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Abstract
Use of nanoparticles for various industrial and biomedical applications has emerged in recent years rapidly, but their accumu-
lation in the environment has raised concerns for their ecotoxicological profile. Instead of halting their use, emphasis should be
laid to the development of safer nanoparticles. We prepared silver nanoparticles (AgNPs) by chemical synthesis as well by green
synthesis method usingOcimum tenuiflorum L. plant. Characterization of green synthesized silver nanoparticles (G. AgNPs) and
chemically synthesized silver nanoparticles (C. AgNPs) was performed; UV-visible confirmed the optical absorption peaks at
425 nm (G. AgNPs) and 416 nm (C. AgNPs). SEM imaging confirmed the spherical shaped G. AgNPs (40–60 nm) and C.
AgNPs (30–40 nm) with average sizes. FTIR analysis of G. AgNPs confirmed that alkene and aromatic compounds played an
important role as capping and reducing agent. We also attempted to evaluate the toxicity profile using a mammalian model, male
albino mice (BALB/c)x LD50 of the G. AgNPs and C. AgNPs for mice were found to be 812 mg/kg and 575 mg/kg of the body
weight respectively. Liver enzymes were studied from liver tissue and blood serum samples collected from G. AgNP-treated and
C. AgNP (100 mg/kg dose)-treated mice for 21 days. We observed a significant decrease in catalase (72.8 versus 86) and GST
(0.4 versus 0.32) for G. AgNPs vs C. AgNPs respectively; whereas an increase of SOD is reported (3.05 vs 2.26 respectively).
Hence, the development of nanoparticles by green synthesis may be the safer, cost-effective, and eco-friendly option as compared
to chemical synthesis.
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1 Introduction

Nanotechnology has emerged as an interesting area of science,
because of its wide range applications in the biomedical and
health sciences, and regular research is being conducted on the
metallic nanomaterials and their potential applications [1, 2].
Development of novel nanomaterials with unique properties,
with desired functions and abilities, is necessary for the recent
era.

Nanomaterials entry into the environment is damaging and
harmful for the living systems, as these materials are deleteri-
ous and toxic, so their potential impacts and toxicity profiling
are very important and essential to deal with their future im-
pacts on the ecosystem [3]; and along with their risk analyses,
safer nanoparticles development is more essential to cope with
the need of nanomaterials, which are more secure and safe for
the ecological well-being as compared to the chemically syn-
thesized one. There are various methods reported in the liter-
ature for their synthesis, but most commonly used are physi-
cal, chemical, and biological methods. These biological
methods are more eco-friendly and cost-effective [4].

Nanoparticles have different sizes and shapes within the
diameter of 1–100 nm [5], hence termed as nanoparticles or
nanomaterial. Numerous studies have focused on the potential
applications of metallic nanoparticles, such as gold [6, 7],
silver [8], platinum [9, 10], palladium [11, 12], and titanium
[13, 14]. Bioavailability, behaviors, reactivity, stability, and
toxicity of the nanoparticles [3, 15] are very important param-
eters to study the behavior of the nanoparticles.
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Animals living in a specific ecosystem, when encountered
with nanoparticles such as silver nanoparticles (AgNPs), their
bodies respond to these materials adversely, but their toxicity
levels and attributes vary from organism to organism or parti-
cles to particles. Silver nanoparticles (AgNPs) mainly induce
the formation of reactive oxygen species (ROS), as major
substances which induce oxidative stress, which further dam-
age other cells and tissues of the organism [16, 17]. ROS
include several oxygen–derived reactive molecules, such as
hydroxyl radical (OH−1), superoxide (O−2), and hydrogen per-
oxide (H2O2). Production of ROS in a large amount may
induce damages in biochemical pathways, as these radicals
react with enzymes, nucleic acids, proteins, lipids of the bio-
logical membranes, and many other small molecules, which
are very important to the biological system [18, 19] and met-
abolic pathways. Oxidative stress is primarily involved in the
development of several acute and chronic diseases in human.
Several studies have reported the effects of AgNPs in different
organisms such as Caenorhabditis elegans, Drosophila
melanogaster, and Eisenia fetida [16, 20, 21] in the inverte-
brates and vertebrate such as Danio rerio and Mus musculus
[22, 23].

Ocimum tenuiflorum L. is synonymously termed as
Ocimum sanctum L. and commonly termed as tulsi []. It is
important medicinally, as it contains many active ingredients
and effective against many diseases [25, 26]. It is an important
plant with a long history in the sub-continent in drug therapy
especially in Ayurvedic medicines, as it contains many active
biomolecules; hence, we tried this plant as a capping and
reducing agent for the synthesis of silver nanoparticles
(AgNPs).

The aim of this study was to assess the acute toxicity asso-
ciated with biologically and chemically synthesized AgNPs in
the albino mice, and evaluate the safety profile of biologically
synthesized AgNPs. To achieve this, we developed a study
plan involving the synthesis and characterization of AgNPs,
evaluation of LD-50, and determination of antioxidant en-
zymes activity in the liver and serum for both types of
AgNPs after acute dosing.

2 Materials and Methods

Silver nitrate (AgNO3) and other chemicals were purchased
from Sigma-Aldrich. Deionized water was used in all experi-
ments. The plant Ocimum tenuiflorum L. (tulsi) was obtained
from the Botanical Garden Government College University,
Lahore, Punjab, Pakistan.

2.1 Preparation of AgNPs (Biological Synthesis)

Biosynthesis of AgNPs was performed by the method [27]
with slight modification. Ten grams of dried leaves of tulsi

(O. tenuiflorum) were washed with distilled water carefully
to remove extra dust particles and other impurities. Washed
leaves were taken in 100 mL of deionized water and kept on
the hot plate at 65 °C for 6–7 min with constant stirring, and
plant extract was filtered using filter paper (Whatmann No.1).
Silver nitrate (AgNO3) (80 mL, 1 mM) and plant broth
(20 mL) were poured in an Erlenmeyer flask and heated at
60 °C with magnetic stirring (200 RPM) for 8–10 min; the
formation of nanoparticles was observed as the color changed
to yellowish brown.

2.2 Preparation of AgNPs (Chemical Synthesis)

Silver nitrate (60 mL, 1 mM) was heated on the hot plate at
65 °C with constant stirring (200 RPM) for 6–7 min.

Trisodium citrate (6 mL, 10 mM) was added dropwise.
After, a while solution color was changed to a light yellow,
which indicated the formation of AgNPs [28].

2.3 Characterization of AgNPs

Characterization was performed by using general techniques,
i.e., UV-visible spectrophotometry (GENESYS 10S UV-Vis),
Fourier transform infra-red spectroscopy (FTIR) (Shimadzu
IR Prestige21), and scanning electron microscopy (SEM)
(JEOL, JSM-6480LV). Atomic absorption spectroscopy
(AAS) was performed to observe the conversion of Ag ions
into AgNPs (AA 7000F, Shimadzu, Japan). The concentration
of the silver nanoparticles was analyzed by oven drying and
lyophilization methods (ALPHA 1-4 LD).

2.4 Animals and Experimental Protocols

Albino mice (BALB/c) (10–12 weeks old with 28–40 g body
weight) were obtained from animal house of the Government
College University, Lahore, Pakistan. They were kept in cages
provided with commercial rat pellets and regular water sup-
plied with the help of ad libitum. They were housed in an air-
conditioned room with a constant temperature range (22 ±
1 °C) and cons tan t l igh t /da rk cyc le (12 :12 h) .
Acclimatization of the animals to the laboratory condition
was achieved by keeping the animals in the cages for at least
7 days prior to dosing [29]. Animal care and handling were
followed the official guidelines of OECD and was submitted
by the Ethics Committee of the Government College
University, Lahore, Pakistan.

2.5 Toxicity Studies (Evaluation of LD-50)

Theacutetoxicitywasdeterminedinmicethroughperformingthe
lethal dose 50 (LD50) studies by using commercially adopted
procedures [30] for both types of AgNPs. For this purpose, 2
batchesofalbinomice,eachcontaining8groupswith10micein
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each group, were kept in 8 cages. Eight concentrations of G.
AgNPs(500,600,700,800,900,1000,1100,and1200mg/kgof
thebodyweight)andC.AgNPs(200,300,400,500,600,700,800,
and900mg/kg of the bodyweight)werepreparedand adminis-
tered via intravenous tail vein (IVadministration). These doses
wereadministeredoneconcentrationpergroupafterevery24hfor
96h(4days).HodgeandSterner’sscalewasusedasareferencefor
toxicity[31].Mortalityofthemicewascalculatedafterevery24h.
LD-50wascalculatedbyusingtheprobitanalysismethod.

2.6 Acute Toxicity Studies

Sublethal doses, i.e., 100 mg/kg of the body weight of each
type of AgNPs (i.v. administered), were used to evaluate the
acute toxicity of the nanoparticles on mice. The experiment
was performed in three batches, batch-I (7 days), batch-II
(14 days), and batch-III (21 days). Each batch was divided
into three groups: G1 (control; no AgNP exposure), G2
(100 mg/kg of G. AgNPs), and G3 (100 mg/kg of C.
AgNPs), and each group contained 10 Mice. After the prereq-
uisite period of treatment, mice were sacrificed, and blood and
liver samples were obtained.

2.7 Serum Separation and Homogenate Formation

Blood samples were collected from the cardiac puncture in
serum separator gel tubes, which were further centrifuged at
5000 rpm for 30 min. Serum samples were collected and
stored at − 80 °C for future analysis. Livers were washed with
buffer solution for a while, soaked in 9mL of 0.1M phosphate
buffer (pH 7.4), and were homogenized in a Teflon tissue
homogenizer. Homogenate was centrifuged for 10 min at the
12,000 rpm in a refrigerated centrifuge machine at 4 °C. The
supernatant was collected and stored at − 20 °C for further
analysis [32].

2.7.1 Estimation of Superoxide Dismutase

It was estimated as per the protocol of Marklund and
Marklund [33]. Auto-oxidation of the pyrogallol is inhibited
by the superoxide dismutase (SOD). Reaction chamber
contained a final volume of 3.0 mL, containing 2.80 mL of
(0.05M) Tris-succinate buffer (pH 8.2), 100 μL of the sample.
It was incubated at 25 °C for 20 min, 100 μL of 8 mM pyro-
gallol was added, and change in absorbance was measured at
412 nm with a time interval of the 30 s for 3 min. The specific
activity is reported in units per milligram of protein or units
per milliliter of the homogenate.

2.7.2 Estimation of Catalase

It was assayed according to the protocol described by Javed
et al. [32]. A total volume of the reaction mixture was 3.0 mL,

containing 1.90mL of (50mM) phosphate buffer (pH 7.0) and
100 μL of the sample material. One milliliter of hydrogen
peroxide (H2O2) was added to initiate the reaction. The absor-
bance of the solution was measured at 240 nm for 3 min with
an interval of 30 s.

2.7.3 Estimation of Glutathione-S-Transferase

Glutathione-S-transferase (GST) activity was analyzed using
the method reported by Javed et al. [32]. The total volume of
the reaction mixture was 1.5 ml, containing 1.35 mL of
(0.1 M) phosphate buffer (pH 6.5), 50 μL of GSH, and
50 μL of the sample material. A 50 μL solution of 1-
Chloro-2, 4-dinitrobenzene (CDNB) was added to initiate
the reaction. The absorbance of the solution was measured at
340 nm for 5 min with a time interval of 30 s. Enzyme activity
was expressed as units per milligram of protein.

3 Results and Discussion

3.1 Synthesis and Characterization of AgNPs

Ocimum tenuiflorum–synthesized nanoparticles were relative-
ly stable for more than 6 weeks, which make them a good
candidate for various applications. These results are in agree-
ment with other similar studies previously reported; another
study reported the stability of O. tenuiflorum–derived AgNPs
for 2 months [34]. Azadirachta indica’s derived AgNPs were
reported with high stability [35], and it is highly correlated
with the pH of the medium. Plant extract–derived AgNPs
have highly negative zeta potential, hence are stable in the
wide range of pH [36]. Our results are totally in agreement
with the previous reports [37–46].

3.2 Characterization of Silver Nanoparticles

3.2.1 UV-Visible Spectroscopy

We obtained UV peak at 425 nm for G. AgNPs and 416 nm
for C. AgNPs, which indicate the formation of AgNPs with
spherical shapes (Fig. 1a, b), smaller than 100 nmwhich could
be used for further applications [47].

The surface plasmon resonance (SPR) band of the UV-
visible has special peak ranging from 380 to 440 nm for spher-
ical shaped AgNPs [48]. Due to the presence of surface plas-
mon resonance, vibrations, and excitation, AgNPs have a
characteristic yellow color in suspension [49–51]. Similar re-
sults were reported for the Ocimum sanctum–mediated syn-
thesis of AgNPs and peak at 406 nmwas reported [52]. On the
other hand, leaf extracts of Eclipta prostrate [53] and
Memecylon edule [54] were reported to produce triangular,
pentagonal, and hexagonal AgNPs. Shapes and sizes of the
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nanoparticles are mainly temperature and time dependent
[55]. At 25 °C temperature, particles with large sizes
(50 nm) were produced; however, at 95 °C, particle size was
reduced to 16 nm [4]. Peak intensity increased with time,
which indicated formation of more silver nanoparticles.
Band peak variations are shape and size dependent, hence
their peaks are obtained at variously specified region on the
spectrum. Results obtained for UV-visible spectroscopy of the
AgNPs synthesized are consistent with the previous studies
[27, 38, 40, 46, 56, 57].

3.2.2 Scanning Electron Microscopy

The scanning electron microscopy (SEM) micrograph
showed polydisperse, varied sized, and spherical shapes
of the AgNPs. Size ranging from 40 to 60 nm for G.
AgNPs (Fig. 1e, f), whereas from 30 to 40 nm for C.
AgNPs (Fig. 1c, d). Similar results of the SEM were re-
ported for AgNPs synthesized via using the extract of
Ocimum sanctum [58]. Previous studies reported SEM
analysis of Piper longum–derived spherical shaped

AgNPs, with size ranging 17.6–41 nm [59], and spherical
shaped AgNPs using Alternanthera sessilis with the size
ranging from 20 to 30 nm [60]. On the other hand, green
synthesis of AgNPs by using the leaf extract of Eclipta
prostrate [53] and Memecylon edule [54] produced other
shapes of nanoparticles, such as triangular, pentagonal,
and hexagonal. Size of the nanoparticles depends upon
the leaf broth concentration, concentration of AgNO3,
and temperature of the reaction [4]. The shape of the
nanoparticles generally depends upon the nature of reduc-
ing and capping agent [40].

3.2.3 FTIR Analysis of Biosynthesized Silver Nanoparticles

Untreated extract of the Ocimum tenuiflorum leaf showed ab-
sorption bands at different wave numbers (cm−1), i.e., 3311,
2931, 2881, 2376, 2349, 1614, 1404, 1298, 1060, 827, and
786 cm−1.

When the FTIR spectra of the AgNPs were compared with
the extract of the O. tenuiflorum, minute changes were ob-
served in the position and magnitude of the absorption bands.

Fig. 1 UV-Vis spectrum of the a
G. AgNPs, b C. AgNPs, c simple
SEM of C. AgNPs, d inverted
color SEM image of C. AgNPs, e
simple SEM of G. AgNPs, and f
inverted color SEM image of G.
AgNPs
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Variability in the wave number shift 1–10 cm−1 was observed,
and the 2-min. band at 827 and 786 cm−1 disappeared in the
spectra of the AgNPs prepared (Fig. 2). These bands indicated
the aromatic stretching in the extract; hence, band disappear-
ance indicated that the functional groups at these frequencies
had taken part in the capping and reduction for the synthesis of
AgNPs.

These results are in accordance with the previously stud-
ied FTIR analysis of the Ocimum tenuiflorum plant extract
with slight variation in the peak of bands at certain positions
[34]; also, it explained that the extract contained carboxylic,
alcoholic, amine groups, and many other compounds. After
the AgNP formation, slight changes in the magnitude and
position were observed in the absorption bands of the spec-
trum. Few peaks were shortened and a few were diminished
[34]. FTIR spectrum band at 3311 cm−1 is due to the
stretching ofO-H andH-bonded compounds such as phenols
and alcohols. The absorptionbandat 2931 cm−1 indicated the
presence of carboxylic acids due to the stretching of O-H.
Bending of N-H of primary amine was attributed to the peak
at 1614 cm−1; other peaks correspond to the presence of the
aromatic amine, ether, esters, ketones, and aldehydes groups
present in the leaf extract of the Ocimum species [61]. Our
results are in agreement with previous studies, as it indicated
the consumption of alkenes and aromatic compounds as cap-
ping and the reducing agent. Other studies reported many
other functional groups and biomolecules as capping and
reducing agent: protein in Capsicum annuum [62]; theoph-
ylline and caffeine in tea [63]; phyllanthin in Phyllanthus
amarus [64]; polyol, flavonoids, and terpenoids in

Cinnamomum camphora leaf [65]; natural antioxidant [25,
66] in some other plant extract.

3.2.4 Atomic Absorption Spectroscopy

Total silver content after complete digestion of the silver nano-
particles was found to be 10.87 ± 0.91 μg/mL in G. AgNPs
and 11.08 ± 0.26 μg/mL in C. AgNPs. Awwad [67] studied
silver ions concentration in AgNPs with the help of atomic
absorption spectroscopy (AAS), which further explained the
conversion of the silver ions into nanoparticles, and time-
dependent decrease in ions indicated the conversion of ions
into AgNPs.

3.3 Toxicological Studies of AgNPs (Evaluation of LD
50)

The lethal dose (LD-50) was 812 mg/kg of the body weight
(BW) for G. AgNPs and 575 mg/kg for C. AgNPs. Higher
values for G. AgNPs make them less toxic and more eco-
friendly. Previous reports described the LD-50 of the C.
AgNPs in normal and irradiated mice as 268.781 mg/kg and
425.990 mg/kg of the body weight respectively [68]. Another
study indicated the dose of LD-50 of the size-dependent
AgNPs for albino mice was 169 and 213.8 mg/kg for 20 nm
AgNPs and 354 and 391.5 mg/kg for 50 nm AgNPs; also, the
particles with smaller size showed more toxicity as compared
to the larger one [69]. Compared with other studies [68, 69],
we prepared green synthesized silver nanoparticles (G.
AgNPs) with higher values of LD-50 for G. AgNPs.

Fig. 2 FTIR Spectrum of a plant extract of O. tenuiflorum and b G. AgNPs

Table 1 Effects of silver
nanoparticles on levels of
superoxide dismutase (SOD) in
mice liver tissues and serum, after
administration of AgNPs through
intravenous tail injections

SOD 7 days 14 days 21 days

Liver Serum Liver Serum Liver Serum

Control 2.26 ± 0.27 4.24 ± 0.35 2.34 ± 0.45 4.50 ± 1.21 2.42 ± 0.46 4.33 ± 1.00

G. AgNPs 2.51 ± 0.39 4.75 ± 0.36 3.00 ± 0.77 5.01 ± 0.68 3.56 ± 0.81 4.94 ± 0.56

C. AgNPs 3.05 ± 0.99 5.98 ± 0.58 3.58 ± 0.92 5.31 ± 1.86 3.76 ± 0.95 5.17 ± 0.58

All the values are ±SEM of (n = 10)
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The plausible explanation for the higher value of LD-50 of
G. AgNPs is relatively safer nature, as these nanoparticles are
less toxic, hence showed higher LD-50 values compared to
their counterpart. Generally, the smaller the LD-50 value, the
more toxic the substance is and vice versa. Another possible
explanation for this phenomenon is Bsize- and dose-
dependent^ biological activity of AgNPs in the body.
Particles with the smaller sizes are more penetrating in the cell
as compared to the larger particles.

3.4 Oxidative Stress and Liver Enzymology

The level of the superoxide dismutase (SOD) in both
groups (G2 and G3) was increased as compared to the
control group (G1) (Table 1). However, higher level of
SOD was noticed in the G3 group as compared to the
G2. Liver had lower value of SOD as compared to the

serum; however, overall increasing trend was observed
in both the values, i.e., serum and liver in all the
batches of the mice (Fig. 3).

The level of the GST in both groups (G2 and G3) was in-
creased as compared to the control group (G1) (Table 2).
However, a higher level of theGSTwas recorded in theG3group
as compared to the G2. Liver contained slightly lower values of
GST as compared to the serum; however, an overall decreasing
trend was observed in both the values, i.e., serum and liver
(Fig. 4) for all three batches.

The level of the catalase (CAT) in both groups (G2 and G3)
was decreased as compared to the control group (G1)
(Table 3). The however lower level of the CAT was noticed
in the G3 group as compared to the G2. Liver contained slight-
ly higher values of CAT as compared to the serum; however,
an overall decreasing trend was observed in both the values,
i.e., serum and liver (Fig. 5).
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Fig. 3 Superoxide dismutase (SOD) activities with standard error mean in the liver tissue and serum samples after treatment of a 7 days, b 14 days, and c
21 days

Table 2 Effects of silver
nanoparticles on levels of
glutathione-S-transferase (GST)
in mice liver tissues and serum,
after administration

GST 7 days 14 days 21 days

Liver Serum Liver Serum Liver Serum

Control 0.408 ± 0.01 0.411 ± 0.01 0.410 ± 0.01 0.414 ± 0.01 0.401 ± 0.01 0.412 ± 0.00

G. AgNPs 0.388 ± 0.02 0.367 ± 0.02 0.352 ± 0.02 0.339 ± 0.01 0.354 ± 0.02 0.350 ± 0.03

C. AgNPs 0.320 ± 0.01 0.355 ± 0.02 0.301 ± 0.01 0.304 ± 0.02 0.290 ± 0.01 0.281 ± 0.00

All the values are mean ± SEM (n = 10)
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Fig. 4 Glutathione-S-transferase (GST) activities with standard error mean in the liver tissue and serum samples after treatment of a 7 days, b 14 days,
and c 21 days
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3.5 Oxidative Stress Under Sublethal Dose Effect

Groups of mice which were exposed to AgNPs showed a
slight increase in the superoxide dismutase (SOD), while
a decrease in the catalase (CAT) and glutathione-s-
transferase (GST) activities (Fig. 6). Toxic effects of the
nanoparticles for the biological systems need extensive
investigations for better understanding. Various methods
for toxicity evaluation have been developed, but proper
indicators are still needed to be developed. Animal expo-
sure to the AgNPs results in the formation of reactive
oxygen species (ROS), the main source of oxidative

stress, leading to disease development [70]. Tumor metas-
tasis has been observed to cease, as ROS are removed by
the antioxidant enzymes [71–73].

Other studies concerning oxidative stress for silver nano-
particles and other metallic nanoparticles reported a variety of
results. Ashok et al. [74] reported that catalase, glutathione
(GSH), and protein thiol significantly decreased, while the
level of superoxide dismutase activity (SOD), lipid peroxi-
dase, and glutathione peroxidase increased; our results are in
agreement with this study. Another study reported increasing
trends in the level of SOD [75]. Similar results were reported
for Cd (cadmium) toxicity; rats showed significantly de-
creased activity level of antioxidant enzymes such as CAT,

Table 3 Effects of silver
nanoparticles on levels of catalase
(CAT) in mice liver tissues and
serum, after administration
through intravenous tail injections

CAT 7 days 14 days 21 days

Liver Serum Liver Serum Liver Serum

Control 86.00 ± 4.39 84.97 ± 2.54 86.23 ± 1.66 84.46 ± 3.19 86.69 ± 4.03 84.80 ± 1.03

G. AgNPs 82.68 ± 2.15 79.98 ± 2.59 78.89 ± 3.15 75.86 ± 2.27 81.30 ± 3.65 80.67 ± 0.34

C. AgNPs 72.82 ± 5.49 72.41 ± 2.47 69.15 ± 3.24 72.93 ± 6.90 76.72 ± 3.63 76.03 ± 2.66

All the values are ±SEM of (n = 10)
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Fig. 5 Catalase (CAT) activities with standard error mean in the liver tissue and serum samples after treatment of a 7 days, b 14 days, and c 21 days
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GST, and SOD [76]. Disturbance in the level of these antiox-
idant enzymes clearly indicates the onset of oxidative stress in
the animal body.

The plausible explanation for the phenomenon was given
by Kim et al. [77]; animals were exposed to the AgNP-
induced oxidative stress due to the mass generation of ROS,
which significantly increased the antioxidant enzyme activity
and resulted in a decreased level of free radicals [77]. More
complications arise as antioxidant enzymes, glutathione
(GSH), are depleted due to their over-consumption; intracel-
lular calcium is increased [78] and it further activates other
types of the cell signaling pathways using various calcium–
dependent proteins in the cell cytosol.

Contrary to our result, an increase in the activity of CAT
and glutathione peroxidase (GPx) was reported when animals
were exposed to AgNPs; however, exposure to AuNPs and
ZnO-NPs showed the opposite results with a significant de-
crease in values [79]. Another study on the hyperlipidemic
rats [80] reported a significantly higher level of GST, CAT,
and SOD upon exposure of uneaten pulp of the fruit from
Cordia dichotoma. Studies on medaka liver reported a de-
creased level of the CATand SOD in the liver cells; this could
be explained by the fact that there was excessive utilization
and consumption of these enzymes as the animal is in the
oxidative stress [81]. However, there is need of further inves-
tigations for better insight and to resolve the matter of contra-
dictory results in different studies.

AgNPs induced oxidative stress by various means in dif-
ferent animals [2, 17], but it needs more clarification at the
molecular level. GPx, CAT, and SOD are the most important
antioxidant enzymes which act as defense against naturally
induced oxidative stress in the living systems [81].
Generally altered values of antioxidant enzymes from the nor-
mal indicate the acute toxicity of the AgNPs induced
by oxidative stress, resulting in the enhanced production and
activity of these enzymes [82]. This implies that C. AgNPs are
more toxic than the G. AgNP, as oxidative stress when in-
duced by a same dose of C.AgNPs (100 mg/kg of the body
weight) is more severe.

The novelty of the work is to provide a comparative anal-
ysis of the oxidative stress caused by AgNP synthesis by two
means, i.e., biological and chemical, and compare their risk
assessment by evaluating the activity level of antioxidant en-
zymes in the liver and serum samples after exposure to the
AgNPs for a specified period of time.

4 Conclusions

Synthesis of silver nanoparticles using plant, such as Ocimum
tenuiflorum, is cost-effective as well as safer as compared to
chemical synthesis method. Our studies involving AgNP–
induced oxidative stress and their associated risk assessment

in the albino mice show the induction of oxidative stress de-
pending upon the physicochemical and oxidative properties of
the nanoparticles, their interaction with the cellular machinery
which in ROS generation. Our results suggest that green syn-
thesized nanoparticles induce oxidative stress, but of mild
nature as compared to enhanced toxicity of the chemically
synthesized ones.

Recommendations Green synthesis route for the synthesis of
AgNPs may be preferred instead of conventionally used
chemical synthesis. Plant species other than Ocimum may be
explored for their ability to yield safer nanoparticles. Studies
may be initiated to understand whether green synthesized
nanoparticles may have antibacterial or anticancerous proper-
ties compared to chemically synthesized one. Attempts may
be done for better understanding of the same at cellular and
molecular level. This opens new directions for scientists to-
wards safer synthesis of nanoparticles and their extensive ap-
plications in biomedicals sciences with many other fields. We
also suggest that environmental quality standards may be set
for NPs for their safety profile in the light of the studies re-
ported by far.
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