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We consider obliquely propagating (with respect to the ambient field) nonlinear
magnetosonic waves in a hot plasma with arbitrary beta. It is shown that the
two-dimensional propagation of both the fast and the slow modes is governed
by the Kadomstev—Petiashvilli soliton equation. Explicit expressions are
obtained for the various physical quantities involved via the soliton solution.

We consider the propagation of two-dimensional nonlinear magnetosonic
waves in a hot plasma. It is shown that the propagation of such waves may be
governed by the Kadomstev—Petiashvilli (KP) equation (Kadomstev & Peti-
ashvilli 1970), which is, in fact, the two-dimensional version of the Korteveg-
de Vries (KdV) soliton equation and is valid for small angles of propagation.
Recently De Vito & Pantano (1984) have investigated the propagation of
two-dimensional magnetosonic waves using the KP equation for the case of a
cold plasma. In this case, only one mode (intermediate) propagates, but in the
case of a hot plasma, as will be shown in this work, both fast and slow modes
appear, and have soliton solutions.

We consider a system of Cartesian co-ordinates, in which the ambient
magnetic field Bo lies in the (x, y) plane making a small angle 6 with the x axis,
and propagation is in the (x, z) plane. The basic equations that we use are the
one-fluid isotropic isothermal magnetohydrodynamic equations with the
generalized Ohm's law. These equations are (Boyd & Sanderson 1969)

^-+V.(p 'v) = 0, (1)
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where d/dt = d/dt + \ . V; p', v and P' are the mass density, hydrodynamic
velocity and pressure, respectively; m+ is the ion mass; e is the electron charge;
E' and B' are the electric and magnetic field vectors and j is the current density.
Substituting (4) into (2), we get

dv

~di (7)

(8)

and eliminating E' from (3) by using (5) yields

dB _ vA I
~di~ x ( v x H n ; xp[

In (7) and (8) we use the dimensionless variables p = p'/p0, B = B'/Bo and
P' = P'/Po, where the subscript zero refers to the background quantities and
vA and Qt are the Alfven velocity and the ion gyrofrequency.

To develop equations governing the propagation of magnetosonic waves we
use the reductive perturbation scheme as given in the work of De Vito &
Pantano (1984). By expanding the fluctuating variables in terms of a small
quantity e we have

P =

(9)

vy = evx + e2v2

= B0cosd,

We note here that all fluctuating quantities are functions of x, z and t. Quantities
subscripted 1 and 2 are fluctuating quantities in order of smallness, respectively.
We also introduce the stretched variables

= e\L

(10)

where vph is a constant which is calculated below.
We now substitute (9) and (10) into (1), (7) and (8) and collect terms of lowest

order in e (order | ) :

A < K dp,
vAn=^-s

A dv, dB
yl

-vAX-

(11)

where f$ = c2
s/v

2
A and c| = P0/p0> and A is the normalised phase velocity given by
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Putting pl = <j>, we can express the fluctuating quantities ux, v1 and Byl, by using
the set of equations (11). Thus we get

1
vAX

(A2-/?)/sin0
-cos6vA(X2-j3)
sin 6 A

(12)

From (11) and (12) we obtain

(13)

Expression (13) is the linear dispersion relation for magnetosonic waves in two
dimensions (Alexandrov, Bogdankevich & Rukhadze 1984), written in a
dimensionless form. The upper sign corresponds to the fast mode and the lower
sign to the slow magnetosonic mode.

Now we develop the KP soliton equation and write a one-soliton solution for
both the fast and slow modes. By substituting (9) and (10) into (1), (7) and (8)
and collecting terms of order e2 and e*, we have respectively

A 8WX .
^F = s

-A
(14)

and

du du,3Pl du2 du, dpi,dWi_,
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dv2
SB,,

SB1/2
— smO

Sij

vA cos d 82BZ

(15)

From the set of equations (14) and expression (12), we get the following two
equations for Bzl and W1 in terms of 4> and A.

SB
Z1_

A2cos6> -p) cos 6

~8f~ cos2d-A2 STJ Qi(cos2d-A2) sin6 Si2'

8WX _ -XvA 8<f> v2
Acos2d(A2-P) 82</>

~8i ~ cos2 6 - A2 8rj Qj sin 6 (cos2 6 - A2) Si2'

(16)

(17)
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We now eliminate quantities with subscripts 2 and terms containing Bzl and
W1 from (15), by using (12), (13), (16) and (17). Omitting the rather lengthy and
cumbersome calculations, we obtain

where p , q, r are given by

^A*[3A*-/?{6A2- (3/g+2sin«fl)}]
P A6 + A 4 ( l 2 / ? ) + A2»{l-3cos2l9 + yS} + y92cos2(9' [ '

os20]' [ '

-2/?) + A2/?{l-3cos20-l-/?}+/?2cos26>r v '

By making the transformations

l (22)

equation (18) acquires the same form as Satsuma's (1976) equation (2) taken
with the lower sign (which corresponds to propagation in a medium with positive
dispersion). Thus (18) is the KP equation for the propagation of magnetosonic
solitons in two dimensions. Following Satsuma (1976) we can write the solution
to (18), namely

(23)

where <f>0 = —(l2q/p)K2, a = Kgi + K^ — un and K^, Kv and a> are related by
the dispersion relation

- o)Kg+4K| - rK2 = 0. (24)

We have obtained the KP equation (18) for the propagation of two-
dimensional magnetosonic solitons in a medium with positive dispersion. In the
expressions for p, q and r, the upper sign corresponds to fast magnetosonic
solitons and the lower sign to the case of slow magnetosonic solitons. The
magnetosonic soliton propagates with a phase velocity which is obtained from
equation (24) and is given by

K

making an angle 6 with the x axis. It should be noted here that this angle is
expected to be small because the effect of the perpendicular direction is small
(Kadomstev & Petiashvilli 1970). However, it has been pointed out by Satsuma
(1976) that from a mathematical point of view such a restriction does not hold.
For small angles of propagation, the fast magnetosonic soliton propagates as
a negative pulse and the slow soliton as a positive pulse. This situation may,
however, reverse for large angles of propagation beyond some critical angle 6C.

We are now able to calculate expressions for Bzl and Wl from (14) and (23).
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These are given by

A2cos0 K 2AvA(A2-/3) cos<9 T/r , t ,

0 + i ^ t h ' 25PAQ2 ft 12 if * fj inn4 fl — /i ^ QI

- A 3 ^ # , 2v2
1(A2-^) cos2 (9

(26)

By substituting (2) into (3) and using (12), (13), (23), (25) and (26), we find
expressions for the electric field components of the solitary magnetosonic wave.
To lowest order in e (i.e. f), we obtain for the x and y components, respectively,

cEx_ - A ^ s i n ' g A 2*;2
4cos3fl(A2-/?)f,

3w2 /? 2A2?;2

+ —4^-Z cos(90 tanha+ -p-^-K cos00 tanha, (27)

i2j sin

For £2 we need to compute to order e, and we obtain

a. (28)

From the above expressions we see that the electric field disappears as a
approaches oo.

We note here that, for the case of parallel propagation (6 = 0), equation (18)
reduces to a standard KdV equation, as in the case of ion acoustic waves
investigated by Washimi & Taniuti (1966).

To sum up, we have shown that nonlinear magnetosonic waves are governed
by the Kadomstev-Petiashvilli equation which exhibits soliton solutions. Since
we have considered propagation in a hot plasma with no restrictions imposed
upon /?, both fast and slow mode solitons appear. This is different from the cold
plasma case investigated by De Vito & Pantano (1984) where only one mode
(intermediate) appeared. The presence of /? also complicates the dependence of
the soliton solution, and the quantities associated with it, on the propagation
angle. From the soliton solutions, we were also able to obtain expressions (25),
(26) and (27) which give the electric fields related to both fast and slow
magnetosonic solitons.

Such waves may find application in various astrophysical and laboratory
plasma situations. For example in the review by Porkolab & Chang (1978) it
was pointed out that the shocks are accompanied by intense ordered oscillations
(solitons) in laboratory situations as well as simulation studies.

More recently, Formisano (1985), whilst studying magnetosonic astrophysical
shocks, pointed out that these are often accompanied by large-amplitude
magnetosonic waves. Tsurutani & Smith (1984) have identified large-amplitude
obliquely propagating magnetosonic waves. However, it may be noted here that
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conclusive proof for the existence of any type of soli ton in astrophysical and
space plasmas is not available. One possible reason for this may be that data
analysts have tried to look for unique relationships between velocity and
amplitude of the large-amplitude waves (Hoppe etal. 1981). However, such
relationships exist only for one-dimensional propagation.

H.A.S. acknowledges the assistance of the ICTP scheme 'Training and
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