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The excitation of whistler wave instability due to slow cyclotron (m = — 1)
interaction in an inhomogeneous plasma penetrated by an inhomogeneous beam
of electrons is studied. Expressions are obtained for the elements of the plasma
and beam dielectric tensors. It is shown that the inhomogeneity in both beam
and plasma number densities affects the growth rate of the instability.

In a recent paper, Shah & Jain (1983) (henceforth referred to as I) investigated
the whistler mode instability in an inhomogeneous plasma in the presence of an
inhomogeneous beam of electrons. The effect of the inhomogeneity in the plasma
and beam number densities on the growth rate and the frequency of the insta-
bility excited due to Cerenkov interaction (characterized by the condition
o) — kzvb = ma)ce; m = 0) was studied. In this note, as an extension to the above
study, we consider the excitation of the instability due to slow cyclotron (m = — 1)
interaction. This involves the coupling of the whistler mode wave to the slow
cyclotron wave on the beam. We study the effect of the inhomogeneity on the
frequency and growth rate of the instability.

As in I, both beam and plasma are considered weakly inhomogeneous, with the
density gradient in the y direction. The equilibrium distribution functions for
the beam and plasma are taken to be anisotropic Maxwellians. The external
magnetic field is in the z direction. The contribution of the ions to the dielectric
tensor is neglected since for ra = — 1 interactions the instability frequencies are
much higher than the ion cyclotron or ion plasma frequencies.

Following the method outlined in I and noting that, for m = — 1, q and p
(see equations (4) and (6) of I), are given by

P =
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where Jx = Jx{i) is the first-order Bessel function, £ = kzv±Oa/(i)ce and a refers to
the beam or the plasma, we obtain expressions for the elements of the dielectric
tensor.

The dielectric tensor elements of the plasma are

2a(A + B)g'1 2ia(A+B)g'2

2a(A+B)g'5 _v 4ia(A+B)g'(i

_

Here
A = 2(1 +I/g), B = ^fp/at

4Ja(A+B)g's

9B = i(l + ̂ / ^ ) [ ^ 2 ^ ( i 4 ; 3 , 5 ; - g ) - ^ 2 ^ 2 ( i 2 ; 1,3;

(f;4; -a)- i^i(f ;2; -g)}],

and

is the first-order Bessel function of an imaginary argument.
The elements of the dielectric tensor of the beam are given by



Whistler instability 227
Here

Dr = - mvlad\, Di = (Ab + Bb) ni,

Er = (Ab + Bb)-C(a+1)/Vd\ip, Et =

C = 2^p/ocdl Ab = 2(1 +d2/d1) (1 - y£pbt/a),

Bb = d2£pfp/a, 9l =

99 = 97,

= Txb/T±p,

and A6 = exp ( - #*

In the above set of expressions the subscripts or superscripts p, b refer to the
plasma or beam respectively. Lvb is the scale length of the inhomogeneity.
VT±P>

 vnp< vT±b> vT«b a r e t n e perpendicular and parallel plasma and beam elec-
tron thermal velocities. vb is the velocity of the beam along the z direction. jFk

are the hypergeometric series and kx and kz are the perpendicular and parallel
wavenumbers. w, (op, 0)b, (oce are the wave, plasma, beam and electron cyclotron
frequencies respectively.

It should be noted that while writing e£;- we have replaced the Fried-Conte
dispersion function by a power series (using equation (20) of I) as the argument
of the function is very small around resonance (oj-kzvb + ojce = 0). However,
in the case of the plasma dielectric tensor, we use an asymptotic expansion
(equation (21) of I) for the Fried-Conte dispersion function. This is because
around resonance the argument of the Fried-Conte dispersion function is large
since the beam drift velocity is larger than the parallel electron plasma thermal
velocity.

Having obtained the dielectric tensor elements for the beam and the plasma,
the general dispersion relation can now be written as

D = Dp + Db (1)

where Dp and Db are the dispersion relations of the beam and plasma respectively
and are given by (13), (15), (16) and (17) of I. The growth rate can then be
calculated using the expression

y = - Im Db(k, ar)j \^ Dp(k, ar)]. (2)
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FIGURE 1. The variation of (a) the frequency ((oT/u>ce) and (b) the growth rate (w,/wce)
with the plasma inhomogeneity parameter xjrv. Other plasma and beam parameters are
wn/w« = 0-3,kxvT±jG>ce = 2, VT±V/VTXP = 1-0, ub/wce = 0-05, vT±b/vT±P = vT^/vTxv =
1-0, VT±V/Lb(oce = 0-5, v6/vT±v = 4, l/v = 8-1.

We write down an expression for the growth rate for the electrostatic case as
these instabilities are most easily excited.

y« = (3)

Equation (3) is further simplified since we use a local approximation which
requires that the projection of the wavelengths of the excited waves in the
direction perpendicular both to the external magnetic field and to the direction
of the density gradient must be greater than the electron Larmor radius, i.e.
hxvTlPib/(oce > 1. Thus from Luke (1975, ch. 7) we have

F{a;c;u)

and

1

<
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FIGURE 2. The variation of the growth rate (w./w,.,) of the whistler instability with f-b

as parameter. Other parameters are as in figure 1 except for VT^/LJO)^ = 0-1.

We now study the effect of the inhomogeneity on the excitation of the whistler
instability. Figures 1 (a) and (b) show the variation in the frequency and the
growth rate of the instability, for the electrostatic case, as r]sp, the normalized
plasma inhomogeneity parameters, are varied. It is found that the effect of
increasing i]rp is mainly to reduce the growth rate of the instability. The frequency
ar shows a small variation with ifrp. The effect of varying the beam inhomo-
geneity parameter \Jrb on the growth rate is shown in figure 2. The variation in
the frequency of the instability with ijrb is found to be negligible, as expected,
since nob <^ nOp. It can be seen from figure 2 that the growth rate increases
with \jrb.

Finally we note that we cannot consider angles of propagation arbitrarily
close to 90°. This is because at near perpendicular propagation the contribution
of ions to the whistler mode becomes important. Thus the work presented above
is restricted to angles of propagation such that

V

m

which implies that the angles of propagation must be less than about 88°.
To summarize, the inhomogeneity in the plasma and beam number densities

are found to affect mainly the growth rates of the instabilities due to slow cyclo-
tron interaction. It should also be noted that the above model allows us to
consider how the frequency and growth rate would vary with varying parallel
and perpendicular temperatures of the plasma and the beam, since anisotropic
Maxwellian distribution functions have been used for the plasma and the beam.

We would like to thank the referee for his comments.
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