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A  QSPR  study  on release  of  pharmacologically  diverse  drugs  from  a biocompatible  matrix,  arabinoxylan,  by
use  of ab initio  structure  optimization  and neural  networks  is  reported.  A total  of  1685  quantum  mechan-
ical,  physico-chemical  and  structural  descriptors  were  calculated  for  16  drug  molecules.  A  heuristic
approach  combined  with  unsupervised  forward  selection  was  used  to  identify  descriptors  mechanis-
tically  related  to response  variables.  The  release  models  were  developed  using  multiple  linear  regression
(MLR)  and  artificial  neural  networks  (ANN)  and  were  validated  by leave-one-out  cross  validation  and
rabinoxylan matrix
ontrolled drug delivery
uantitative–structure–property

elationship
ensity functional theory
euristic method

y-scrambling  techniques.  The  release  was  found  to  be controlled  by  softness,  lipophilicity,  unsaturation,
atomic  polarization,  cyclic  topology  and  geometry  of  the  molecules.  The  quantitative–structure–property
relationship  (QSPR)  models  were  found  to  be  robust  and  highly  predictive  of  release  profile  and  mecha-
nism  of  a drug  molecule  from  the  arabinoxylan  matrix.

© 2012 Elsevier Ltd. All rights reserved.
eural networks

. Introduction

Arabinoxlans (AXs) are polysaccharides isolated from various
ources like cereals such as wheat, rye, barley, oat, rice and corn and
rom some other plants like bamboo shoots and Plantago herbs. AXs
rom various sources are of similar nature having molar masses in
ifferent ranges. They are known to stabilize foams and emulsions
nd AXs from ispaghula (Plantago ovata) seeds and other sources
ave been reported to be the potential candidates for application in
ontrolled delivery of drugs (Iqbal, Akbar, Hussain, Saghir, & Sher,
011). They have been isolated and characterized from ispaghula
eeds or husk by different methods (Iqbal, Akbar, Hussain, et al.,
011; Iqbal, Akbar, Saghir, et al., 2011) and are considered to be
afe (Iqbal, Akbar, Hussain, et al., 2011) for use as drug carriers. The
spaghula seeds are abundantly available throughout the world and
Xs can be isolated from them at a very low cost.
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

Several mathematical models have been developed to explain
he drug release from various polymeric matrices, but none of them
s universally applicable (Siepmann & Siepmann, 2008). Therefore,

∗ Corresponding author. Tel.: +92 300 4262813.
E-mail address: saeediq50@hotmail.com (M.S. Iqbal).

144-8617/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.carbpol.2012.02.016
efforts are still going on to develop more robust models for the
purpose. It is generally emphasized that release profiles are con-
trolled by solubilities of drug molecules (Rujivipat & Bodmeier,
2010; Sumathi & Ray, 2002; Tahara, Yamamoto, & Nishihata, 1996),
whereas, it has been demonstrated that drugs having similar solu-
bilities can exhibit different release profiles from the same matrix
(Baveja, Ranga Rao, Singh, & Gombar, 1988). This suggests that the
release may  be controlled by several factors including structural
differences and physical properties of the drug and the polymer
(Gafourian, Safari, Adibkia, Parviz, & Nokhodchi, 2007; Ranga-Rao,
Padmalatha-Devi, & Buri, 1990; Tahara et al., 1996). Thus there is
a need to develop predictive QSPR models which can facilitate the
designing of drug delivery devices. The models should be robust
and applied carefully as the mistakes can lead to erroneous results.
We noticed that a previous study (Gafourian et al., 2007) consisted
of some serious mistakes, such as: (i) the solubility and the experi-
mental release profiles of several drugs were determined by using
their hydrochlorides whereas the descriptors were calculated from
the base molecules, (ii) the data have not been standardized for
lease from an arabinoxylan using ab initio optimization and neural
6

regression, and (iii) multicollinearity of the descriptors and valida-
tion of QSPRs were not duly taken into account.

The present work was  carried out to study the release of
pharmacologically diverse drug molecules from a biopolymer,

dx.doi.org/10.1016/j.carbpol.2012.02.016
dx.doi.org/10.1016/j.carbpol.2012.02.016
http://www.sciencedirect.com/science/journal/01448617
http://www.elsevier.com/locate/carbpol
mailto:saeediq50@hotmail.com
dx.doi.org/10.1016/j.carbpol.2012.02.016
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rabinoxylan (AX) isolated from ispaghula seeds, by QSPR meth-
ds, which has been demonstrated (Iqbal, Akbar, Hussain, et al.,
011; Niño-Medina et al., 2010) to be a useful alternate of hydrox-
propylmethyl cellulose (HPMC).

. Materials and methods

.1. Materials

Arabinoxylan (prepared as reported by Iqbal, Akbar, Hussain,
t al., 2011). Benzoic acid, BE (E. Merck), salicylic acid, SA (E.
erck), sodium hydroxide (Riedel-de Haën, Germany), potassium

ihydrogen phosphate (Fluka, USA), caffeine, CAF (ServaFeinbio-
hemica GMBH, Heidelberg), atenolol (AT) and lamivudine, LAM
gifts from Novamed Pharmaceuticals, Lahore, Pakistan), flurbipro-
en (FBI), mefenamic acid (MEF) and piroxicam, PIR (gifts from
uaper (Pvt.) Ltd., Sargodha, Pakistan), diclofenac (DA), famoti-
ine (FAM), gliclazide (GLI), ibuprofen (IBU), lamotrigine (LAT),
eloxicam (MEL), paracetamol (PAR), and ofloxacin, OF (gifts from

tandpharm, Lahore, Pakistan) were used as received. Double-
istilled water was used throughout this study.

.2. Drug release studies

.2.1. Preparation of tablets
Tablets were prepared by wet granulation technique using a

etting solution of AX (0.70%, w/v on dry basis in water). Pow-
ered drug and the AX were passed separately through sieve no.
6. Drug and AX (1:1) were mixed, homogenized and the wetting
olution (equivalent to 7.0%, w/w AX on dry basis) was applied uni-
ormly. The mixture was homogenized and granulated by passing
hrough sieve no. 16. The granules were dried at 40 ◦C for 6 h (to a

oisture content of 8 ± 1%). The dried granules were mixed with
agnesium stearate (1%, w/w) as lubricant and compressed under

0 kN force on a rotary tablet press, fitted with 8 mm flat punches, to
ive tablets with an average weight of 215 ± 3 mg,  each containing
00 mg  of the drug.

.2.2. Dissolution study
Tablets were subjected to dissolution test in phosphate buffer

pH 7.4, 900 cm3) using USP paddle dissolution apparatus II (Phar-
atest, Germany) at 37 ± 0.1 ◦C and 50 rpm. Samples (2 cm3 each)
ere withdrawn at predetermined intervals, appropriately treated,
ltered and assayed spectrophotometrically using UV-1700 double
eam spectrophotometer (Schimadzu, Japan). The spectropho-
ometric methods were validated by use of certified reference
tandards. An equal volume of the buffer was replaced immediately
fter the removal of the sample solution. Amount of drug released
as expressed as percent of the total loaded drug.

.2.3. Mathematical and statistical analysis of release profiles
Drug release data were analyzed using various models including

ero order (Eq. (1)), first order (Eq. (2)) (Gibaldi & Feldman, 1967),
iguchi equation (Eq. (3))  (Higuchi, 1961, 1963) and power law (Eq.

4)) (Peppas, 1985; Ritger & Peppas, 1987a, 1987b).

 = k0t (1)

here k0 is the zero order release constant, M is the amount of drug
eleased in time t.

n M = −k1t + ln M0 (2)

here k is the first order release constant, M is the remaining
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

1
mount of drug in the tablet after time t and M0 is the initial amount
f drug in the tablet.

 = kH t1/2 (3)
 PRESS
ymers xxx (2012) xxx– xxx

where M is the amount of drug released in time t, kH is the Higuchi
release constant.

ln
Mt

M∞
= ln kp + n ln t (4)

where Mt/M∞ is the fraction of drug released in time t, kp is the
power law constant characteristic of the drug-matrix system and
n is the release exponent. The value of n identifies different mech-
anism for drug release. For different geometries the limits of n are
different (Lopes, Sousa Lobo, Pinto, & Costa, 2007; Ritger & Peppas,
1987a, 1987b).  For cylindrical systems (tablets), where n = 0.45,
the drug release is termed as case-I transport (Fickian diffusion),
for n = 0.89 it is case-II transport (swelling-controlled mechanism),
for 0.45 < n < 0.89, the mechanism is anomalous transport, i.e.,  the
release governed by swelling and diffusion phenomena and for
n > 0.89, the mechanism is super case-II transport where the rate
remains constant for a long time leading to an exponential drug
release towards the later stages due to fast matrix erosion.

Model selection criterion (MSC) was used (Eq. (5)) (Scientist-
handbook & rev. 7EEF, 1995) to select the best fit kinetic model for
the drug release.

MSC  = ln

[∑n
i=1wi(Yobsi

− Ȳobs)
2∑n

i=1wi(Yobsi
− Ycali )

2

]
− 2p

N
(5)

where Yobsi and Ycali are the observed and calculated value of ith
data point respectively, Ȳobs is the mean of observed data points,
wi the optional weight factor, N the number of data points and
p the number of parameters. MSC  is independent of the scaling
of data points and the model with largest MSC  value is the most
appropriate. To see the similarity level of drug release profiles, hier-
archical cluster analysis (HCA) was performed and dendrograms
were drawn using weighted- pair-group average and Euclidean
distance.

2.3. Development of QSPRs

2.3.1. Dissolution parameters
The dissolution parameters selected were amount of drug

released after 12 h (M12), rate constants (k0, k1, kH, ln kp) from
various kinetic models, and release exponent (n).

2.3.2. Calculation of structural descriptors
Structures of drug molecules were drawn by ChemSketch 12

and pre-optimized using PM6  Hamiltonian provided in semi-
empirical software MOPAC2009 (Stewart, 2009). The geometries
were finally ab initio optimized with Density Functional Theory
(DFT) at B3LYP level using 6-31G(d,p) basis set as implemented
in Firefly 7.1.G (Granovsky, 2010). The calculated descriptors are;
electronic and quantum mechanical descriptors by DFT  calcula-
tions, physico-chemical properties by ACD/I-lab 2.0 (available at
http://ilab.acdlabs.com) and twenty logical blocks of structural
descriptors by E-Dragon applet 1.0 (Tetko et al., 2005). The cal-
culated descriptors are listed in Table 1.

2.3.3. Selection of descriptors and QSPR generation
A total of 1685 descriptors were calculated. The calculated

molecular descriptors were collected in an i × j data matrix, where
‘i’ and ‘j’ are the number of rows and columns, representing
molecules and descriptors, respectively. A heuristic method (HM)
was employed to select the best descriptors describing a response.
The procedure is detailed as follows. Initially, the descriptors were
lease from an arabinoxylan using ab initio optimization and neural
6

rejected for which value is not available for all the molecules.
Next the descriptors with a constant value for 50% molecules and
with variance less than 0.0001 were rejected because of inade-
quate information therein. In the next step, descriptors showing

dx.doi.org/10.1016/j.carbpol.2012.02.016
http://ilab.acdlabs.com/
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Table  1
List of generated and selected descriptors.

Generated descriptors

Method/type Descriptors

FIRELFY/DFT Total energy, dipole moment,
logarithm of dipole moment, energies
of highest occupied molecular orbital
(EHOMO) and lowest unoccupied
molecular orbitals (ELUMO), difference
of  HOMO and LUMO, hardness
(� = 0.5 × (LUMO–HOMO)) and softness
(1/�)

ACD/ilab/physico-chemical Molar volume, density, polarizability,
pKa, Log P, Log D7.4 and solubility at pH
7.4, logarithms of molar volume,
density, polarizability and solubility

DRAGON Constitutional, topological, walk and
path counts, connectivity indices,
information indices, 2D
autocorrelations, edge adjacency
indices, eigenvalue-based indices,
randic molecular profiles, geometrical,
radial distribution functions (RDF),
three-dimensionalmolecule
representation of structures based on
electron diffraction (3D-MoRSE),
weighted holistic invariant molecular
(WHIM), geometry, topology and
atomic weights assembly (GETAWAY),
functional group counts, atom
centered fragments, charge and
molecular properties

Descriptors selected by heuristic method

Response Descriptors

M12 Softness, PJI2, Mor08e, Mor30e, R5v,
Mor26p, R1m+, ALOGPS logP

k0 Softness, PJI2, Mor08e, Mp,  Mor28p,
Mor20m, Mor18m, Mor24u, EEig01r,
R1m+, ALOGPS logP

k1 Softness, PJI2, Mp,  GATS1e, Mor18m,
Mor20v, Mor08e, HATS2u, R1v, Ui,
ALOGPS logP

kH Softness, PJI2, Mor08e, Mp,  EEig01r,
Mor24u, Mor18m, Mor20m, Mor08e,
Mor28p, R1m+

ln kp Softness, RDF055m, Mor04m, Mor24m,
Mor20v, Mor18e, G2u, E2s, Du, R1m+

n  BELv1, GGI4, SP18, Mor24m, Mor18v,
E1e, E2s, Ku, Du
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d
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h
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s
m

ficients of determinations, R2, R2′
, R2 , and slopes, k , k ′, from linear
eak (R < 0.5) correlation with the response, were rejected. Mul-
icollinearity and redundancy among descriptors can pose serious
roblems in QSPR generation (Whitley, Ford, & Livingstone, 2000).
his problem was resolved by application of supervised learning
oncept of non-redundant descriptors (NRD) (Ghavami & Sajadi,
010) followed by unsupervised forward selection (UFS) algorithm
Whitley et al., 2000), because in case of larger descriptors dataset,
irect use of UFS usually results in descriptors which are difficult
o interpret. In the use of NRD, if two descriptors are highly cor-
elated with each other (R > 0.8), the one with stronger correlation
ith the response is retained. The remaining descriptors were sub-

ected to UFS algorithm, repeatedly used on the reduced data set
aving R2

max values 0.1–0.9 (increment of 0.1) and 0.95. UFS was
erformed with UFS-1.8 (Centre for Molecular Design, University
f Portsmouth available at http://www.port.ac.uk). The descriptors
hus selected are listed in Table 1.
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

For QSPR generation, MLR  models were built with the UFS’s
elected descriptors. Initially, the data were standardized to zero
ean and unit variance in order to avoid any bias, which may  lead to
 PRESS
ymers xxx (2012) xxx– xxx 3

serious errors in the generation and application of the models. The
procedure consisted of testing, in sequence, 1–6 descriptor mod-
els in all possible combinations. The models with lower Mallows
Cp,  and best R2, R2

cv and physical interpretability were selected for
prediction. Where R2

cv provides for a good measure of the predictive
power of a model as R2 alone can increase due to artifacts, whereas,
R2

cv decreases if a model is over parameterized (Hawkins, Basak, &
Mills, 2003).

In order to obtain optimized models with maximum predictive
ability, ANN were used on the descriptors selected by MLR. The ANN
is a powerful multivariate data analysis technique, capable of both
linear and non-linear modeling and has been widely used in mod-
eling structure–property relationships (Fatemia, Ghorbanzad’ea,
& Baher, 2010; Mittermayr, Olajos, Chovan, Bonn, & Guttman,
2008). It mimics the human brain intelligence system and con-
sists of various interconnecting neurons organized, in a sequential
manner, into an input layer, one or more hidden layers and
an output layer. In the present study the MLR-selected descrip-
tors were entered as continuous input signals into ANNs and
outputs were various release parameters. ANNs were trained
by use of Statistica 8.0 neural network implementation subrou-
tine consisting of: multilayer-perceptrons (MLP) type network
with feed-forward topology, Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm and normal randomization. The sum-of-squares
(SOS) error function was used to test their performances. Iden-
tity, logistic,  exponential and tanh activation functions both for
hidden and output layers and number of hidden units from 3
to 10 were used. The models with least SOS errors, and higher
R2

train and R2
test values were considered as optimal. In ANNs build-

ing process, an early stopping technique was employed to avoid
over-training of the ANN models. The data set was subdivided ran-
domly into a subset of 13 molecules (approx. 80%) for training
and a subset of 3 molecules (approx. 20%) as a test set to avoid
over-fitting.

2.3.4. Validation of QSPRs
Several techniques are in use for validation of models

(Gramatica, 2007; Hawkins et al., 2003; Tropsha, Gramatica, &
Gombar, 2003; Wold, 1991). In the present study, the QSPR mod-
els were validated by leave-one-out cross validation (LOOCV)
technique and any chance correlation was  tested by the use of
y-scrambling technique, a method frequently used for the pur-
pose. LOOCV involves leaving each molecule out of the training
set in turn and train the model on the remaining molecules.
The parameters of the left-out molecule are calculated from the
new model. The model quality was assessed by calculating the
cross-validated squared correlation coefficient (R2

cv) by use of
Eq. (6).

R2
cv = 1 −

∑n
i=1(�yi − yi)

2∑n
i=1(yi − ȳtrain)2

(6)

where ŷi and yi are respectively the predicted and observed values
for the ith left-out molecule, and ȳtrain is the mean of the experi-
mental values of the rest of the molecules. y-Scrambling is used to
ascertain the robustness of the model. For each model the values of
response variables were randomly assigned to the molecules and
the models were rebuilt with the randomized data. Lower level cor-
relations in the randomized data models than the original model
would indicate the robustness of the original model (Gramatica,
2007; Tropsha et al., 2003).

The QSPR models were also validated by determination of coef-
lease from an arabinoxylan using ab initio optimization and neural
6

0 0 m 0 0
regression plots between observed and predicted data where the
intercept is set at zero (Goodarzi, Freitas, & Heyden, 2011). The R2

0
and k0 are the coefficient of determination and slope respectively

dx.doi.org/10.1016/j.carbpol.2012.02.016
http://www.port.ac.uk/
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Fig. 1. (a), (b) Release profiles of drug molecules, and (c) dendrogram showing the
similarity level of release profiles of drugs.

f
u

v
v
R

0
R

t

(N = 16,  R2 = 0.753, R2
adj = 0.715, R2

cv = 0.699, p < 0.001)
or the linear regression between “observed versus predicted” val-
es and R2′

0 and k0
′ respectively are for “predicted versus observed”

alues. R2
m is defined as R2

m = R2 × (R2 − R2
0)

1/2
. The acceptable

alidation criteria are; R2
0, R2′

0 , R2
m, k0 and k0

′ ≈ 1; similar R2
0,

2′
0 and R2

m values; R2 > 0.6, R2
cv > 0.5, (R2 − R2

0)/R2 < 0.1 and
.85 ≤ k0 ≤ 1.15, (R2 − R2′

0 )/R2 < 0.1 and 0.85 ≤ k0
′ ≤ 1.15 and |R2

0 −
2′
0 | < 0.3.

All the calculations were performed by use of Minitab 15, Sta-
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

istica 8 and MS  Excel® 2007 as appropriate.
 PRESS
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3. Results and discussion

3.1. Dissolution profiles

Drug release from the hydrophilic matrix started by penetration
of water into the device forming a gel-like structure. The release
data showed good linear relationships with the applied kinetic
models and various parameters including R2, rate constants, release
exponents, and MSC values were determined (Table 2).

The drugs CAF, AT, PAR and LAM showed a release in the range
75–85%, whereas MEF, LAT and MEL  were released to a smaller
extent (10–15%) in 12 h time. The release of BEN, IBU and GLI
was moderate (50–65%). The drugs FBI, OF, PIR, SA, DA and FAM
exhibited a release less than the moderate (26–42%), (Table 2). Due
to differences in mechanism (as depicted by n, Table 2), a single
model cannot be considered as sufficient for predicting a release
pattern of all the drugs; the best-fitted model was identified from
the MSC  values (Table 2). The release profiles of drugs are presented
in Fig. 1a and b. The similarity of release profiles was determined
by HCA and dendrograms showing the formation of groups were
obtained by using weighted-pair-group average and Euclidean dis-
tance (Fig. 1c).

3.2. QSPRs

3.2.1. Selection of descriptors
In QSPRs, generally a large descriptor pool is generated, which

is then reduced to a smaller data set by a suitable algorithm. For
the reduction of descriptors, both supervised and unsupervised
learning algorithms are used, which have their own  advantages
and disadvantages. In case of unsupervised learning, however, the
major disadvantage is the lack of direction for the learning algo-
rithm which may  result in the information of no importance for
a given phenomenon. An HM approach is mainly a supervised
learning method, which can explore the rationale behind the phe-
nomenon. Therefore, in this study, the HM approach was  combined
with UFS in order to discover rational descriptors. Initially, HM
approach resulted in a small dataset of 15–25 descriptors out of
1685. The redundant and multicollinear descriptors were then
removed by NRD and UFS algorithm which provided a small sub-
set of 8–11 descriptors for different response variables. These are
summarized in Table 1 and were used for MLR  analysis.

3.2.2. QSPR generation
The selected descriptors were regressed upon response vari-

ables and MLR  models consisting of 1–6 descriptors were built in
all possible combinations. The best-fitting models were selected
as described earlier. None of the one-descriptor model was  found
to be significant. However, two-descriptor models had somewhat
improved statistical significance. These models are:

M12 = 173 − 10.3 Softness − 6.73 ALOGPS log P (7)

(N = 16,  R2 = 0.664, R2
adj = 0.613, R2

cv = 0.588, p = 0.001)

k0 = 0.152 − 0.00952 Softness + 0.0216 Mor08e (8)

(N = 16,  R2 = 0.659, R2
adj = 0.607, R2

cv = 0.573, p = 0.001)

k1 = −0.00411 − 0.000424 Mor08e + 0.000988 Ui (9)
lease from an arabinoxylan using ab initio optimization and neural
6

kH = 1.47 − 0.293 Softness − 14.1 Mp  (10)

dx.doi.org/10.1016/j.carbpol.2012.02.016
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(N = 16,  R2 = 0.656, R2
adj = 0.603, R2

cv = 0.570, p = 0.001)

ln kp = −11.8 + 44.2 G2u − 9.33 E2s (11)

(N = 16,  R2 = 0.659, R2
adj = 0.607, R2

cv = 0.374, p = 0.001)

n = 1.28 + 1.52 Ku − 3.31 Du (12)

(N = 16,  R2 = 0.65, R2
adj = 0.596, R2

cv = 0.480, p = 0.001)

where N is the number of observations. In these models, ln kp and n
models showed very weak R2

cv than others; however, all these mod-
els were improved by the addition of more descriptors. Three- and
four-descriptor models showed an optimal statistical significance.
Addition of more descriptors in these models resulted in lowering
of R2

cv. Thus three- and four-descriptor models, as appropriate, were
considered for prediction purpose and are presented in Table 3. The
models for final prediction were selected on the basis of higher R2

and R2
cv values, lower Mallows Cp,  and better relationship of model

descriptors with the drug release phenomenon. The optimal mod-
els for M12, k0, k1, kH, ln kp and n are represented by Eqs. (19), (20),
(21), (22), (17) and (18), respectively. In order to determine the
robustness and neglect of chance correlation, y-scrambling analy-
sis was performed, where the robust models showed a decrease in
significance after y-scrambling (y-intercept < 0.2).

The predictions made by selected MLR  models are given in
Fig. 2. Three-descriptor model for M12 (Eq. (13)) incorporating Soft-
ness, ALOGPS logP and Mor08e showed a good predictive ability
(R2 = 0.803, R2

cv = 0.739). Addition of fourth descriptor, PJI2, further
improved the model (Eq. (19); R2 = 0.842, R2

cv = 0.728). Therefore,
Eq. (19) was  used for further prediction. Softness is a quantum
mechanical descriptor and its negative relation to M12 suggested
that with increased softness of the molecule M12 would decrease.
This means that soft molecules were unable to diffuse into the hard
dissolution medium because of strong interaction with the polymer
system. For example MEL  being the softest (Table S1, supplemen-
tary information) of all the drugs had least M12 while AT, CAF, LAM
and PAR being on the lower side exhibited higher values of M12.
The ALOGPS logP and PJI2 were also inversely related to M12. The
ALOGPS logP is a well-known lipophilicity/hydrophobicity index
of a substance; the molecules with higher values will not allow
them to pass into aqueous dissolution medium, thus slowing down
the release. LAM, AT and CAF having very low ALOGPS logP val-
ues (more hydrophilicity) showed an enhanced release (79–86%)
than most of others (<50%). The PJI2, a two-dimensional Petit-
jean Shape index describing the degree of deviation of a shape
from a perfect cyclic topology, varied between 0 and 1 (Borges
de Melo, Ataide Martins, Marinho Jorge, Friozi, & Castro Ferreira,
2010). Therefore, a perfection towards cyclic topology will result
in a decrease in M12 value because of its negative relationship
with M12 in the model. This may  be attributed to the tight pack-
ing of regularly shaped molecules between layers of the polymer.
Thus this will result in better encapsulation of such molecules and
delayed release. LAT and MEF  present a good example of this phe-
nomenon in this study. The Eq. (19) contains another descriptor
Mor08e, which is a three-dimensional molecule representation of
structures based on electron diffraction, MoRSE, descriptor. These
descriptors are derived from infrared spectra simulations using a
generalized scattering function. These descriptors acquire infor-
lease from an arabinoxylan using ab initio optimization and neural
6

mation from the 3D atomic coordinates, calculated by summing
atom weights viewed by a different angular scattering function
(Schuur, Selzer, & Gasteiger, 1996). The Mor08e is 3D-MoRSE-signal
8/weighted by atomic Sanderson electronegativities; it describes

dx.doi.org/10.1016/j.carbpol.2012.02.016
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Table  3
Multiple linear regression models.

Model Model parameters

N R2 R2
adj

R2
cv p

Three descriptors models
M12 = 143 − 8.25 Softness − 5.97 ALOGPS log P + 15.2 Mor08e (13) 16 0.803 0.753 0.739 0.001
k0 = 0.192 − 0.00837 Softness + 0.0201 Mor08e − 0.0626 PJI2 (14) 16 0.739 0.674 0.643 0.001
k1 = −0.00296 − 0.000464 Mor08e + 0.000817 Ui − 0.00147 HATS2u (15) 16 0.792 0.741 0.700 <0.001
kH = 6.95 − 0.303 Softness + 0.725 Mor08e − 2.28 PJI2 (16) 16 0.735 0.669 0.637 0.001
ln  kp = −11.6 + 39.8 G2u − 8.13 E2s − 0.831 Mor04m (17) a 16 0.769 0.712 0.540 <0.001
n  = 0.932 + 1.27 Ku − 2.70 Du + 0.723 E2s (18) a 16 0.759 0.698 0.502 0.001
Four  descriptors models
M12 = 167 − 7.54 Softness − 5.19 ALOGPS logP + 14.6 Mor08e − 39.6 PJI2 (19) a 16 0.842 0.785 0.728 <0.001
k0 = 0.322 − 0.00681 Softness + 0.0140 Mor08e − 0.0558 PJI2 − 0.225 Mp (20) a 16 0.793 0.717 0.686 0.001
k1 = −0.00205 − 0.000464 Mor08e + 0.000696 Ui − 0.00137 HATS2u −

0.000764 GATS1e (21) a
16 0.813 0.745 0.696 0.001

kH = 11.7 + 0.501 Mor08e − 2.03 PJI2 − 0.246 Softness − 8.20 Mp (22) a 16 0.789 0.712 0.681 0.001
ln  kp = −11.3 + 37.5 G2u − 5.94 E2s − 0.943 Mor04m − 0.116 RDF055m (23) 16 0.788 0.710 0.499 0.001
n  = 0.901 + 1.20 Ku − 2.68 Du + 0.574 E2s − 0.185 Mor18v (24) 16 0.776 0.694 0.495 0.001
Five  descriptors models
M12 = 166 − 6.55 Softness − 4.99 ALOGPS logP + 12.7 Mor08e − 42.9 PJI2 −

37.8  R1m+ (25)
16 0.851 0.776 0.684 0.001

k0 = 0.391 − 0.0384 EEig01r + 0.0140 Mor08e − 0.0503 PJI2 − 0.219 Mp  −
0.0772 Mor28p (26)

16 0.835 0.752 0.631 0.001

k1 = −0.00217 − 0.000442 Mor08e − 0.00146 HATS2u − 0.00114 GATS1e +
0.000108 Softness + 0.000458 Ui (27)

16 0.838 0.756 0.651 0.001

kH =
13.4 + 0.605 Mor08e − 2.02 PJI2 − 0.129 Softness − 7.65 Mp  − 0.829 EEig01r
(28)

16 0.810 0.714 0.616 0.002

ln  kp =
−9.78 + 30.8 G2u − 4.25 E2s − 1.06 Mor04m − 0.131 RDF055m − 3.86 R1m+
(29)

16 0.801 0.702 0.506 0.003

n  = 2.52 + 1.45 Ku − 2.91 Du + 0.651 E2s − 0.296 Mor18v − 0.890 BELv1 (30) 16 0.790 0.686 0.471 0.004

N, number of observations, R2
adj

,: adjusted coefficient of determination.
a Models carried forward to Table 4 for ANN analysis.
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Fig. 2. Plots for observed and predicted data based on MLR  and ANN models.
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odel.

he effect of electronegativity on the drug release. Its positive rela-
ionship with M12 suggests that an increase in Mor08e value will
esult in increase in the amount of drug released. Thus it can be
oncluded that softer molecules having lower lipophilicity, higher
or08e value and irregular shape would result in an enhanced

elease of the drug from AX. The combined effect of all four descrip-
ors on M12 is shown in the form of scatter plot (Fig. 3a) and a typical
-scrambling plot for M12 is shown in Fig. 3c.

In order to have insight into the drug release phenomenon form
he AX matrix, other response parameters were also investigated
o find other factors which may  influence the release. These param-
ters were included in models represented by Eqs. (20)–(22), (17)
nd (18). The Eqs. (20) and (22) represent k0 and kH as optimum
odels respectively. In these models the descriptor ALOGPS logP

n Eq. (19) has been replaced with Mp.  The descriptors including
oftness and PJI2 are related negatively to k0 and kH, therefore, an
ncrease in their values will slow down the rate of drug release from
X. The descriptor, Mor08e, has positive relationship and therefore,
n increase in its value will also increase the drug release rate. The
ther descriptor Mp,  which describes the mean atomic polarizabil-
ty (scaled on carbon atom), has negative relationship with k0 and
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

H. This suggests that molecules with higher values of Mp  would
ave slower release rate due to local atomic charge dispersions. It
ay  be noted that AX, being a carbohydrate polymer, has polar OH

roups as a part of its structure. Therefore, drug molecules having
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greater atomic charge dispersion will have stronger drug-polymer
interaction resulting in a lower release rate. This was witnessed in
case of drugs MEL, LAT, PIR, MEF  having greater �-character and
greater number and/or larger size of atoms which result in greater
charge dispersions.

In case of k1 (Eq. (21)), three descriptors Ui, HATS2u and GATS1e
were identified in addition to Mor08e which is positively related
to k1. Since, slope of a first order plot is always negative, there-
fore, an increase in Mor08e value would decrease k1 resulting in
an increase in release rate. The Ui an empirical descriptor, known
as unsaturation index, is also positively related to k1. Therefore,
an increase in Ui value will increase the k1, i.e.,  a slower release.
Highly unsaturated drug molecules like MEL, LAT, MEF  and PIR
exhibited a slower release. Whereas LAM, AT, PAR and CAF having
lower Ui values (Table S1, supplementary information) exhibited
a higher rate of release. This is because of greater �-charge dis-
persion and, as in case of Mp,  it is expected to have stronger
drug–polymer interactions resulting in a decreased release rate.
Most of the other drug molecules under investigation had Mp  and
Ui values intermediate between those of highly and less unsatu-
rated molecules thus showing intermediate release rates. HATS2u
pertains to geometry, topology and atomic weights assembly (GET-
AWAY) family of descriptors (Consonni, Todeschini, & Pavan, 2002;
Consonni, Todeschini, Pavan, & Gramatica, 2002) derived from
leverage matrix called molecular influence matrix (MIM). These
descriptors encode information about 3D geometry and atom-
related molecular topology. HATS2u is the leverage weighted
autocorrelation-lag2/unweighted. GATS1e, Geary autocorrelation-
lag1/weighted by atomic Sanderson electronegativities (Geary,
1954), is a 2D topological descriptor additionally containing infor-
mation about atomic electronegativities. Both of these descriptors
have negative coefficient suggesting an inverse relationship with
k1, meaning by that with increase in 2D lag1 and 3D lag2 autocor-
relations within a molecule, the release rate will increase. It may
also be noted that electronegativity information contained in both
Mor08e and GATS1e have similar effect, as an increase in both these
descriptors increases the release rate.

The ln kp and n response parameters were derived from power
law; the optimal models representing these parameters are Eqs.
(17) and (18) respectively. These models, containing mostly same
class of descriptors, i.e.,  weighted holistic invariant molecular
(WHIM) type (Todeschini & Gramatica, 1997; Todeschini, Lasagni,
& Marengo, 1994), provide complementary information regard-
ing drug release phenomenon. As regards ln kp, its optimal model
includes three descriptors G2u, E2s and Mor04m. The G2u belongs
to the WHIM class. The WHIM descriptors are statistical indices cal-
culated on the projections of the atoms along principal axes. Thus
these descriptors are built in such a way that they acquire rele-
vant 3D information regarding molecular size, shape, symmetry,
and atom distribution with respect to invariant reference frames.
One of the WHIM descriptors describes global directional symme-
try index that contains mean information content of the symmetry
indices along each principle component. The G2u is a second
component symmetry directional WHIM index/unweighted. This
index encodes symmetry information about the molecules and
increases with an increase in molecular symmetry. Its high posi-
tive relationship with ln kp suggests that an increase in molecular
symmetry will lead to an increase in ln kp. The E2s is a second com-
ponent accessibility directional WHIM index/weighted by atomic
electrotopological states and the Mor04m is a 3D-MoRSE—signal
4/weighted by atomic masses. Both of them showed negative rela-
tionship with ln kp describing release pattern as discussed above.
lease from an arabinoxylan using ab initio optimization and neural
6

The release exponent n is an important parameter as it determines
the mechanism for the release of a drug. Its model solely consists of
WHIM descriptors Ku, Du and E2s. The E2s is the same descriptor as
described in Eq. (17). The Ku is the global shape index/unweighted

dx.doi.org/10.1016/j.carbpol.2012.02.016
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Fig. 4. Plots for observed and predicted release profiles of drug molecules (a) MLR
and (b) ANN model.
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nd the Du is the total accessibility index/unweighted, where the Ku
ncreases with increase in linearity of the molecule. It is positively
orrelated with n, showing that the n will increase with the linearity
f the molecule; thus shifting the mechanism from fickian diffu-
ion (n = 0.45) through anomalous transport (0.45 < n < 0.89) and
welling-controlled mechanism (n = 0.89) to super case-II trans-
ort (n > 0.89) domain. For example, IBU and AT possess sufficient

inearity with high Ku index so their release mechanisms were
ound to be anomalous transport with n values 0.76 and 0.84 for
BU and AT respectively. Both MEL  and PIR also possess a high Ku
ndex thus showing a super case-II transport. A similar impact of
2s was observed on n in this model. It has direct relationship
ith the n, meaning by that more the accessibility of the atoms

f a molecule, higher the n, therefore, favors non-Fickian type
echanisms. The Du describes the total density of atoms within

 molecule; that means the greater its value, the greater will be
he projected unfilled space (Saíz-Urra, Cabrera Pérez, Helguera,

 Froeyen, 2011). This descriptor has negative impact on n which
eans that for atom dense molecules, n will be lower resulting in

ickian diffusion. For example, GLI having high Du index was found
o be released through nearly (n = 0.43) Fickian diffusion. This sug-
ests that more linear and less dense molecules with high atomic
ccessibility tend to follow non-Fickian type mechanisms. The com-
ined effect of all three descriptors on n has been summarized in a
riangular contour plot (Fig. 3b). The plot was created with Origin
ro version 8.5.

An ideal study should be able to predict the complete release
rofile of dug molecules under specified conditions. In order to
chieve this, the % release (M)  of drug molecules at all time points
as regressed against time (t) and descriptors contained in Eq. (19).

his incorporated all the release data into a model with reasonably
ood statistical significance (Eq. (31)).

 = 89.8 + 0.0531 t − 4.92 Softness − 27.9 PJI2

+ 10.8 Mor08e − 3.64 ALOGPS log P (31)

N = 192, R2 = 0.798, R2
adj = 0.792, R2

cv = 0.691, p < 0.001)
For cross validation of this model, all the data points relating to

elease of the one-by-one selected drug were left out and prediction
as obtained by the model trained on the remaining molecules.

The behavior of descriptors; Softness, PJI2, ALOGPS logP and
or08e remained same in this model as previously discussed. The

redicted release profile for all drug molecules is presented in
ig. 4a.

.2.3. Artificial neural networks
The network architecture and validation statistics for ANNs is

iven in Table 4. The descriptors in the selected models (Table 3)
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

ere used to build ANN models. The real strength of ANN mapping
echnique was observed for the ln kp and n response parameters,
hich showed considerably better prediction ability than MLR
odels (Fig. 2). The MLR  models of ln kp and n showed a low

able 4
rchitecture of artificial neural network models.

Response Number of neurons Activation function R2
train

R2
test

Input
layer

Hidden
layer

Output
layer

Hidden Output

M12 4 8 1 Logistic Identity 0.985 0.99
k0 4 4 1 Logistic Logistic 0.979 0.99
k1 4 3 1 tanh tanh 0.910 0.94
kH 4 5 1 tanh tanh 0.905 0.98
ln  kp 3 8 1 Exponential Logistic 0.998 0.99
n 3  10 1 tanh Identity 0.999 0.99
M  5 6 1 tanh Logistic 0.998 0.99
M12, n 7 9 2 Exponential Identity 0.984 0.95
predictive ability (R2 < 0.75, R2
cv < 0.55), whereas, the ANNs, being

inherently capable of both linear and non-linear modeling, afforded
the models having greatly improved statistical qualities (Table 4).
For each response many ANNs were built and the optimal model
was selected on the basis of lower SOS error function value and
higher R2

train and R2
test values. The ANN models were considered to be

superior over the MLR  models. In the ANN models all the response
parameters have different types of architecture. In these models
the so called ‘global sensitivity analysis’ ranked the descriptors in
ANNs as shown in Table 4. Keeping in view the suitability of ANN
models (better validation statistics: Table S2, supplementary infor-
mation) and better predictive ability (Fig. 2 and 4) these models
were considered to be superior to the MLR  models. The ANN was
also designed to simultaneously predict two  important parameters
lease from an arabinoxylan using ab initio optimization and neural
6

for a drug molecule, M12 and n. The descriptors in Eqs. (18) and (19)
were used as continuous input and the output was M12 and n (Eq.
(39)).

Global sensitivity analysis of descriptors

9 ALOGPS logP > Softness > PJI2 > Mor08e (32)
7 PJI2 > Mor08e > Softness > Mp (33)
7 Ui > Mor08e > HATS2u > GATS1e (34)
8 Softness > Mor08e > PJI2 > Mp (35)
9 G2u > E2s > Mor04m (36)
7 Ku > Du > E2s (37)
6 t > Softness > Mor08e > ALOGPS logP > PJI2 (38)
0 Softness > ALOGPS logP > Mor08e > Ku > PJI2 > E2s > Du (39)

dx.doi.org/10.1016/j.carbpol.2012.02.016
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The complete release profile of the drugs was also predicted
y ANN analysis. The descriptors in Eq. (31) were used to develop
n MLP  5-6-1 ANN model (Table 4, Eq. (38)) that can predict the
elease profiles of the drugs under investigation with considerable
etter predictive performance over MLR  model (Fig. 4). The pre-
icted release profiles of the drugs by ANN were compared with
he experimental profiles using difference (f1) and similarity (f2)
actors (Moore & Flanner, 1996) as given in Eqs. (40) and (41).

1 =
{[∑n

t=1

∣∣Et − Pt

∣∣][∑n
t=1Pt

]
}

× 100 (40)

2 = 50 × log

⎧⎨
⎩

[
1 +

(
1
n

) n∑
t=1

∣∣Et − Pt

∣∣2

]−0.5

× 100

⎫⎬
⎭ (41)

here Et and Pt are the experimental and predicted dissolution
alues respectively at time t. The summation is done over all time
oints n. For two curves to be similar f1 should be close to zero and

2 close to 100. Generally, f1 value in the range 0–15 and f2 greater
han 50 indicate the equivalence of two dissolution profiles. The f1
nd f2 values for the drugs under investigation are given in Table 2
nd predictive release profile data is shown in Fig. 4b. The MLR  and
NN models conformed to the validation standards (Goodarzi et al.,
011) for QSAR/QSPR (Table S2, supplementary information).

. Conclusions

New QSPR models were developed by use of MLR  and ANN
hrough ab initio structure optimization. The models are capable of
redicting release profiles of drug molecules differing in structure
nd pharmacological activity. Softness, lipophilicity (ALOGPS logP),
eometry (Mor08e, GATS1e, HATS2u), cyclic topology (PJI2), polar-
zability (Mp) and �-character (Ui) in the molecules were identified
s the most significant descriptors governing the release of a drug
rom the arabinoxylan. The models meet the criteria for stability,
obustness, and predictive power and as such can be used with con-
dence as effective tools for predicting, analyzing the behavior of a
ariety of drugs and designing controlled release tablets of different
rugs.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.carbpol.2012.02.016.
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Guerrero, V., & Salas-Muñoz, E. (2010). Feruloylated arabinoxylans and arabi-
noxylan gels: structure, sources and applications. Phytochemistry Reviews, 9(1),
111–120.

Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers.
Pharmaceutica Acta Helvetiae, 60(4), 110–111.

Ranga-Rao, K. V., Padmalatha-Devi, K., & Buri, P. (1990). Influence of molecu-
lar  size and water solubility of the solute on Its release from swelling and
erosion controlled polymeric Matrices. Journal of Controlled Release, 12(2),
133–141.

Ritger, P. L., & Peppas, N. A. (1987a). A simple equation for description of solute
release I. Fickian and non-Fickian release from non-swellable devices in the
form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1),
23–36.

Ritger, P. L., & Peppas, N. A. (1987b). A simple equation for description of solute
release II. Fickian and anomalous release from swellable devices. Journal of Con-
trolled Release, 5(1), 37–42.

Rujivipat, S., & Bodmeier, R. (2010). Modified release from hydroxypropyl methyl-
cellulose compression-coated tablets. International Journal of Pharmaceutics,
402(1–2),  72–77.

Saíz-Urra, L., Cabrera Pérez, M.  Á., Helguera, A. M.,  & Froeyen, M.  (2011). Combin-
ing molecular docking and QSAR studies for modelling the antigyrase activity
of  cyclothialidine derivatives. European Journal of Medicinal Chemistry,  46(7),
2736–2747.

Schuur, J. H., Selzer, P., & Gasteiger, J. (1996). The coding of the three-dimensional
structure of molecules by molecular transforms and its application to structure-
spectra correlations and studies of biological activity. Journal of Chemical
Information and Computer Sciences, 36(2), 334–344.

Scientist-handbook, & rev. 7EEF. (1995). MicroMath, Inc., Salt Lake City, p. 467.
Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. Inter-

national Journal of Pharmaceutics, 364(2), 328–343.
Stewart, J. J. P., MOPAC2009, 2009. Colorado Springs, CO, USA,

http://OpenMOPACnet.
Sumathi, S., & Ray, A. R. (2002). Release behaviour of drugs from tamarind seed

polysaccharide tablets. Journal of Pharmacy and Pharmaceutical Sciences, 5(1),
12–18.

Tahara, K., Yamamoto, K., & Nishihata, T. (1996). Application of model-independent
and model analysis for the investigation of effect of drug solubility on its release
rate from hydroxypropyl methylcellulose sustained-release tablets. Interna-
tional Journal of Pharmaceutics, 133(1–2), 17–27.

Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., et al. (2005).
Virtual computational chemistry laboratory—Design and description. Journal of
lease from an arabinoxylan using ab initio optimization and neural
6

Computer-Aided Molecular Design, 19(6), 453–463.
Todeschini, R., & Gramatica, P. (1997). 3D-modelling and prediction by

WHIM descriptors Part 5. Theory development and chemical meaning
of WHIM descriptors. Quantitative Structure–Activity Relationships, 16(2),
113–119.

dx.doi.org/10.1016/j.carbpol.2012.02.016
http://dx.doi.org/10.1016/j.carbpol.2012.02.016
http://www.http%3a//classic.chem.msu.su/gran/firefly/index.html
http://openmopacnet/


 ING Model

C

1 te Pol

T

T

ARTICLEARP-6370; No. of Pages 10

0 J. Akbar et al. / Carbohydra
Please cite this article in press as: Akbar, J., et al. A QSPR study of drug re
networks. Carbohydrate Polymers (2012), doi:10.1016/j.carbpol.2012.02.01

odeschini, R., Lasagni, M.,  & Marengo, E. (1994). New molecular descriptors for 2D
and 3D structures. Theory. Journal of Chemometrics,  8(4), 263–272.

ropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest:
Validation is the absolute essential for successful application and interpretation
of  QSPR models. QSAR & Combinatorial Science, 22(1), 69–77.
 PRESS
ymers xxx (2012) xxx– xxx
lease from an arabinoxylan using ab initio optimization and neural
6

Whitley, D. C., Ford, M.  G., & Livingstone, D. J. (2000). Unsupervised forward
selection: A method for eliminating redundant variables. Journal of Chemical
Information and Computer Sciences, 40(5), 1160–1168.

Wold, S. (1991). Validation of QSAR’s. Quantitative Structure–Activity Relationships,
10(3),  191–193.

dx.doi.org/10.1016/j.carbpol.2012.02.016

	A QSPR study of drug release from an arabinoxylan using ab initio optimization and neural networks
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Drug release studies
	2.2.1 Preparation of tablets
	2.2.2 Dissolution study
	2.2.3 Mathematical and statistical analysis of release profiles

	2.3 Development of QSPRs
	2.3.1 Dissolution parameters
	2.3.2 Calculation of structural descriptors
	2.3.3 Selection of descriptors and QSPR generation
	2.3.4 Validation of QSPRs


	3 Results and discussion
	3.1 Dissolution profiles
	3.2 QSPRs
	3.2.1 Selection of descriptors
	3.2.2 QSPR generation
	3.2.3 Artificial neural networks


	4 Conclusions
	Appendix A Supplementary data
	Appendix A Supplementary data


