
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 88, NO. A8, PAGES 6095-6101, AUGUST 1, 1983 

ALFVEN SOLITONS IN THE SOLAR WIND 

C. R. Ovenden, H. A. Shah and S. J. Schwartz 

Department of Applied Mathematics, Queen Mary College, Mile End Road, 
London E1 4NS, United Kingdom 

Abstract The interaction of circularly- interesting description of nonlinear Alfvenic 
•olarized Alfv•n waves with the surrounding plasma fluctuations which may result from the inherent 
in high speed solar wind streams is investigated. modulational instability of Alfv•n waves [Derby, 
Alfv•n wave modulational instability is discussed 1978; Goldstein, 1978]. To a limited extent these 
and nonlinear envelope solitoh solutions of the solutions can be used to describe Alfv•nic 
magnetohydrodynamic equations are introduced. turbulence by considering a collection of 
The characteristics of these Alfv•n solirons are solirons. 
compared with observational results obtained from For simplicity, we shall make the following 
Helios I and II. A model of the expected turbulent assumptions: 
spectrum due to a collection of such solirons is 1. We use the one-fluid isotropic isothermal 
constructed and its radial dependence is magnetohydrodynamic (MHD) equations with the 
investigated, again along with comparison to generalized Ohm's law. This prevents us from 
Helios data. treating anisotropic temperatures and restricts 

1. Introduction 

Magnetic field fluctuations in high speed solar 
wind streams have been attributed mainly to the 
presence of parallel propagating Alfv•n waves [see 

us to frequencies below the proton gyrofrequency. 
We thus also ignore the alpha particle component 
of the solar wind, although this may significantly 
affect the wave propagation characteristics 
[e.g., Isenberg and Hollweg, 1982]. 

2. We consider parallel propagation only, 
which is motivated by mathematical ease and Belcher et al., 1969; Belcher and Davis, 1971]. 

The predominance of nearly incompressive Alfv•n earlier interpretations of the apparent wave- 
vectors (see, however, Barnes [1981] ). In the waves in solar wind streams has also been 

confirmed by Daily [1973], Parker [1980a, b], and 
Bavassano et al. [1981]. A detailed discussion of 
Alfv•n wave dominated solar wind phenomena is 
given by Denskat and Burlaga [1977]. 

Investigations by Burlaga and Turner [1976] and 
Neugebauer et al. [1978], however, revealed that 
variations in density, magnetic field energy, and 

hydrodynamic velocity were also p•esent in regions 
previously associated with Alfven waves. This 
result contrasted with the theoretical constancy 

soliron case this restriction to one dimension may 
be severe, as two-dimensional Langmuir solirons 
are known to collapse while the one-dimensional 
ones propagate undistorted [cf. Galeev et al., 
1977]. 

3. Only small fluctuations in density and 
longitudinal velocity are considered. This is in 
keeping with the dominant Alfv•nic nature of solar 
wind observations. 

4. A uniform background state is assumed, 

of these quantities in the presence of pure although we estimate the evolution of our 
Alfv•nic fluctuations. Consequently, it was resulting •ower spectrum in a slowly varying solar 
argued that what was observed was a mixture of wind. 
Alfv•n and fast magnetosonic waves propagating at 
small angles with respect to the background 
magnetic field. However, the above mentioned 
authors were unable to observe any direct 
correlation between density and magnetic field 
which would be expected from such a mixture of 
waves. 

In order to explain the discrepancy between 
theoretical results and observations, it was 

Section 2 presents the mathematical formu- 
lation. Section 3 is devoted to the basic 

equations necessary for a general instability 
analysis of Alfv•n waves. In section 4 we look for 
solitoh solutions and compare some of their 
properties with observations. In section 5 we 
construct a power spectrum, assuming that the 
turbulence can be represented as a set of 
solirons. We compare these results with the 

suggested [Burlaga and Turner, 1976; Neugebauer et analysis made by Bavassano et al. [1982] and 
al. 1978] that this was due to the presence of, Denskat and Neubauer [1982]. Section 6 is devoted 
e.g., nonlinear Alfv•n waves propagating nearly to a discussion of the radial dependence of the 
parallel to the background magnetic field, or some power spectrum under some simple hypotheses. The 

final section presents our conclusions. similar nonlinear mechanism involving primarily 
an Alfv•n wave. 

In the present paper we pursue this suggestion 2. Mathematical Formulation 
by demonstrating that nonlinear Alfv•n waves can The relevant MHD equations are [Boyd and 
interact with the background plasma to form Sanderson, 1969] 
soliron fields. These fields appear to be an 

a-a' + v ß ( •,.v ) -- 0 (•) at 
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p, d X 1 ( j x B,') (2) dt = - v P' + 

zxB.' m + + m 

E.' = + (j xB.') + c 
p ' ec - 2p ' e 

(3) 
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and 

4• 

v x B•' -- c J (4) 

8B' 

v x E•' -- - c 8t (5) 

p ! 
-- -- const (6) 
p. 

where c s = •(Po/Po) is the speed of sound. The 
quantities v z and p are related by the continuity 
equation 

•_R + a at • (p Vz ) - 0 (11) 
Equations ( 9 )-( 11 ) are fully nonlinear, 

relating together B+, p, and v z. In the case when 
p and v z are constant, equation (9) becomes 

2 

[a 2 a 2 i v A a 3 ] _ ß -- + B -- 0 (12) where d/dr -- a/at + (v ß v) Equations (1) - (3) V• •_ • • + are the equations of continuity, motion, and at 2 az i az at 
generalized Ohm' s law, respectively. Equations 
(4) and (5) are Maxwell's equations, and equation This yields a dispersion relation for wave 
(6) is the isothermal equation of state. It might solutions with arbitrary amplitudes which is given 
be noted here that, although it would be by 
preferable to use the adiabatic equation of 2 
state, we use the isothermal one in order to avoid 2 •A 2 
unnecessarily complicated analytical expressions. • • •. - •A - 0 (13) 

In equations (1)-(6) p', v, and P' are the mass 1 
density, hydrodynamic velocity, and pressure 
respectively; m + and e are the ion mass and where •A = kAVA with • and kA being the wave 
electronic charge; E' and B' are the electric and frequency and number. For low-frequency waves, 
magnetic field vectors and j is the current i.e., •A/•i << 1, equation (13)yields 
density. 

Substituting equation (4) into ( 2 ), we get •+ -- •A 1 ß • (14) 
v A d ,v 1 v P + ( v x B ) x B (7) This is a dispersion relation for finite amplitude 

dt p P • ' ion-cyclotron modes [see Abraham-Shrauner and 
Feldman, 1977], where the upper sign corresponds 

where v A = •(Bo2/4Vpo) is the Alfv•n speed. Next, to the rotation of the field vector in the same 
we eliminate E' from equation (3) by using (5) and sense as the ions. It may be noted that the wave 
(6) to obtain traveling in the opposite direction, 
aB 

a--• -- v x ( Z x B• ) •ñ -- -•a 1 ß 2n i 
2 

- -- V x- ( V x B ) x B• (8) 
is not considered here and that the identification 
of •+ or •- with B+ or B_ depends on the convention 
used in describing the traveling wave although, of 
course, the physical interpretation does not. 

assumption of parallel propagation (a/ax = 0 = 
a/ay) is used, equations (7) and (8) combine to 
yield 

a2B+ a v• 
at 2 az --• 

+ • Vz at + (VzB+) 
2 

i VA a2 [ 1 aB+ + (1-Op) • = 0 (15) i 28 [d• [ ]] = 0 (9) n as at 

where B+ = B x ñ iBy. [a2 From equations (1) and (6) and the z component 
of equation (7) we derive at 

2 

a2p _ c2 a2p VA a2 a v 2) 2 s 2 = • 2 lB+ 12+ • (p z 
at az az 

(10) 

and 

equations 

2 a aB+ 
- VA • [ (1-0p) 8--•-- ] 

+ • av a• + (av B +) ] 

2 

2 82 ] v A c -- Op a (lB I 2 2 s az 2 = • az 2 + ) (16) 

a Op + a Ov = 0 (17) at az 

Equations (7) and (8) use the nondimensional 
variables P = P'/Po, _B = _B'/B o, and P = P'/Po, 3. Basic Equations 
where the subscript o refers to background 
quantities. •i = eBo/m+c is the ion gyro- Equations (9)-(11) are now linearized with 
frequency. respect to p and Vz in order to determine changes 

If the background magnetic field is taken to be brought about in a predominantly Alfv6nic 
in the z direction, viz _B o = BoZ, and the fluctuation due to variations in these quantities. 

The linearizing procedure yields the following 
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where we have taken p = 1 + 0p and Vz = 0 + 0v of the modulational instability. What is now 
(recall that • and Bi are normalized to their required is the ultimate shape of this slowly 
background values). varying envelope which must self-consistently 

In addition to the soliron solution of section satisfy (18)-(20). It is possible that the 
4, equations (15)-(17) can be used to investigate soliron solution given in the next section, which 
a wide range of Alfv•n wave-related phenomena, fulfills these requirements, does indeed repre- 
such as the decay instability [Sagdeer and Galeev, sent the fate of a modulationally unstable Alfv•n 
1969] and the modulational instability [Derby, wave. 
1978; Goldstein, 1978], where variations in D and 
v z affect the wave amplitude, which in turn 
couples to the plasma through equations (16) and 
(17). All of these analyses begin by inserting an 
Alfv•n wave, 

B+-- b(z,t) exp [ i (kAZ- •+t) ] 

4. Soliron Solutions 

Mio et al. [1976a, b] and Mj•lhus [1976] have 
analyzed modulational instability and soliron 
envelopes for nonlinear Alfv•n waves propagating 
along a static magnetic field. These authors, 
however, used a double perturbation technique 
which we feel obscures the physical aspects of the 
problem. We, instead, look for soliron solutions 

into equations (15)-(17). Once again using the for equations (18)-(20), noting that these 
inequality •A/•i << 1 and assuming a scaling equations are similar to Zakharov's [1972] 
according to equations which govern Langmuir turbulence, which 

8b b 8__b -- b Ov -- VAb 2 at T 8z VAT 

Op '• b 2 
where 1/T < < •)• -- •A, we obtain the following 
expressions to order b 3 and i/T: 

8b 8b (•A 0p b 
i •-• + i vg • + 2 - 0v kAb 

2 

v A 82b 
• 2n. 2 = 0 (18) 

• 8z 

in turn are related to the nonlinear Schrodinger 
equation with known soliron solutions. 

Accordingly, we assume a wave amplitude of the 
form 

i Ozt 
b(z,t) -- b sech [•(z - Vt)3e (21) 

o 

where bo, K, V, and 0•, all of which we shall take 
as constants, are the maximum field amplitude, 
inverse width, velocity, and nonlinear frequency 
shift, respectively, of the soliron envelope. 
These constants are determined in a self- 

consistent manner from equations (18)-(20) and 
(21); we find 

V- v A ( 1- •A/ni ) (22) 

2 

- -- Op = --• 2 ({b{2) (19) Us c3Z 2 c3Z 
and 

8 Op 8 0v 0 (20) 8t + 8z " 

where Vg = VA(1 $ •A/•i) is the group velocity of 
the original wave. 

Equations (18)-(20) (but including the higher 

kAbo [ •i / •A ] 1/2 •- 2 1- • (23) 

and 

•A Ibol 2 
0(• = - (24) 

8 (1- •) 

where •--Cs2/vA2. Here we have only considered 
the left hand polarized wave (corresponding to 
•+), since the right hand wave (•_) is always 
modulationally stable [Mio et al., 1976a]. In 

order terms in l/T, which we shall neglect in our 
study of a slowly varying envelope) form the evaluating (22)-(24), we have approximated 0p and 

0v in (18) by their values at the center of the backbone of various calculations. For example, 
the modulational instability analysis proceeds by 
perturbing b as b = b o + Ob with Oh, 0v, Opm exp 
[i(k'z - •'t)] and searching for the daughter wave 
dispersion relation •' (k'). In general, such 
daughter waves grow, at the expense of the parent 
Alfv•n wave [cf. Goldstein, 1978; Derby, 1978], 
over time scales sufficiently short to be 
important in the solar wind. As a special case, 
the decay instability assumes the daughter waves 
to also be propagating normal modes (i.e., Allyen, 
fast, or slow waves), and this too leads to 
potentially important growth times. However, it 

soliron envelope. This yields reasonable results 
near this center, although, in general, V, •, and 
• are functions of z and t. The mass density and 
velocity variations are given by 

[b(z,t) I 2 
• -- 2 (1 - •) (25) 

and 

0v = V 0p -- v 0p (26) 
g 

appears that the total spectrum of fluctuations in Physically, the increased density (25) leads to 
the solar wind is stable against the decay a lower local Alfv•n speed causing the associated 
instability [Cohen and Dewar, 1974] except, buildup in wave energy in this region. The energy 
perhaps, the very lowest frequency components in transport is achieved by forcing this material to 
regions very close to the sun (--0.3 AU) where the move at the wave group velocity (equation (22)), 
spectrum flattens [Bavassano et al., 1982]. Thus which results in the unchanged soliron envelope. 
we proceed by supposing that the amplitude of the In this way the wave is modified continuously and 
Alfv6n waves in the solar wind varies as a result a balance maintained between energy entering and 
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leaving the region. We may also note from From this equation we see that the amplitude of 
equation (23) that the width of the solitoh, K -1, each soliron depends on the number of soiltons, N, 
is inversely proportional to the amplitude b o. accordin G to 
Since these features are similar to those of the 

solutions of the nonlinear Schrodinger equation, bo 
b = (31) most of the analysis performed upon the latter may o N 

be relevant to our solution. 

Numerical solutions of equations (9)-(11) by where we have defined another soilton-independent 
Mio et al. [1976b] show that a perturbation in the parameter b o' = 8•E'WL. 
field amplitude tends to form a localized field •he maximum number of solirons allowed in the 
enhancement moving with a velocity in excess of system is Nma x = EL, which results from the 
the Alfv6n speed and could be interpreted as the assumption that all the solirons are identical, 
formation of a solitoh, although other interpre- nonoverlapping, and each solitoh occupies a width 
tations (e.g., shock wave formation) could also be •E -1 . •he minimum number is Nmi n = 1. •hus, 
made. On the other hand, the solar wind assuming any value of N in the range Nmi n • N • 
observations referred to in the introduction Nma x is equally likely, the probability that the 
provide encouragement for the existence of Alfv•n system is in an N solitoh state is 
solirons. Burlaga and Turner [1976] pointed out 
that for amplitudes in the range 0.1 • bo • 0.5, P(N) - 1 (32) 
83% of the events observed had [B'[ and p not Nmax 
constant. •hese observed amplitudes were in a 
frequency range 10-4-10 -1Hz (with •i • 10-1Hz at The power spectrum of each soliron is given by 
1 AU), and these data lie within the limits of our 2• [bk[2 (33) theory, particularly after removing the Doppler Pk ' -• 
shift to higher frequencies due to the solar wind 
flow. A similar range of observations by where b k = (bo/2E) sech (•k/2E) is the Fourier 
Neugebauer et al. [1978] revealed hydrodynamic transform of b( • ). Therefore the power spectrum 
velocity variations 0v • VA0P in agreement with of randomly spread solirons is 
equation (26). In view of this, it is not 

inconsistent to suggest that the above set of NPk • Pk(N ) • N 2 [• k•] observations contained Alfv•n solirons or similar 2 LE' 2 sech 2E'b (34) 
structures which relate variations in the wave 

field to variations in the plasma properties. The mean power spectrum is obtained by ensemble 
averaging over the states of the system and is 

5. Turbulence Spectrum given by 

In order to construct a turbulence spectrum 
which consists of a collection of soliron fields, 
we follow the work of Kingsep et al. [1973] and Yu <Pk(N) > 
and Spatschek [1976], who consider an ensemble of 
solirons with a common energy density W 
(normalized to Bo2/8• ) and system of total length . 
L. This energy is equally distributed between N • b O 
solirons. 

Now, the soliron solution can be written as 

2LE' 2 

.Nmax 

2 ; • P (N)dN E b o 
0 

E'W L k 2 wk tanh(•k) - log cosh(•k)] 
(35) 

b(•) -- b o sech E• 
where • = z - vt. The total energy per unit cross 
sectional area is 

2 

1 •• •b•2 bø (27) E = 2-• _ 8 • d (E•) = 8• E 

From equation (23) we can define a quantity E 
which is independent of the soliron amplitude via 

E = E' b 
o 

where 

E ! ---- • •_ • (28) 

By using (28), equation (27) becomes 

b 

o (29) E -- 8 • E' 

where 

;;' [ L ]•/2 
and we have assumed Nmax/Nmi n • 1 in order to 
replace the lower integration limit by O. 

In order to analyze analytically the ensemble 
averaged power spectrum, we divide the spectrum 
into two regions depending on the value of •k. In 
the case when Wk >> 1 we obtain from (35) 

< Pk(N) > = k -2 (36) 

in this limit of large k. In the other extreme, 
at low k when •k {{ 1, we find 

< Pk (N) > -- constant (37) 

Thus, as can be seen from the plot of (35) in 
Figure 1, or directly from ( 36 )-( 37 ), this 
spectrum is flat at low frequencies and falls off 
steeply at higher ones. This is qualitatively 

Thus, dividing up the total energy per area WL similar to solar wind observations [e.g., 
gives Bavassano et al., 1982; Denskat and Neubauer, 

1982], particularly for measurements well inside 1 
N b o AU. It is not yet clear whether the quantitative 

WL -- NE = (30) 
8 • E' agreement, with observed spectral indices • 1.6, 
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Fig. 1. Power spectrum of ensemble-averaged 
solitoh turbulence. 

can be improved within the soliron description 
(e,g., an alternative ensemble average, collec- 
tions of unequal solirons, etc. ). 

6. Radial Dependence 

The radial dependence of the observed solar 
wind magnetic field power spectrum has only 
recently received detailed investigation. Re- 
sults from Helios I and II have been presented by 
Bavassano et al., [1982] and Denskat and Neubauer 
[1982], who have shown that as heliocentric 
distances increase toward I AU, the low-frequency 
flattening disappears as the whole spectrum 

1981] and the solar wind speed Vsw • const with 
VA/Vsw << 1, we find that 

k A • const (40) 
Taking for simplicity a purely radial field B o = 
1/r2, while p = 1/Vsw r2 = 1/r 2, then v A = 1/r and 
thus 

and 

1 

•A - kAVA • • (41) 

1 

ni 2 (42) 

2 
kbr - • 

! 

•'b O 
L 

By using the definition of b o' from equation (31), 
we find 

2 ]./2 
(39) 

where we recall W = 062/B02 is the normalized 
energy density in the fluctuations. An estimate 

of the numerical value of kbr depends sensitively 

(38) 

Ob 2 
- -: r (46) 

B 
o 

combining ( 45 ) and ( 46 ), we obtain 

kbr = const ( 47 ) 

which is not in particularly good qualitative 
agreement with the observational results. 

As an alternative example, we illustrate the 
suggestion [Hollweg, 1973] that the ratio 0b2/Bo 2 
eventually saturates, thus 

Ob 2 
- = const (48) W 2 

B 
o 

Now, from (45) and (48), we have that 

kbr = r -1/2 ( 49 ) 
Equation (49) predicts that with increasing 

on the parent wave and $ via •' (28) and W, making heliocentric distance the entire spectrum will 
a meaningful value difficult to obtain in our eventually fall into the steeper part of the curve 
simple model. shown in Figure 1, in closer qualitative agreement 

In order to determine the radial dependence of with the observations. Of course, whether the 
kbr, we thus need to know the radial dependences more detailed behavior of individual frequency 
of W and •', which in turn demands a knowledge of components can be matched within this hypothesis 
the radial dependences of kA, •i, •A, and $ (see remains an open question. Moreover, ultimately 
equation (28)). the nonlinear saturation must be incorporated into 

Since the Doppler shifted frequency of a wave, a self-consistent theory of soliron propagation in 
•o- •A + kAVsw, is constant [cf. Schwartz et al., a fully inhomogeneous medium. 

Thus 

W kbr • 1 

increasing heliocentric distances. Bavassano et 
al. have interpreted this in terms of a k- 
dependent damping length. 

We can now use the results in the previous 
section to search for an alternative theoretical 

description of this behavior. From equation (35) 
and the definition of • which follows it, we see 
that the breakpoint kbr in the solitoh spectrum 
occurs when 

becomes encompassed by the steeper power law. It remains to determine the radial dependence 
This implies that the apparent breakpoint, k = of W. One approach is via WKB theory which gives 
kbr, where the two different power laws of the [cf. Schwartz et al., 1981] 
spectrum in Figure 1 meet, moves to lower k with 

Finally, from (39) and (44), we can write 

kbr - • (45) 

where, for simplicity, we have assumed that the 
temperature falls off as r -1, i.e., somewhat less 
rapidly than adiabatically. 

By using equations ( 40)-( 43 ), we reach 

•' = • (44) 

2 

c T 2 • s (•/•)2 = -- = = = const (43) 
2 1/r 2 1/r 2 V A 

Finally, from the definition of $ following 
(24), we have 
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7. Conclusions A stochastic model, J. Geophys. Res., 8_•6, 7498, 
1981. 

We have suggested that circularly polarized Bavassano, B., M. Dobrowolny, P. Mariani, and N. 
Alfv•n waves, which should be modulationally F. Ness, On the polarization state of 
unstable in the solar wind, evolve as a result of hydromagnetic fluctuations in the solar wind, J. 
this instability into the localized field Geophys. Res., 8--6, 1271, 1981 
solutions known as soiltons. The observations of Bavassano, B., M. Dobrowolny, P. Mariani, and N. 
Burlaga and Turner [1976] and Neugebauer et al. F. Ness, Radial evolution of power spectra of 
[1978] indicate that high speed solar wind streams interplanetary Alfv•n turbulence, J. Geophys. 
are Alfv•n wave dominated, and a nonlinear Res., 8--7, 3617, 1982. 
description is necessary to account for the Belcher, J. W., and L. Davis, Large amplitude 
fluctuations in energy density, mass density, and Alfv6n waves in the interplanetary medium, 2, J. 
hydrodynamic velocity. Our results of section 4 Geophys. Res., 7--6, 3534, 1971. -- 
show that Alfv6n solirons might provide a useful Belcher, J. W., L. Davis, and E. J. Smith, Large 
theoretical description of the above- mentioned amplitude Alfv•n waves in the interplanetary 
fluctuations and do yield nonzero fluctuations in medium: Mariner 5, J. Geophys. Res., 7--4,2302, 
density and longitudinal velocity. 1969. 

In section 5 we constructed a power spectrum by Boyd, T. J. M., and J. J. Sanderson, Plasma 
assuming that it can be represented as a Dynamics, Nelson, London, 1969. 
collection of soiltons. The spectra obtained Burlaga, L. F., and J. M. Turner, Microscale 
from this model show some qualitative similarities Alfv•n waves in the solar wind at 1 AU, J. 
with the observational results from Helios I and Geophys. Res., 8--1, 73, 1976. -- 
II [e.g., Bavassano et al., 1982; Denskat and Cohen, R. H., and R. L. Dewar, On the backscatter 
Neubauer, 1982] although the precise power laws instability of solar wind Alfv•n waves, J. 
are not quantitatively explained by this simple Geophys. Res., 79, 4174, 1974. -- 
ensemble averaging technique. In section 6 we Daily, W. D.,---Alfv•n wave refraction by 
have investigated the radial evolution of the interplanetary inhomogeneities, J. Geophys. 
break in the power spectrum. Our analysis shows Res., 7--8, 2043, 1973. 
better qualitative agreement with observational Denskat, K., and L. F. Burlaga, Multispacecraft 
results if the Alfv6n fluctuation amplitude observations of microscale fluctuations in the 
saturates [e.g., Hollweg, 1973] than if WKB theory solar wind, J. Geophys. Res., 8_•2, 2693, 1977. 
is used, although we have not solved properly the Denskat, K., and F. M. Neubauer, Statistical 
more difficult problem of solitoh propagation in properties of low frequency magnetic field 
an inhomogeneous medium. fluctuations in the solar wind from 0.29 to 1.0 

It is not yet clear how useful the solitoh AU during solar minimum conditions: Helios I and 
fields are in describing the overall turbulent Helios II, J. Geophys. Res., 8-7, 2215, 1982. 
state of the solar wind. Different forms of Derby, N. F., Modulational instability of finite 
solitoh ensembles, etc., may improve the amplitude circularly polarized Alfv•n waves, 
quantitative analysis. In any event, the Astro•hys. J., 224, 1013, 1978. 
nonlinear solution itself does provide a Galeev, A. A., R. Z. Sagdeer, V. D. Shapiro, and V. 
potentially interesting tool for further investi- I. Shevchenko, Macroscopic consequences of the 
gation. Although it is possible that this Langmuir wave collapse, in Plasma Physics: 
solution is not stable, the numerical results of Nonlinear Theory and Ex]•eriment, edited by H. 
Mio et al. [1976b] suggest that, if their Wilhelmsson, Plenum, New York, 1977. 
structure is indeed a solitoh, it might be stable. Goldstein, M. L,, An instability of finite 
It would be interesting to examine the character amplitude circularly polarized Alfv•n waves, 
of nonparallelly propagating solirons to search Astrophys. J., 219, 700, 1978. 
for solitoh collapse, as in the case of Langmuir 
solirons, although this will obviously involve Hollweg, J. V., Alfv•n waves in a two-fluid model 
considerable effort. Equally intriguing are the of the solar wind, Astrophys. J., 181, 547, 
behavior of particles in the solitoh fields and 1973. 
the consequences of such solitoh-particle Isenberg, P. A., and J. V. Hollweg, Finite 
interactions for the nonthermal features of the amplitude Alfv•n waves in a multi-ion plasma: 
solar wind ion distributions. Propagation, acceleration and heating, J. 

Geo•hys. Res., 8-7, 5023, 1982. 
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