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Following the method developed by Bernstein, Greene & Kruskal we obtain
expressions for the distribution function of the trapped particles for a collisionless
plasma, for cases when the plasma is unbounded and bounded (in a cylindrical
waveguide). Figures are drawn showing the relationship between the width and
amplitude of the solitary BGK wave for various cases. Analytic expressions
depicting this relationship are also derived.

0. Introduction
In experiments on Q-machines, Lynov et al. (1979) observed the formation

and consequent motion of solitary Bernstein-Greene-Kruskal (BGK) waves.
Similar results were obtained by Turikov (1978), in computer simulation
experiments.

In the present work, we follow Berstein, Green & Kruskal (1957) in obtaining
expressions for the unknown distribution function of the trapped particles. It is
assumed that the distribution function of the untrapped particles and the
electrostatic potential profile are known. The electrostatic potential is chosen in
the form of a standard soliton solution and we investigate the relationship between
the amplitude and width of the solitary BGK wave with the condition that the
distribution function of the trapped particles is non-negative. Propagation is
considered in one dimension only.

The paper is arranged in the following manner. § 1 is devoted to the mathe-
matical formulation of the problem. The plasma is taken to be unbounded and
unmagnetized. General expressions are obtained for the distribution function of
the trapped particles. In § 2 expressions are obtained for the distribution function
of the trapped particles for two types of distribution function (step-Type and
Maxwellian) of the untrapped particles. We then derive expressions for S (the
width) and \jr (the amplitude) of the solitary BGK wave. In § 3 we proceed with an
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analysis of the dependance of 8 upon ijr. In § 4 we consider the propagation of
solitary BGK waves when the plasma is magnetized and situated in a cylindrical
wavequide. An expression for the distribution function of the trapped particles
is given for the case when the distribution function of the untrapped particles is a
step function. The relation between 8 and rjr for this case is established. The last
section summarizes the results.

1. Mathematical Formulation

In order to investigate the properties of solitary BGK waves we start with the
set of Vlasov-Poisson equations for the electrostatic case. These equations are

d2d> f00

-¥ = 4nn0 2 eA ft{x,v),
ax }=i,e J-<x>

(1.1)

Equations (1.1) have been written for the one-dimensional case in a frame of
reference moving with the wave. Here/.,- is the distribution function for the ions
and the electrons only (j = i, e), <f> is the electrostatic potential, E the electric
field and n0 is the unperturbed plasma density.

We are interested in processes for which the characteristic time-scales are
comparable with the period of electron plasma oscillations. Hence the motion of
the ions can be neglected and the Poisson equation becomes

(1.2)

where f(x, v) is the distribution function of the electrons.
Since the energy of an electron in an electrostatic field is an integral of the

motion, „ , „ , ,
E' = pnvi — eip = const.,

we can change from the variable v to E using

dv sgnv( e

Now equation (1-2) can be rewritten as

JE ~ 1). (1.3)

where fM(E) and f{~\E) correspond to v > 0 and v < 0, respectively. This enables
us to take into account any possible asymmetry in the distribution function.

We assume, however, that the potential has a symmetric form corresponding
to experimental results and to the results of computer simulations (see Lynov
et al. 1969; Turikov 1978). For such a case the electrons can be divided into two
groups: (i) for E < 0, trapped electrons, which oscillate in the area of the localized
wave; (ii) for E ^ 0, untrapped electrons.
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Equation (1.3) can now be rewritten as

f
J 0

+J0 ** 15£(IT^JF ~
where fl£\E) is the distribution function of the trapped electrons corresponding
to E < 0 and f^\E) is the distribution function of the untrapped electrons
corresponding to E ^ 0.

From the Vlasov equation (1.1) we see that f^{E) = ffc\E) which corre-
sponds to a symmetric distribution function for the trapped electrons. Equation
(1.4) can be written in the form of an Abel-type integral equation:

+

and is a known function which can be determined from/^ (E) and the dependence

The Abel integral equation has the solution (Smirnov 1958)

Edg dV
^ J o 3F(=FTF)* ( L 6 )

where F = e0 and

where
8nen0

The distribution function of the trapped electrons can be written as

* C-BdQ_dV_ l f-=
Jo dF(-^-F) i + 4(2m)iJo J27, Jo ( ) ( ) J o Jo ( ) ( +

(1.8)

Integrating over F in the second term on the right-hand side of (1.7), we finally
obtain

dV i 1 Qd£; _ _ _ _ _ _ _ (1.9)

Equation (1.8) can now be used to find an expression for the distribution function
of the trapped electrons (E < 0) if the electric potential <fi and the distribution
function of the untrapped particles are known.

2. Distribution function of the trapped electrons
The profile of the electric potential is taken as

</>(x) = <f>osech22x/l. (2.1)
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Expression (2.1) is a soliton for a particular relationship between <p0 the amplitude
and I the width. We consider ^0 and I to be free parameters and will establish a
relationship between them assuming the condition that the distribution function
of the trapped particles is non-negative. This form of the potential (equation
(2.1)) fully corresponds with experimental results (Lynov et al. 1979) and com-
puter simulation results (Turikov 1978). In the above mentioned works the
solitary BGK wave was observed to have a symmetrical bell-shaped form. Using
(2.1) and (1.7) we find that

^ = _l / t_3F\
dV E,\ VJ'

where El = \m(j)\l, VQ — e<p0 and o)p is the frequency of the electron plasma
oscillations. Integrating the first term on the right-hand side of (1.9), we get

dV (2m)*r-ZdQ dV
Jo dV(-E-V)^- ( 2 ' 2 )

We first compute ftT{E) when the distribution function of the untrapped electrons
is given by a step distribution function which is normally used in the ' water bag'
model (Berk & Roberts 1967):

(2.3)

where vtb = (2T/m)i, and T is the electron temperature and M = vo/vth. 6(x) is
the Heavy side function.

0(x) = \
lO, x < 0.

The quantity M is in some sense an anologue of the Mach number for solitons (in
which case M = vo/vvh where vvh is the phase velocity of the wave). However in
our case M can be larger and less than unity.

Using (2.3) for integrating the second term on the right-hand side of (1.9), we get

f
JO2TT JO (E')i(E'-E)

_(-E)i\ frq-M)2 dE'

(2A)

Using (1.9), (2.2) and (2.4), we find that

where W = —EjT, $ = l/Ad {Ad is the electron Debye radius) and \jr = e^0/jT. It
may be noted that S and ty are the dimensionless width and amplitude of the BGK
wave, respectively.
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We now proceed to compute /t r( W) when the distribution of the untrapped
electrons is given by a Maxwellian.

f(±\E) = — exp [ - (E/T)i + Mf\. (2.6)
nvth *

After algebraic manipulations similar to those for the step distribution function,
we get

(2.7)

poo e-(txx+/3)2

where I(a,fi)=\ — ^dx.
Jo 1 + x

The integral /(a,/?) cannot be determined analytically except for the case
/? = 0 (M = 0). For M = 0 we obtain

2 Cx

where O = —r e~y2 dy

is the probability integral. Expression (2.8) corresponds to the stationary BGK
waves which have been observed in computer simulation experiments (Lynov
et al. 1979; Turikov 1978).

3. Analysis of the dependence of the width of the BGK wave on its
amplitude

Using expressions obtained in the preceding section we can now establish for
what values of #and \jr will/tr(TF) be non-negative. Expressions (2.5), (2.7) and
(2.6) consist of two terms each on the right-hand side. The second term is always
positive. The first term

which is determined from the form of the potential (2.1) changes its sign as
W varies from Otoi/r (W =( — %mv2 + e<f>)/T) and Wm&A = ft. Expression (3.1) has
the largest negative value when W = ft which corresponds to the minimum of
/ t r . Thus, the condition of non-negative ftT(W) can be expressed as

ftT(ft) > 0. (3.2)
The case when ftI{ft) = 0 (3.3)

corresponds to observations in the computer simulation experiments (Lynov
et al. 1979; Turikov 1978). So we shall investigate the relationship between $ and
ft for this case.

For a step distribution function for the untrapped particles, we find from (2.5)
and (3.3) that
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FIGURE 1. Dependence of width S of a solitary BGK wave on its amplitude \jr. Curves
(l)-(4) correspond to M = 0, M = 0-5, M = 1-0, and M — 1-5, respectively. The un-
trapped particles have a step distribution function.

When fg\E) is Maxwellian we find, using (2.6), (2.7) and (3.3), that

2*1*1
8 =

and, for M = 0,

(3.5)

(3.6)

Expressions (3.4)-(3.6) correspond to the case of minimum width S for a given
value of the amplitude ijr.

We may also note that, for the case of a soliton solution, Sec ft~l which differs
significantly from the relation between S and \Jr for the BGK wave. The reason for
this difference is that for the soliton the electrons play a passive role, entering the
equation via the Poisson equation. Thus one is free to choose the electron number
density. However, in the case of the solitary BGK wave the electron density is
not a freo parameter and, additionally, electron hydrodynamic equations do not
include trapping effects; for this reason the kinetic description via the Vlasov
equation is necessary. (Lynov et al. 1979; Schamel 1979).

Figures 1 and 2 show the dependence of 8 upon ijr for BGK waves. Figure 1
corresponds to the case when/^^S) is a step function; in figure 2,/^t)(J5J) is taken
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FIGURE 2. The same as figure 1 except that the untrapped particles have a Maxwellian
distribution function.

to be a Maxwellian. It can be seen from figures 1 and 2 that dependence of S upon
rjr is not significantly affected by the distribution function of the untrapped
particles, thus making it possible to use an analytically simple form for f^(E).
We also note that with the increase of M (i.e. increase in velocity v0 of the wave)
the width 8 increases. However, for amplitudes xjr > 2 the curves tend to flatten
out.

4. BGK waves in a cylindrical waveguide containing a magnestized
plasma

Computer simulations (Lynov et al. 1979) have been used to study the excitation
of solitary BGK waves in cylidrical waveguides. The magnetic field is along the
x axis of the cylindrical waveguide and waves are considered to propagate along
this axis only.

Poissons equation in cylindrical co-ordinates has the form

82d> 1 8 1 86\ 1 82d
9a;2 r 8r\ 8yj r2 802

where n = n(x, r, 6) is the electron density at a given point and n0 is the unper-
turbed plasma density.
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We assume that the potential at the surface of the waveguide is zero:

where r0 is the radius of the waveguide. For such boundary conditions <j> and n are
expressed as , >

<p{x>r,d) = Yl<j>llv(x)Jv[p L )e**
/i" \ ' 0 /

where Jv is the first- order Bessel function and p/w is the /ith root of /„. We further
assume that only the zeroth radial mode Jo(poor/ro) is excited (see, for example,
Trivelpiece & Gould 1959; Manheimer 1969). Thus Poisson's equation can be
rewritten as 2

^ | (4.1)

p00 2-404
where K± = — ~ .

Under the assumptions made, the distribution function of the electrons can be
written as ,. , -^, , » . . T /7 , ,. „.

/(*, r,») = fo(t;) +/00(a;..») J0(k±r) (4.2)
where î 0(w) is the unperturbed distribution function. The potential <p can be
expressed as ( ^ f ) = ^

Equations (4.2) and (4.3) are substituted in the Vlasov equation for the stationary
case and we obtain

^ ^ l ) ) = 0. (4.4)

Multiplying this equation by rJ0(r) and integrating over r from 0 to r0, we get
(Lynov et al. 1979) „. , , 2E, , , ,

&±*h>*3±*ho&o 0 (4.5)dx m ax 8v m dx dv

ir
where a = ^ ~ 0.72.

!"'rJ3
0(k±r)dr

J o

10

The above expression can be written in more standard form for a one-dimensional
Vlasov equation, if we use the substitution

f(x, v) = F0(v) + a/00> ^ = <x$00(x).

As a result, (4.5) and (4.1) respectively can be written as

oj 6 ao ot
- • ' • ' - - T J - n (4.6)

(4.7)



Solitary waves 445

1 2 - -

FIGUBE 3. The same as figure 1 except that the untrapped particles have a step
distribution function and the plasma is in a cylindrical waveguide.

It may be noted that the distribution function/has been normalized to 1. We see
from the above equations that a plasma in a cylindrical waveguide differs from an
unbounded plasma by the presence of the term — k\ <fi in (4.7).

The function Q(V) (see (1.7)) now becomes

1 (d*$ , ,
8nen0\dx2 x

In order to write down an expression for/tr(TF), we repeat the same procedure as
in § 1 and obtain

where KX = kxAd.
The dependence of S upon \jr for the case /t r( W) = 0 is given by

* = •

(4.8)

(4.9)

From (4.9) we note that the width of the solitary BGK wave increases with a
decrease in r0 (increase in K± ) for a given value of ijr. Figure 3 shows the dependence
of S upon rjr for parameters for a step distribution function for /^ ' . The numerical
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values of 8 and \]r correspond very well with those in the computer simulation
experiments (see Lynov et al. 1979; Turikov 1978).

From equation (4.9) we see that, owing to the presence of the factor — 4/ca
L(a^")i

in the denominator, there is an upper limit on the maximun value of i/r. For the
case M = 0, when {^max)^ — 1 the maximum value for \jr is given by

The physical explanation of this upper limit is that for small values of r0 longi-
tudinal perturbations in the density of the plasma will contribute mainly to
perturbations in the radial component of the electric field. Thus a small longi-
tudinal component cannot support a stationary distribution of electrons in the
region of the BGK wave.

5. Conclusions
Following the method of Bernstein, Greene and Kruskal (1957), we have

investigated some properties of stationary BGK waves. The main results of the
work can be summarized as follows.

First, we obtained expressions for the distribution functions of the trapped
particles for the cases of step and Maxwellian distribution of the untrapped
particles.

Secondly, using the condition of a non-negative distribution function of the
trapped particles we found the relationship between the amplitude and the width
of the solitary BGK wave. The difference between this relation and that for a
soli ton solution was noted.

Thirdly, we also investigated the properties of the BGK waves propagating
along the magnetic field for a plasma in a cylindrical wave-guide. The relation
between the maximum possible amplitude of the BGK wave and the radius of the
cylindrical waveguide was also established.

Fourthly it was noted that these results are in close agreement with the results
of computer simulation experiments.
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