. Cat-
tle hides and ossein are treated with lime and water, liming usually takes around
8—12 weeks before final extraction with hot water. For the extraction and production
of gelatin from porcine sources, pork skin is usually dehaired with hot dilute caustic
soda solution followed by washing with cold water then soaked in cold dilute min-
eral acid (usually hydrochloric or sulfuric acid) for several hours and washed with
cold water several times to be finally extracted with hot water. The number of extrac-
tions usually varies from 3 to 6. Initially temperature for extraction is 50-60 °C fol-
lowed by temperature increase (5—10 °C) with subsequent extractions [40].

Gelatin structure and functional characteristics

Gelatin is derived from partial hydrolysis of collagen and contains high contents of
amino acids such as glycine (Gly), proline (Pro) and hydroxyl proline (Hyp), which
is a characteristic feature of gelatin. Gelatin also contains single or double unfolded
chains of hydrophilic character, i.e., combination of a-chains (single chain/one poly-
mer), B-chains (two a-chains cross-linked covalently) and y-chains (covalently cross-
linked three a-chains) [41]. It has been reported that amino acid compositions, rela-
tive content of a-chains, 3- or y-components, presence of protein fragments of lower
molecular weight and higher molecular weight aggregates, had an effect on physical
properties of gelatin. The presence of low molecular weight protein fragments was
found to be responsible for lowering the gelling temperature of gelatin due to low
degree of proline and lysine hydroxylation. However, the high gel strength of gela-
tin was mainly dependent on the high molecular weight protein fraction and higher
content of a-chains [41, 42]. Gly has been reported to be the most abundant amino
acid in gelatin, obtained from bovine skin and hide [43], porcine skin [44], fish skin
[45] and chicken skin [46]. Gelatin also contains high content of alanine (Ala), glu-
tamine/glutamic acid (Glu) and asparagine/aspartic acid (Asp) apart from Pro and
Hyp [47]. The presence of cysteine (Cys) in amino acid composition of gelatin is an
indication that a small quantity of stroma protein, which is highly insoluble and sta-
ble in salt such as elastin, might be present in gelatin [48]. Gelatin containing higher
amount of Pro, Ala and Hyp exhibited the ability to develop triple-helix structures
and considered to have higher viscoelastic properties, which are essential for gel-
atin gel structure stabilization as well as for gelatin-based films [42]. Amino acid
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composition of gelatin extracted from various sources, i.e., fish [33, 42, 45, 49-58],
porcine [38, 43, 44], bovine [43, 44, 46, 59, 60], squid [42, 52], duck [60, 61] and
chicken [35, 46], is summarized in Table 1.

The most important physical properties of gelatin are gel strength and viscos-
ity [62]. Bloom value which is another name for gel strength reflects the stiffness
and strength of the gelatin and ranges from 30 to 300 bloom (220-300 is consid-
ered to be a high bloom, 150-220 a medium bloom and < 150 a low bloom) [46].
Greater gelatin strength is an indication of higher bloom value [63]. It is a well-
established fact that imino acid content is responsible for stabilization of triple
helix of collagen structure through hydrogen bonding between hydroxyl groups of
Hyp in gelatin and free water molecules [64]. Hafidz et al. [43] reported that high
amount of serine (Ser) and tyrosine (Tyr) in pigskin gelatin, having free hydroxyl
group, lead to the formation of hydrogen bonds resulting into increased gel strength.
The molecular weight and content of Hyp are the factors that might affect bloom
strength [38]. According to Gomez-Guillen et al. [42] gelatin extracted from sole
and megrim skin showed gel strength five times higher than cod gelatin, while squid
gelatin showed the lowest gel strength (Table 2). The lowest gel strength showed by

Table 1 Amino acid composition of gelatin extracted from different sources

Amino acids Composition of gelatin (g/100 g protein) from different sources

Fish Porcine Bovine Squid Duck Chicken
Glycine 19.3-36.6 22.6-23.9 10.8-38.45 32.7-33.2 29.03-37.77 22.26-33.70
Proline 5.72-14.1 2.21-15.1 3.29-13.74 8.9-9.5 11.60-12.27 13.42-15.12
Glutamine 6.9-11.61 8.3-11.12 3.4-11.98 8.3-9.0 6.39-7.47 5.84-9.59
Hydroxyproline 5.0-9.6 9.32 10.67-11.28 7.4-8.0 10.28-11.54 11.36-12.13
Alanine 8.3-16.63 8.0-12.37 3.3-12.92 8.2-8.9 6.04-10.75  8.32-10.08
Aspartic acid/asparagine 4.4-7.2 3.49-6.76 1.7-7.46 6.1-6.5 3.18-4.12 2.11-5.91
Arginine 4.7-94 4.01-11.1 4.7-99 5.7-6.1 6.15-9.78 5.57-7.57
Serine 3.34-65 3.5-7.63 1.5-3.79 3.7-43 2.94-3.57 2.20-2.67
Leucine 1.9-2.83 254-3.05 1.2-3.14 2.7-32 3.01-3.17 2.63-3.25
Isoleucine 0.8-2.0 1.2-1.36 0.7-1.82 0.9-1.1 1.42-1.44 1.15-1.48
Lysine 1.2-443 24635 1.1-4.86 1.2-13 2.11-2.71 3.21-4.66
Valine 1.1-3.12  2.45-4.84 1.0-2.55 2.1-3.7 1.97-2.24 1.94-2.07
Threonine 2.0-424 13526 0.8-2.37 2.4-2.6 2.42-245 1.01-2.70
Tyrosine 0.2-0.86 0.52-0.7 0.2-1.16 0.6-0.8 0.6-0.93 0.82-1.22
Histidine 0.5-1.3 0.72-2.02 0.73-1.16 0.7-0.8 0.75-1.28 0.30-0.74
Phenylalanine 1.0-2.31  1.51-2.7 1.0-247 1.0 2.03-2.88 1.77-2.76
Methionine 0.7-2.06 0.61-1.0 0.22-1.69 1.0-1.3 1.05-1.92 0.07-1.12
Ammonium - 9.60 0.59-7.68 - - -
Hydroxyl sine 0.5-1.43 0.19 - 0.5-1.5 - -
Cysteine 0.1 - 0.47 - 0.16 0.16
Tryptophan - - 0.48 - - 0.04

— not reported
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squid skin gelatin might be due to the presence of protein fragment degradation as
a result of high extraction temperature [47] that might reduce the ability of a-chains
to anneal correctly by hindering the growth of existing nucleation sites during sta-
bilization overnight. Sarbon et al. [46] reported a higher bloom value for chicken
gelatin (355 +1.48 g) as compared to bovine gelatin (229+0.71 g). Similarly, Rosli
and Sarbon [65] reported that gel strength of eel skin gelatin (215.96+9.62 g) was
greater than bovine skin gelatin (181.28 +9.10 g), and this was due to intrinsic char-
acteristic of its protein chain composition, amino acid content (especially Hyp and
Pro), its collagenous properties, molecular weight distribution and the extraction
methods [46]. The higher gel strength and melting temperature of eel skin gelatin
are an indication of its good functional properties [65]. Chicken skin gelatin exhib-
ited gel strength higher than other alternative sources (i.e., fish) due to high Hyp
content [50]. Generally, chicken gelatin possesses a higher Pro and Hyp content as
compared to the gelatins derived from any other source and thus exhibits better gel
strength, melting and gelling temperatures.

Gelatin can be classified into two types: type A and type B gelatin based on the
source of extraction (type A gelatin is derived from porcine sources and type B from
bovine) [1, 78]. Cuttlefish skin gelatin had 19.4 g of imino acids (Pro and Hyp) per
100 g of extracted protein. The imino acid content for cuttlefish was greater than
squid (17.5 g/100 g protein) and giant squid (16.3 g/100 g protein) [42, 52]. Squid
gelatin showed significantly higher Hyp (8.0 g/100 g of extracted protein) and due to
less hydrophobic character exhibited a significantly lower Lys (1.3 g/100 g protein)
as compared to other marine sources which were in the range of 2.7-2.9 g/100 g of
extracted protein [42]. The extraction yield and gel strength of skin gelatins from
several marine species such as squid skin [42, 79], smooth hound [80], barbel [81],
tuna [82], giant squid [52], bigeye snapper and brown stripe red snapper [33], cuttle
fish [68, 83], silver carp [37] and warm water fish cod, haddock and Pollock [84]
are presented in Table 2. The gelatin yields have been reported to vary among the
fish species mainly due to differences in collagen amount and skin matrix [33]. Fur-
thermore, a decrease in solubility of collagen due to high degree of cross-linking
via covalent bonds might lead to reduced amount of extractable gelatin [33]. The
higher temperatures used during extraction process were reported to stabilize the
triple helix to a higher extent in collagen structure due to destruction of hydrogen
bonds by means of higher energy, and as a result a- and p-chains were more released
into the medium, ultimately leading to increased amount of gelatin obtained [55].
A lower yield (2.16% on wet weight basis) was obtained for chicken skin gelatin as
compared to extracted fish gelatin (7.81-5.39% on wet weight basis) i.e., red and
black tilapia, respectively [68], due to either incomplete hydrolysis of collagen or
loss of collagen through leaching during series of washing steps [46].

Marine gelatins as compared to mammalian gelatins exhibit poor rheological
properties, particularly gelatin from cold water fish species, such as salmon, cod and
Alaska Pollock [58, 85]. This might be due to the lower number of imino acid-rich
collagen regions, which lead to the formation of triple helical structures due to the
formation of nucleation zones [47]. Although certain fish gelatins (tilapia, yellow
fish tuna and catfish) might have similar levels of quality if not superior to mam-
malian gelatins, depending on processing conditions and on the species from which
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gelatin is extracted [58, 85], fish gelatin when compared to mammalian gelatin melts
at a lower temperature due to low content of imino acids (Pro plus Hyp) [86], which
could be due to the fact that imino acids stabilize the ordered structure of gelatin in
the gel form, thus ultimately reducing the gel modulus [85].

Avena-Bustillos et al. [86] reported that WVP of cold water fish gelatin films
was found to be significantly lower (0.932 ¢ mm m~2 h kPa) as compared to hot
water fish or mammalian gelatin films (1.309 and 1.884 ¢ mm m~2 h kPa, respec-
tively) due to higher amount of hydrophobic amino acids and lower amounts of
Hyp. Sobral et al. [44] reported that mammalian skin gelatin films were mechani-
cally stronger and more permeable to water vapors as compared to fish skin gelatin
films, whereas fish skin gelatin films showed better elasticity. Furthermore, imino
acid content of bovine skin gelatin (10.67%) was reported to be lower than chicken
skin gelatin (12.66%) leading to lower melting and gelling temperatures (31.55 and
24.43 °C, respectively) of bovine gelatin as compared to chicken gelatin (33.57 and
24.28 °C, respectively). Thus, chicken gelatin exhibited higher viscous and elastic
modulus values as compared to bovine gelatin for a wide range of frequencies and
concentrations [46].

Influence of NPs on gelatin composite films

Films formulated by using gelatin as primary biopolymer are more advantageous
to produce due to gelatin availability at low cost and better functional characteris-
tics [87]. Gelatin has been widely used as an alternative to plastic-based packag-
ing because of its unique characteristics as compared to other proteins and poly-
saccharides, i.e., carrier of bioactive compounds, film-forming ability and barrier
properties [12]. The barrier and mechanical properties of gelatin-based films mainly
depend on the chemical and physical characteristics of gelatin which are determined
by amino acid composition, molecular weight distribution and extraction condi-
tions of gelatin [12]. On the other hand, because of hygroscopic nature of gelatin
the gelatin-based film tends to swell by absorbing moisture when comes in con-
tact with the food products with high moisture content [1, 12]. Gelatin has been
reported to improve mechanical and physicochemical properties of composite films
with other biopolymers, i.e., chitosan, as compared to plain gelatin or chitosan films
[88]. The incorporation of NPs in gelatin film matrix improves the barrier, optical
and mechanical properties of gelatin films (Fig. 1). The presence of NPs in gelatin
film matrix provides a physical barrier that restricts the penetration of light, oxygen
and water vapors across the polymeric matrix. Neat gelatin films provide barrier and
mechanic protection to the packaged materials; however, neat gelatin films lack in
antimicrobial and antioxidant potential. The addition of NPs to neat gelatin films
resulted in the entrapment of NPs in film matrix which improved the film barrier
and mechanical properties. Moreover, the addition of NPs (i.e., ZnO and silver) to
gelatin film matrix imparts antimicrobial potential and results in the development of
active packaging [1, 15]. The effects of NPs on the mechanical and optical proper-
ties of gelatin films are summarized in Table 3.
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GFFS Preparation of gelatin film
forming solution (GFFS)

——
! with/without NPs
)

|~

Development of gelatin films
with/without NPs

Gelatin films with NPs show

better barrier and functional

properties than neat gelatin
films

m Neat Gelatin Gelatin
films more nanocomposite
permeable to films less
water vapors, permeable to
oxygen and water vapors,
light oxygen and light g &

Fig. 1 Influence of nanoparticles (NPs) on gelatin composite films

Water vapor permeability and surface hydrophobicity

It is important to have an understanding of barrier characteristics and moisture
content of food packaging. One of the permeability characteristics of food pack-
aging materials is WVP. The water vapor barrier properties of packaged products
have great importance in maintaining and extending the product’s shelf life as the
WYVP and moisture content are directly related to physical and chemical deterio-
ration of the products [11]. Generally, hydrophobic NPs and their interaction with
biopolymer, i.e., gelatin, can create zig-zag pathways across water vapors leading to
improved barrier properties, while hydrophilic organic NPs can create water clus-
ters when employed into a polymer (i.e., gelatin) to form film, thus helping water
diffusion through gelatin film matrix [18]. When hydrophilic NPs are used in high
concentration, they tend to aggregate and make the gelatin films more permeable
to water vapor [18]. The increased hydrophobicity of gelatin nanocomposites was
mainly due to hydrophobic character of NPs [22]. The water contact angle (WCA)
is dependent on the adhesive and cohesive molecular forces within the water and
between film surface and water, respectively [16]. WCA above 65° is a characteristic
of surfaces that are hydrophobic, while WCA below 65° is typical for hydrophilic
surfaces [97]. It has been reported that roughness of the material surface is respon-
sible for hydrophilic behavior of the material [16]. However, surface hydrophobicity
of gelatin nanocomposite is not only influenced by the interaction between biopol-
ymer chain and NPs, but also individual hydrophobicity of NPs and biopolymers
[18].

Gelatin films containing ZnO NPs showed increase in WVP from 6.637 to
8.157x 10710 g‘1 s~! Pa~! with increase in ZnO NPs concentration from 1 to 5%,
respectively, but still remained lower than the control gelatin films (8.478 +£0.448 x 1
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0719 g=! 57! Pa~!) without NPs. This can be explained due to the hydrophobic nature
of ZnO NPs which provides a tortuous pass-way for water vapor through film matrix
because of increased crystallinity of biopolymer or by reducing free hydrophilic
groups (OH, NH), thus improving barrier properties [18]. The combined influence
of ZnO NPs (i.e., from 1 to 5%) was observed with the addition of 3% chitin NPs in
gelatin FFS on WVP, which was increased from 5.943 to 7.195 X 10710 g_1 s Pal.
However, chitin NPs did not present any significant influence on WVP when
employed alone due to its hydrophilic nature [18]. The application of hydrophilic
chitin NPs in gelatin films can create water clusters across the structure of film,
helping water diffusion through the matrix of film [18, 98]. It has been previously
reported that high concentration of chitin NPs increased the hydrophilic character of
films, thus leading to more diffusion of water [99].

Shankar et al. [22] reported that the WVP of gelatin films incorporated with
melanin NPs decreased significantly (from 1.04 to 0.78x10™%g m~! m? Pa s) with
increasing concentrations of NPs from 0 to 1% in FFS. The compact structure was
formed due to increased hydrogen bonds in biopolymeric chains, thus causing
reduction in WVP of gelatin films with the addition of melanin NPs. Martucci and
Ruseckaite [89] prepared copper (II)-exchanged MMT/gelatin nanocomposites with
reduced WVP as compared to control gelatin film. The water uptake by capillarity at
interface was reduced, due to consumption of hydrophilic groups by strong interac-
tions between gelatin and MMT nanoclay. The delay in the transmission of water
vapor across the polymer matrix might be due to presence of water vapor imper-
meable silicate platelets of nanoclay which are dispersed in the polymer matrix,
thus obstructing the pathway of water vapor [17]. Similarly, TiO, NPs (0-5%)
reduced the WVP of the bovine gelatin nanocomposites significantly from 8.90 to
1.61x107" g m~! s7! Pa~! due to hindrance in the gelatin matrix by greater water
resistance of TiO, NPs because of their hydrophobicity [100].

WCA is one of the basic wetting properties of nanocomposite films, which is
used as an indicator for hydrophobic/hydrophilic properties of film surface. The
WCA for gelatin composite films incorporated with melanin NPs increased (from
55.8° to 66.8°) with increase in the concentration of NPs up to 0.5%, followed by a
decrease (62.2°) with increase in NPs from 0.5 to 1% [22]. Jorge et al. [16] reported
an increase in WCA (from 90.3° to 94.6°) with increase in MMT NPs concentration
up to 5 g/100 g gelatin due to increased hydrophobicity of the gelatin nanocompos-
ites by the incorporation of hydrophobic NPs.

Thickness and mechanical properties

The biopolymeric film thickness is mainly influenced by solid content of FFS [101].
Addition of NPs into the gelatin FFS can increase the thickness of resulting gelatin
nanocomposites as compared to control gelatin films [95]. The increase in concen-
tration of NPs linearly increases the TS of gelatin composite films up to a certain
critical concentration of NPs and decreases thereafter. The addition of NPs devel-
ops a strong network with gelatin matrix up to a critical concentration, and further
increase in concentration of NPs results in overloading and jamming into the gelatin
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matrix. Thus, the distribution of additional NPs lacks uniformity and decreases
the mechanical properties [13, 18], while EAB decreased linearly with increasing
concentration of NP due to improvement in rigidity of films. Furthermore, certain
NPs due to their hydrophobic nature tend to aggregate and could impede the protein
domains of gelatin films leading to reduced mechanical properties [13]. The thick-
ness of gelatin nanocomposite films incorporated with silver nanocolloid and silver
NP varied between 0.0682—0.0732 mm and 0.0834-0.0922 mm, respectively [17,
93]. The thickness of gelatin films incorporated with melanin NPs increased (from
0.0682 to 0.0776 mm) because of solid content by means of NPs incorporation [22].

Sufficient flexibility and mechanical strength are necessary for packaging film to
endure external pressure as well as environmental stress and to maintain its integ-
rity and barrier properties during packaging [11]. The TS of control gelatin films
was decreased significantly from 65.199 +5.190 MPa to 29.32 +1.24 MPa when
the concentration of incorporated ZnO NPs was increased up to 5%, while the EAB
of control gelatin films was increased from 4.636+0.371 to 12.963 +1.570% after
incorporation of ZnO NPs [18]. It has been reported that mechanical properties of
the films are influenced by both intermolecular and intramolecular interactions of
polymeric chains. Shankar et al. [22] reported that TS of gelatin films reinforced
with melanin NPs increased with increase in NPs concentration up to 0.5% (from
33.6 to 46.5 MPa) and decreased (from 46.5 to 41.8 MPa) when concentration of
NPs was increased from 0.5% to 1%. EAB was decreased (from 15 to 9.7%) with
increasing concentration of NPs from O to 1%. The increased strength and decreased
flexibility of gelatin nanocomposite can be attributed to H-bonds between the mel-
anin and quinone-amino group of gelatin [22]. For MMT/gelatin nanocomposites,
TS was increased from 23.5 to 31.7 MPa with increase in MMT NPs concentration
(0-5%). While EAB was decreased from 48.7 to 38.0% with increasing content of
MMT from 0 to 10% due to reinforcement of polymeric matrix by the addition of
NPs [16]. It has been reported that addition of chitosan NPs increased the TS of
gelatin films and made them stiffer confirming the reinforcing effect of NPs on the
film matrix [24], while a decrease in EAB was found with increasing content of chi-
tosan NPs which indicates brittleness of gelatin films due to decrease in free volume
by strong intermolecular attractive forces [24].

Optical properties

Color of films is an important factor which influences the demand of consum-
ers. The addition of NPs into gelatin FFS mostly decreased the lightness (L value)
and increased the yellowness (b value), redness (a value) and AE (total color dif-
ference) as compared to control gelatin films, while the L value decreased linearly
with increasing concentration of NPs [22]. The change in color of gelatin films from
colorless to yellowish-brown color is an indication of successful production and
incorporation of NPs into gelatin film matrix [17]. It has been reported that pro-
tein-based biopolymers, i.e., gelatin, exhibit excellent barrier properties against UV
light because of the presence of aromatic amino acids (mainly Tyr and tryptophan,
while phenylalanine and disulfide bonds to a lesser extent) in its structure [24].
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Furthermore, addition of NPs into gelatin films reduced light transmission through
the film matrix, especially when NPs are well dispersed throughout the biopolymer;
ultimately gelatin films having enhanced light barrier properties with ability to block
and scatter light are obtained [18]. Generally, gelatin nanocomposites are opaque,
while neat gelatin films are colorless; thus, opaque films can limit oxidation and dis-
coloration induced by light by reducing visible and UV transmission [102]. It has
been reported that transparency of gelatin films decreased significantly with increas-
ing concentration of NPs due to resistance shown by NPs impregnated within film
matrix to passage of light [93].

Kanmani and Rhim [17] have reported an increase in AE values (from 2.1 to 61.4)
of gelatin films with increasing concentration of silver NPs from 10 to 40 mg into
FFS. The films containing only gelatin usually exhibit very low values (0.4-5.35)
for AE and are almost transparent, which is a characteristic of neat gelatin films [17,
22, 93]. It has been reported that gelatin/silver nanocomposite films revealed pale
yellow to brownish yellow color depending on the concentration of NPs in FFS [17].
This might help in preventing the penetration of UV and visible light into the food
packaging film and thus help in the retention of nutrients, flavor and color [17, 89].

One of the functions of food packaging films is to protect the food from effects
of light, especially UV rays [11]. Transparency of gelatin films was reported to be
greatly influenced by the addition of NPs as gelatin nanocomposites were opaque as
compared to neat gelatin films (i.e., which are almost transparent) after incorpora-
tion of NPs [17]. Arfat et al. [13] reported that transparency values increased (from
1.45 to 8.22) with the increasing concentration of silver—copper NPs from 0.5 to
4% in gelatin nanocomposites. Thus, addition of NPs in composite films can play
an important role by blocking UV light through the film [103]. Various research-
ers reported elevated composite film transparency values (i.e., higher transparency
values lead to more opaque films) with increasing concentration of chitosan, silver,
guar gum benzoate and ZnO NPs [24, 86, 89, 91]. So, it can be concluded that gela-
tin nanocomposite films with strong light and UV barrier properties can be used as a
packaging material for oxidation-sensitive foods.

Thermal properties

The state of the polymer (i.e., glassy or rubbery) influences the thermal properties of
the film [11], and it is therefore important to evaluate the glass transition tempera-
ture (T},) of the packaging films. T, is a value that corresponds with system mobility,
and it is acquired as a central point of endothermic transition and can be defined as a
temperature at which an amorphous material morphs into rubbery state from glassy
state. T, is an essential parameter for the selection of processing and storage condi-
tions of the film along with the application of films [11]. Differential scanning calo-
rimetry (DSC) is one of the methods that had been applied to study semi-crystalline
materials. DSC is widely used to verify the 7, of the materials [11].

Shankar et al. [104] reported that ZnO NPs can act as a heat insulator and thus
can increase heat stability of gelatin films. Generally, addition of NPs into polymer
matrix can enhance the thermal properties of gelatin nanocomposites, because they
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can increase the crystallinity of the biopolymer and can instigate ordered and com-
pressive crystals (larger crystals have higher thermodynamic stability) [18]. Previ-
ous studies reported improved thermal stability of gelatin films after incorporation
of NPs/nanoclays leading to higher heat resistance and higher onset temperatures
required for thermal degradation as compared to neat/single gelatin films [24, 93,
94].

Arfat et al. [13] reported increased 7, during second heating scan for gela-
tin nanocomposite (i.e., 2% silver—copper NPs) from 50.32 to 89 °C that could be
attributed to removal of absorbed water during first heating scan from gelatin films,
thus leading to enhanced interactions between polymer chains and NPs; conse-
quently, films with rigid network were formed. During the first scan gelatin nano-
composite incorporated with MMT showed increase in 7, with increasing content
of MMT in FFES due to crystalline nature of the material, while no significant differ-
ence was observed during second heating scan due to amorphous nature of material
[16]. Hosseini et al. [92] on the other hand reported increase in Tg of gelatin films
incorporated with chitosan NPs from 2 to 6% concentration followed by complete
disappearance of T, above 6% concentration and was not observed on the film ther-
mograms as it depends upon a number of factors such as the intermolecular inter-
actions, molecular weight, chain flexibility, steric effects, cross-linking density and
branching.

Chemical and crystalline structure

Film structure is an important parameter for film production because of its potential
industrial usage and its contribution to the physicochemical properties of the film.
X-ray diffraction (XRD) analysis is carried out to study the amorphous and crystal-
line structure of the biopolymers used as film materials. Protein-based biopolymers,
i.e., gelatin, usually presents a predominant peak at 26=20° which is characteristic
of an amorphous phase [13]. On the other hand, gelatin nanocomposites present a
diffraction peak at 260="7° which is a characteristic of a crystalline triple-helix struc-
ture of gelatin. The overall crystallinity of gelatin nanocomposite is increased after
incorporation of NPs, thus increasing major peak intensity [18, 83].

Two characteristic peaks were observed in neat gelatin film diffractogram at 26 of
7° and 20° [16, 83, 105]. The first peak at 7° indicates crystalline structure of gela-
tin, and the second peak at 20° indicates amorphous phase of the composite films
[106]. Extra peaks have appeared in diffractogram of the biopolymers by the incor-
poration of NPs into neat gelatin films between 31° and 79° of 26 corresponding to
the plane of different NPs [13, 18, 92]. The intensity of characteristic peak of gelatin
(26 at 7°) was reduced by the addition of chitin and ZnO NPs into gelatin films lead-
ing to reduced crystallinity [18]. This might be due to decrease of a-helix structure
of gelatin chains by the interaction of NPs with gelatin [107].

Evaluation of film microstructure is of great value as it was used to determine
barrier, physicochemical and mechanical properties of the film [108]. Scanning elec-
tron microscopy (SEM) was used to study the microstructural changes in the gelatin
films and to evaluate cross-sectional and surface topography of the film samples.
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Neat gelatin films were found to be smooth, without pores with excellent structural
integrity when observed through SEM [13, 18, 24]. On the other hand, gelatin/nano-
composite films containing NPs were reported to have rough surfaces even though
NPs were evenly distributed [13, 15, 18] leading to enhanced thermal stability and
mechanical strength [18, 86]. Arfat et al. [13] reported that film surface became less
homogenous when silver—copper NP concentration was increased above 2% leading
to appearance of micro-cracks. This was mainly due to high concentration of NP/
nanoclay leading to agglomeration or aggregation [16, 24, 109]. Such inhomogene-
ous structures can lead to poorer film properties, i.e., TS. On the other hand, well-
dispersed NPs in the film matrix can reduce WVP by creating convoluted pathway
across the film [18].

The analysis of chemical structure through Fourier transform infrared spectros-
copy (FTIR) is crucial in film production as it is used to determine specific func-
tional groups that impart specific functions to the gelatin films [11]. Generally, spe-
cific amide bands are associated with triple-helix structure in gelatin spectra [18].
Therefore peaks ranging between (3000 and 3500 cm™!) are related to amide-A
and amide-B which correspond to OH and NH stretching vibrations followed by
amide-I (1600—1690 cm™!) C=0 stretching vibration, amide-IT (1480—1575 cm™})
NH stretching and amide-IIT (1229-1301 cm™!) CN stretching and NH bending fre-
quency [16, 18, 24, 83]. Additionally, amide-III peak can also be associated with Pro
and Gly backbone of the chain [110].

It has been reported that there was a shift of NH stretching of amide-A band from
3500 cm™' to higher or lower wave number due to incorporation of NPs, indicat-
ing the formation of possible hydrogen bonding between polymer matrix and NPs
[13, 18, 24]. A higher wave number of amide-A band was reported with increasing
content of NPs for gelatin nanocomposites incorporated with chitosan and ZnO NPs
between 3295 and 3646 cm™! [18, 24]. Similarly, amide-I, amide-II and amide-III
have also been reported to be influenced by NPs concentration in composite films
[13, 17, 18]. Addition of MMT clay shifted amide-I, amide-II and amide-III to
higher frequencies confirming the hydrogen bonding between acceptor atoms such
as oxygen from free hydroxyl group and Si—O-Si groups in MMT [89].

Antibacterial properties

Microbial contamination can decrease the shelf life of food/feed products and
increase the risks of various food-borne infections. The antimicrobial active pack-
aging is one of the promising technologies which is achieved by incorporation of
potent antimicrobial agents (i.e., organic and inorganic NPs) into biopolymer matrix
[17, 24]. Gelatin itself does not have any antimicrobial potential and in order to
develop an active antimicrobial packaging, antimicrobial agents, i.e., NPs and natu-
ral preservatives are added into gelatin matrix. Generally, different inorganic NPs
impart their antibacterial activity by targeting different cellular organelles of food-
borne bacteria. However, NPs mainly accumulate in bacterial cytoplasmic mem-
branes and cause a significant increase in membrane permeability, leading to cell
death [20]. Among inorganic NPs (i.e., gold, silver, copper and zinc), reinforcement
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of silver NPs in gelatin matrix has been reported to exhibit broad spectrum of anti-
microbial effect against food-borne pathogens (i.e., Escherichia coli, Salmonella
typhimurium, Staphylococcus aureus and Bacillus cereus) [17, 20]. Silver NPs in
nanocomposites are believed to bind with negatively charge cell membrane of bac-
teria, which disrupts surface proteins and cell walls, inactivates enzymes and pro-
duce H,0,, leading to cell death. Gelatin-based silver nanocomposites are reported
to be more effective against gram-negative bacteria because of their surface charge
and thin cell wall [17, 20]. Copper NPs in gelatin nanocomposites inhibit the bacte-
rial growth due to inhibition of DNA replication and destruction of bacterial cell
wall [20]. TiO, NPs in nanocomposites can generate oxygen reactive species after
entering the bacterial cell membrane and oxidize polyunsaturated phospholipid
components of cell membrane [21, 111]. Alternatively, organic NPs are found to
be less effective against food-borne pathogens as compared to inorganic counter-
parts because of their low stability [17, 91]. Gelatin nanocomposites can increase
the shelf life of food products due to their antibacterial potential imparted by the
reinforcement of NPs as compared to neat gelatin films.

Biodegradation of gelatin composite films

The neat gelatin films were reported to degrade 60% after 30 days of incubation
under simulating soil burial conditions [112]. The biodegradation of polymeric
matrix depends on the length of polymer chain, complexity of the matrix and degree
of crystallinity. The biodegradation of a polymer increases with decrease in length
of polymer chain, lack of complexity and crystallinity. Gelatin film stability in simu-
lated body fluids was found to increase with the addition of NPs. After incorporation
of NPs into gelatin matrix a decrease in the rate of biodegradation of gelatin nano-
composites was reported as compared to neat gelatin films due to the fact that NPs
reinforced the gelatin structure in a way that amount of non-reinforced gelatin was
decreased (since gelatin became more crystalline, it was difficult to degrade crystal-
line phase as compared to amorphous phase), furthermore, it might also be associ-
ated with the surface reaction of gelatin nanocomposites with the medium in which
degradation was observed [113, 114].

Safety concerns and limitation of NPs in packaging

Safety of NPs has always been a concern in packaging, particularly in food packag-
ing due to direct contact of NPs with food materials [17]. Despite from the benefi-
cial effects of various NPs, the safety level of NPs should be evaluated by clinical
studies before commercial application. The potential health risks associated with the
consumption of food products containing nanofillers transferred from the packag-
ing are not yet fully understood and mainly depend on the particle size, toxicity,
morphology, rates of migration and ingestion of NPs [114]. Several metal oxides
(i.e., TiO, and ZnO) used in gelatin-based food packaging were reported to be safe
and approved by Food and Drug Administration (FDA) because of their broad range
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of biological activities [111, 115]. On the other hand, ZnO NPs have been exten-
sively used and reported to be safe for human consumption, but ZnO NPs were also
reported to be highly toxic at a concentration of > 15 ppm [116, 117]. For CuO NPs,
European Food Safety Authority (ESFA) described the maximum level of release in
food materials, which should not be more than 10 mg kg‘1 [14]. The lack of infor-
mation on risk assessment of NPs used in packaging is mainly due to the absence
of studies on migration assays and in vivo experimentations, which needs to be
explored for better understanding.

Conclusion

Gelatin-based nanocomposite films are gaining interest over the other biopolymeric
films due to better barrier and functional properties. The incorporation of NPs in
the gelatin films leads to modification in physical, mechanical and barrier proper-
ties. Therefore, a better understanding of the interactions between biopolymer nature
and nanoparticles can lead to the formulation of biodegradable packaging films with
better preservation potential. The gelatin as a biopolymer exhibits advantages due to
its cheap cost, wide variety of sources and improved functional characteristics after
incorporation of wide variety of NPs.
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