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ORDINARY MODE IN AN INHOMOGENEOUS THERMAL 
PLASMA IN THE PRESENCE OF MILDLY 

SUPRATHERMAL ELECTRONS 

G. MURTAZA and HASSAN A. SHAH 
Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan 

(Received 19 May 1981; and in revised form 15 December 1981) 

Abstract-The perpendicularly propagating ordinary mode is investigated in an inhomogeneous 
thermal plasma containing a component of mildly suprathermal electrons. Expressions for the real 
and imaginary parts of the refractive index of the ordinary mode are obtained. Using some typical 
plasma parameters graphs are obtained exhibiting the behaviour of the real part of the refractive 
index and the penetration character of the ordinary mode into the plasma as a function of U* ,  

BORNATICI and ENGLEMANN (1978) have shown the effect of runaways on electron 
cyclotron radiation in a cold inhomogeneous plasma, from the macroscopic point 
of view. The purpose of this note is to investigate the above mentioned situation 
for a hot plasma. 

As in BORNATICI and ENGELMANN (1978) we consider the plasma in a slab 
geometry, having a density gradient in the x-direction and an externally applied 
uniform magnetic field Bo in the z-direction. The geometric optics approximation 
is used to describe waves propagating in the x-direction in a frame of reference 
with respect to which particles of species LY move along Bo with uniform 
streaming velocity v0,.. AI1 spatial and temporal variations are taken in the form: 

exp i[:[iV dx - u t }  

where N = N(x) = k ( c / w )  is the slowly varying index of refraction. 
Equations used to describe the Fourier analysed components of the wave 

electric field E = E(k, w),  the plasma dielectric tensor E, the fluctuating current 
density j, and the fluctuating number density n,(k, U )  are those described by 
BORNATICI and ENGELMANN (1978) and are given by: 
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where 9, 2 are unit vectors in the y-and z-directions respectively and no,u and vo,u 
are the unperturbed number density and streaming velocity of particles of 
species a respectively and 

The fluctuating velocity vu = v,(k, w )  is obtained from the linearized equation 
of motion in the collisionless limit, with an isotropic pressure tensor and is given 
by the expression: 

where K is Boltzmann’s constant, wc,u = (q,Bo/muc) the cyclotron frequency, T, 
and ma are the temperature and mass of particles of species a ,  E, and B1 are the 
fluctuating electric and magnetic fields respectively. 

From Maxwell’s equations and differentiating equation ( 5 )  with respect to 
time we get the following expressions for n, 

UC a v , ,~  = i-E, q u  + i-v,,x mUw w (7)  

where vtkU = V ( K T , / m , )  is the thermal velocity of particles of species a. 
From equations (4), (6) and (7 )  we find that the fluctuating velocity 

governed by the following first order first degree differential equation: 
is 
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The formal solution of equation (9) can be written as (Ross 1964) 

U,,, = exp [ - [Pa(.’) dx’}[ C - lox Qa(x’) exp { [P,(x”) dx”} dx’] (12) 

where C is given by the boundary value. 
In order to derive an expression for the dispersion relation, we neglect 

ion-dynamics and concern ourselves only with high frequency waves. Following 
BORNATICI and ENGELMANN (1978) we separate the motion of the electrons into 
the motion of their centre of mass at velocity 

Z indicates summation over electrons only-the bulk electrons and mildly supra- 
thermal electrons and the relative velocity U, = v ~ , ~  - vCM. We shift to a comov- 
ing frame of reference in which the ordinary mode becomes purely transverse 
(E, = Ey = 0). It may be noted that the extra-ordinary mode is not affected by the 
runaways and thus is not investigated. Using equations (2), (3), (4) and (12) we 
obtain 

a 

where w ~ , ~  = ~ ( 4 m o , , e 2 / m )  is the plasma frequency of the electrons. 
We assume two components of electrons-the bulk electrons with a uniform 

streaming velocity and the mildly suprathermal electrons with a uniform 
streaming velocity vo,2 9 v ~ , ~ .  Their unperturbed number densities are no,l and An 
respectively, and L the scale length is taken to be the same for both com- 
ponents. Equation (13) can now be written as 

[ - [ P 2  dx’] 
U; c2 [ exp { iOxP1 dx“] dx‘ + v:h,z exp 

1 exp { c2 dx”] dx’] + u 2  
Vfh,2 

where up = d(4.rmOe2/m) is the total electron plasma frequency, U, is the 
electron-cyclotron frequency, and U,’ = (no. l /ndui , l ,  U: = (Ano/no)u?i,2. The 
suffixes 1, 2 correspond to the bulk and mildly suprathermal components 
respectively. 
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10.8. 

In order to yield an expression for the dispersion relation we substitute 
equation (14) into equation (1) and differentiate with respect to x. We also take 
into account that the electrons are only mildly suprathermal, thus PI - P2 is very 
small. We separate N into real and imaginary parts by substituting 

The resulting expression is in various powers of cl w.  Collecting leading-order 
terms from the real and imaginary parts we obtain 

N , " X 2 - { a ( X -  Y ) + X - ( 1 -  b) }N:X+ 

+ a ( X - Y ) ( X - l ) = O  (16) 

4 N ? X - { a ( X -  Y ) + X - ( l - b ) }  dN,- .-_ k' - 2Nr[2N2,X - { a ( X  - Y )  + X - ( 1  - b)} ]  dx 

- _  1 (1 - b )  .--..ki 1 - 
2 2 N ; x  - {a ( X  - Y )  + x - ( 1 - b )} L 

where X = w21w,2, Y = o:/op2, a = c21v:h, b = u21v:,,. It may be noted that both 
a, b correspond to the mildly suprathermathermal component. 

FIG. 1 - - x  

FIG. 1.-The N,' mode as a function of X (  = 0~10;). Curves (l), (2) and (3) correspond 
to Y = w:iw; = 1/2, 1, 2 respectively. a = 130, b = 10, U,' = 1.9 x 102' (rad s-')'. 
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From equations (16) and (17) we note that the real part of the refractive index 
is affected by the relative motion only, whereas the imaginary part depends both 
on the relative motion and the slow spatial variation of the real part of the 
refractive index. 

Propagation characteristics can be investigated by looking at the solution to 
the biquadratic equation (16). In general there are two modes of propagation 
corresponding to the two solutions NF2. The penetration parameter is deter- 
mined from equation (17), and is given by r+=2kFL. Figures 1-4, exhibit the 
behaviour of N,' and 7' as functions of w z  and the parameters are fixed in the 
following manners: a = 130, b = 10, 0,' = 1.9 x IOz3 (rad s-')'. The curves (l), ( 2 )  
and ( 3 )  correspond to Y = 1/2, Y = 1 and Y = 2, respectively. 

When Y = 1/2, 1 the N: mode begins continuous propagation just below U,'. 

On the other hand the N; mode begins continuous propagation when w 2  > U,' 
and has a narrow propagation band just below U:. At the points w 2  = 0,' and 
w 2  = U:. N; = 0 which are reflection points. 

When Y = 2, the N: mode exists for w 2 >  w:, the increase is at first gradual, 
but then rises steeply from around the point w 2  = w,'. This mode has a reflection 
point at w 2  = U:. The N; mode begins propagation when w 2  > 0," and has a 
reflection point at  w 2  = w,'. 

In general the same behaviour pattern is exhibited when electron cyclotron 
frequency is smaller or larger than the electron plasma frequency corresponding 
to Y < 1 and Y > 1 respectively. We also see that the N: mode corresponds to 
subluminous propagation, except in the range wf < w 2  < w,', when Y > 1. On the 
other hand the propagation of the N; mode is mainly superluminous. 

For L > 0, the penetration parameter rt has negative values, whereas 7- has 

FIG. 2.-The N; mode as a function of X( = 02/o,2). Curves (l), (2) and (3) correspond 
to Y = W;/O; = 1/2, 1, 2 respectively a = 130, b = 10, U; = 1.9 X l@' (rad s - ' ) ~ .  
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FIG. 3.-The penetration parameter T+ as a function of X (  = w2/o:). Curves (l), (2) and 
(3) correspond to Y = w:/w: = 1/2, 1, 2 respectively. a = 130, b = 10, w: = 1.9 x 

(rad s-’)*. 

- x  

FIG. 4.-The penetration parameter T- as a function of X (  = w2/o,2). Curves (11, (2) and 
(3) correspond to Y = w:/u,2 = 1/2, 1, 2 respectively. 0 = 130, b = 10, U,’ = 1.9 x id’ 

(rad s-I) 

positive values. This in fact tells whether the energy is transferred from the 
electrons to the wave or vice versa. We also see that maximum values of the 
penetration parameter occur near the electron cyclotron frequency, showing that 
it is here that a maximum exchange of energy between the particles and wave 
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takes place. This can be shown analytically also and the point where a maximum 
exchange takes place is given by the formula 

It may be noted that the cold approximation (BORNATICI and ENGELMANN (1978)) 
did not yield this result, since the approximation broke down around the said 
value. 

When thermal effects are neglected, we obtain the same result as that by 
BORNATICI and ENGELMANN (1978), who investigated the cold collisionless case. 
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