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The excitation of the whistler mode waves propagating obliquely to the constant
and uniform magnetic field in a warm and inhomogeneous plasma in the presence
of an inhomogeneous beam of suprathermal electrons is studied. The full dis-
persion relation including electromagnetic effects is derived. In the electrostatic
limit the expression for the growth rate is given. It is found that the inhomo-
geneities in both beam and plasma number densities affect the growth rates of
the instabilities.

1. Introduction
The excitation of whistler mode instabilities (o)ci <g.w< o)ce) due to an electron

beam propagating through a plasma has been studied for many years (e.g.
Tataronis & Crawford 1970; Brinca 1972; Ossakow, Otto & Haber 1973; Hashi-
moto & Kimura 1977; Kumagai, Hashimoto & Kimura 1980). In the above
studies the beam-plasma system was assumed to be homogeneous. In a recent
paper Freund, Dillenburg & Wu (1982) have investigated the excitation of
whistler waves in the case of an inhomogeneous suprathermal electron beam
interacting with a cold homogeneous plasma. However, in many real situations
both the beam and plasma can be inhomogeneous and hot. In this paper we
consider the case of a warm inhomogeneous plasma penetrated by an inhomo-
geneous suprathermal beam of electrons. The direction of propagation of the
beam is taken along the externally applied magnetic field which is assumed to be
constant and uniform. The effect of the inhomogeneity appears through the
gradient in the number densities of both beam and plasma.

The paper is organized as follows. In §2 we compute the elements of the
dielectric tensor for the beam and the plasma. In § 3 the general dispersion
relation including electromagnetic effects is derived. The expression of the
growth rate in the electrostatic limit is given. In §4 the results of a numerical
analysis are presented and discussed.

2. Dielectric tensor
In this section we proceed to determine the various elements of the dielectric

tensor for the beam and the plasma. Since we are specifically interested in the
electron whistler mode (wci <^(o < wce) instability due to Cerenkov interactions,
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only m = 0 mode is of relevance to our computations. I t may be noted tha t
wc« = ea-^o/mac i s *n e i ° n o r electron gyrofrequency. The inhomogeneity is
considered weak and the density gradient is taken in the y direction. The exter-
nally applied magnetic field B o is in the z direction and we shall be considering
propagation in the (x, z) plane.

The general expression for the dielectric tensor for an inhomogeneous thermal
plasma, with a streaming velocity vs (along the direction of the externally
applied magnetic field), has been given by Mikhailovskii (1967) and has the form

elm(k,co,y) = dlm+

where

wwca By a) dvz'
 v '

-kzvza), (3)

q* is the complex conjugate of q, and

I r\ • T / 7" \ • //I \

3m
and

P = (*uOa(Jo + J'o),O,O), (6)

where Jo = Jo(^xv±a/(0ca) *s *n e Vessel function and J'o and J"o are its first and
second derivatives respectively. ma, ea are the mass, and total energy of particles
of species a respectively, and dvOx = dv2

±0advz0xd<fi0.
We begin by computing the dielectric tensors for the beam. The beam is taken

to be one consisting of electrons only and having a Maxwellian distribution of
the form

where nb is the beam density and T±b and T[lb are perpendicular and parallel
temperatures respectively. In order to carry out integration over dvz0 we make
use of the formula (Mikhailovskii 1967)

j _ j _ 1 z(o>-k.v.\
\2nTj ) _ K o>-kevz0 kzvthz \kzvthz)

 K>

where Z is the Fried-Conte dispersion function (Fried & Conte 1961) and
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In the integration over transverse velocities we make use of the following two
formulae. Firstly (Gradshtein & Ryzhik 1966)

J " exp (_ . ¥ ) Js{ax) Js(fix) dx = ± exp ( - I. (0), (9)
where Is is the Bessel function of imaginary argument. It may be noted that we
consider the 5 = 0 mode only. Secondly

ife «2—'-' . » " r ™ i) r't+?)

where 3.F3 is the hypergeometric series. In our specific case where the s — 0 mode
is investigated, (10) simplifies and the 3F3 hypergeometric function is replaced
by 1F1, the confluent hypergeometric function.

After performing the necessary integration we obtain expressions for the
dielectric tensors of the beam:

~d} b'
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In equations (11) all variables have been normalized by the parameters of the
electron components of the bulk plasma in the following manner:

i

where Lb = nb(dnb/dy)-1 is the scale length of the beam inhomogeneity. ne, Txe

Tu are number density and perpendicular and parallel thermal spreads of the
electron component of the bulk plasma. Zb = Z(<x — 7}bl£)/iid\£ is the Fried-
Conte plasma dispersion function for the beam. Fb = ^ ( 1 : 2 ; —E,2d2) is the
confluent hypergeometric function with beam parameters.

In order to obtain expressions for the dielectric tensor elements of the bulk
plasma we put vz = 0 in (2). The distribution function of the plasma is given by

TJ [2nT2nTJ [2nTJ
where summation is over species (electrons and ions).

Using (8) for the case vz = 0 and (9) and (10) we can obtain expressions for the
dielectric tensor elements of the plasma,

exx =

_ 6ia£i/rp I a 1\ 6ia£jrph2 ( a \ h2\
elv — * r \^l e~~g) e+~^T~ Xj&ffil V i!

- 2 a c o p g h l a / c c y \ 2 a { J } h 1 ) l f v l * / a \ ' )
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6yz —
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+ hi a*

efx = 0,
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\

In (12) all parameters have been normalized with electron plasma parameters

^ « A A "thJ- -
1xxe

where 1/Lp = (l/nie) dnie/8y is the scale length of the plasma density inhomo-
geneity.

where Fe and Ft are the confluent hypergeometric series.

A -exJ-^/P2^

3. Dispersion relation
The general dispersion relation including electromagnetic effects is given by

D = An* + Bn* + C = 0, (13)

where n = ck/u) is the refractive index. Normalizing again, as before, we rewrite
(13) as

^ ^ = 0) (14)

where A = c2/vth±e.
The coefficients A, B and C are given by (Freund, Dillenburg & Wu 1982)

V2

•" = ~ e x x e s z ~ \eyyezz~eyzezy)TTT*2 Ca;
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The general dispersion is now applied to the specific model under consideration
and can be written as

D~Db + Dp = 0, (18)
where Db is the dispersion relation of the beam and Dp the dispersion relation of
the plasma. Since nb <̂  np and we consider the beam-plasma interaction around
resonance, i.e. when a = Tjbi^(o) x hzve) the dispersion relation of the beam
makes no significant contribution to the real part of the general dispersion
relation.

The growth rate is obtained under the assumption that a = ar + iy where
|y/ar| "̂  1- Thus expansion of the dispersion function in powers of the growth
rate y( = (t>i/o)ce) is given by the following expression for our particular model:

y = -ImA(k,wr)/[^4(k,Wf)]. (19)

Around resonance the argument of the Fried-Conte dispersion dispersion func-
tion for the beam is very small and thus expansion as a power series is possible
(Fried & Conte 1961)

Zb(x) = iniexv(-x2)-2x(l-§x2+ ...) (x 4 i). (20)

At this point the arguments of the Fried-Conte dispersion function for the
electron and ion components of the plasma are large, since the beam velocity is
considered much larger than the parallel electron and ion thermal spreads. Thus
we can write down an asymptotic expansion for the Fried-Conte dispersion
function for the plasma. This expansion is of the form

Using (20) and (21) we can obtain expressions for ImZ)6 and Dp.

Dp = Ar?(l +

where the indices i and r correspond to the imaginary and real parts respectively.
From (11), (12), (20) and (21) we get

-4niadb I ar fbd\ (b\i\

)b{l+t) 2#d\ "'

d\ b

and
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ofE_2_r£i ( ^ ir 2aP _

where
0"e = « / #

and

In the local approximation it is necessary that the projection of the wave-
lengths of the excited modes in the direction perpendicular to both the externally
applied magnetic field and the direction of the density gradient must be much
larger than the electron Larmor radius, i.e. g > 1. Now it may be noted that the
arguments of F and A are much larger than unity. Thus an asymptotic expansion
for these quantities is possible.

From Luke (1975) we have

F(a;c;u) ~T{c)
r
e^; « > 1 (24)

and from Ichimaru (1973) we have

A{v) = (2nv)-i; v p 1. (25)

We can then obtain an expression for the growth rate y (equation 19) with the
help of (11), (12), (15)-(17), (20)-(25).

I t may be noted here that in (21) and (22) terms proportional to X~l and A~2

make small contributions unless thermal velocities or the beam bulk velocity is
comparable to the velocity of light. Thus electromagnetic effects are in general
small.



446 H. A. Shah and V. K. Jain

0-4-

0 3 -

0-2-

0 1 -

0-
C

(a)

\

.

" ^ - - ^ ^ 0P = OO1, ^=1-0

) ' 2 ' 4 '

1,̂ 4 = 2-0

- - - - —

^ _

1

6 ' k
l/u

FIGURE 1. The plots of (a) frequency ar and (6) growth rate y of the most unstable wave
as a function of 1/r] (= tan 0 where 0 is the angle of propagation with respect to Bo) with
\jrv and ijrb as parameters. Other plasma and beam parameters are

TJT±e = 0-5, TJTlt =
I* = 10-0, Tlie/T±t = 1-0, TJT±, =
, , = 5-0, mjm, = 1/1836.

We also note here that y < 0 corresponds to growth since, in obtaining (1),
plane wave solutions were assumed to have the form

expi(«£ — k.r ) ; (o = o)r + ia)i.

Now we derive the expressions for the growth rate of the whistler mode
instability in the electrostatic limit. The dispersion relation in this limit is
obtained by putting A = 0 for both beam and plasma components in (13).
Using (19) and expressions for Ai and Ar from (22) and (23) respectively, we
obtain an expression for the growth rate:
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Equation (26) shows that the growth rate depends on the inhomogeneities of
both the beam and the plasma in a complicated fashion.

4. Numerical analysis and discussion
In this section we consider the whistler mode instability in the electrostatic

limit and obtain solutions corresponding to the most unstable modes. Figures
1 (a) and 1 (b) show the most unstable frequencies and their growth rates as a
function of the angle of propagation with respect is the ambient magnetic field
Bo for different values of i/rp and i/rb. It is seen that the frequency and growth rate
of the instability increase with the magnitude of ijrp. However, the effect of
increasing the beam inhomogeneity parameter t}rb is to cause a decrease in the
frequency of the instability especially at large angles. The growth rate increases
with i/rb as in the case of variation with t]rp. It is also noted (not shown in figures
1 (a) and (b)) that the effect of plasma and beam temperatures is mainly to
reduce the growth rate of the instability.

To summarize, we have considered an inhomogeneous suprathermal beam of
electrons which interacts with an inhomcgeneous warm plasma. Gradients exist
in the number densities of the beam and the plasma. A general dispersion relation
including electromagnetic effects is derived for our system. In the electrostatic
limit we have investigated the whistler mode excited as a result of Cerenkov
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(TO = 0) interaction. It is found that the effect of the inhomogeneities is to
increase the growth rate of the instabilities.

We wish to thank Dr P. J. Christiansen for his interest and helpful suggestions
during the course of this work.
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