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Abstract

The semiclassical kinetic approach of Boltzmann-Vlasov model along with the
Yang-Mills equation in a covariant guage is used to study Quark-Gluon Plasma.
The longitudinal and transverse color collective modes and Landau damping is
investigated for extreme and for strongly relativistic cases. The relevant integrals
for the polarization tensor are evaluated and the dispersion relations are obtained
for both longitudinal and transverse modes. The regime of the QGP wherein the
thermal speed of the plasma species equals the velocity of light, the linear Landau
damping for the isotropic medium vanishes; while for a slight departure from the
extreme relativistic case (finite mass of the plasma species), the damping term
survives.

1. Introduction

The Relativistic Heavy Ion Collision (RHIC) and Large Hadron
Collider (LHC) experiments at Brookhaven National Laboratory
and at CERN, respectively, search signatures for a new state of
matter called Quark-Gluon Plasma (QGP) [1–4]. The new state of
matter is a macroscopic system of deconfined quarks and gluons
interacting via the strong force, and is believed to have existed in
the early universe a couple of microseconds after the Big Bang.
A similar state of matter also exists in the core of compact stellar
objects.

The study of the color-field fluctuations in the QGP, both with
reference to the on-going experiments on heavy ion collisions
(LHC & RHIC) and the matter in the early universe, constitute an
important ingredient to our understanding of its color conduction
properties and of the relevance of the color degree of freedom
to the hadron formation out of the plasma. Field theoretical
techniques have been employed to calculate the non-abelian
plasma properties and in particular its excitation spectrum and that
the dispersion relations for the longitudinal and transverse modes
have been obtained in the finite temperature QCD within a one
loop approximation [5–12]. Further it was recognized [13–20]
that almost all the results obtained from the hard thermal loop
approximation (with certain limits) can also be described in terms
of kinetic transport equations and that the linear Landau damping
was absent due to the massless gluons [21]. Markov and Markova
[22] developed a theory of nonlinear damping and showed how
nonlinear effects play a role in the Landau damping phenomenon.
The advantage of the kinetic approach is that the physical picture
is more transparent and its classical character more pronounced.

In this paper we re-examine the linear Landau damping
for color collective modes of oscillations (longitudinal and
transverse) for extreme (v = c) and strongly-relativistic (v � c)
velocities using Vlasov and Yang-Mills equations in a covariant
gauge. We observe that for both of these modes the Landau
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damping survives only if the thermal speed of the plasma species
is somewhat smaller than the speed of light.

In section 2, we develop the linearized Vlasov kinetic equation
for the perturbed distributions for the quark, anti-quark and gluon
plasma species and derive a relation for the dielectric response
function in terms of the polarization tensor using the Yang-Mills
equation. The integrals of the polarization tensor are evaluated
for electrostatic perturbations for both the extreme- and strongly-
relativistic cases. In section 3, the plasma dispersion relations are
developed.

2. Linearized Vlasov Theory of Quark-Gluon Plasma

In the ultrarelativistic high temperature collisionless quark-gluon
plasma, the plasma species quarks, anti-quarks and gluons are
supposed to be in thermal equilibrium and behave like free
gas particles obeying Fermi-Dirac and Bose-Einstein statistics
respectively. In order to consider the problem of linear Landau
damping for such a phase, we need to solve the Boltzmann-Vlasov
kinetic and Maxwell’s equations. These equations in relativistic
notation can be expressed [2, 3, 21–23] as

p�D� fq,q̄ ± 1
2gp�

{
F��,

�fq,q̄

�p�

}
= 0, (1)

p�D̃� fg + 1
2gp�

{
F̃��,

�fg

�p�

}
= 0. (1a)

The force term F�� = (��A� − ��A�) − ig[A�, A�], satisfies
Maxwell’s equation in relativistic notation

D� F�� (x) − �−1����A�(x) = −J �(x)

where � is a gauge parameter and g is the coupling parameter.
A� is the color field potential and D� and D̃� are the covariant
derivatives which act as

D� = �� − ig[A�(x), .],

D̃� = �� − ig[Ã�(x), .].

Here [, ] and {, } denote the commutator and the anticommutator
respectively. The generators of the color symmetry group are
denoted by ta and T a for the fundamental and adjoint represent-
ation respectively. Thus for the fundamental representation, the
color field is expressed as A� = Aa

�t
a and the field tensor as

F�� = Fa
��t

a, and similarly for the adjoint representation we have,
Ã� = Aa

�T
a and F̃�� = Fa

��T
a with

Fa
�� = ��A

a
� − ��A

a
� + g f abcAb

�A
c
�.

Here J � is the color current density given by

J � = gta
∫

d4pp�[Trta(fq − fq̄) + Tr(T afg)]. (2)
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We also note that Tr(tatb) = �ab, Tr(T aT b) = Nc�ab and
[ta, tb] = if abctc, where the structure constants f abc = i(T a)bc.
Here �, �, are the Minkowski indices which vary from 0 to 3; and
a, b, c . . . are the color indices which run from 1, to N2 − 1 of
SU(N) gauge group with Nf flavors of quarks.

Linearizing the above equations and taking Fourier Trans-
forms, we obtain the turbulent part of the distribution function
f (1) in terms of the regular (background) distribution functions
f (0) as [22, 23]

f
(1)
q,q̄ (k, p) = ∓g

���(k, p)

pk+iεp0

�f
(0)
q,q̄

�p�
A(1)

� (k),

f (1)
g (k, p) = −g

���(k, p)

pk+iεp0

�f (0)
g

�p�
Ã(1)

� (k),

where ���(k, p) = ((pk) g�� − p�k�) and k is the wave number of
the perturbation.

Now using the above perturbed distribution functions along
with Maxwell’s equation, we can calculate the color current
densityJ (1)

� [23] as

J (1)
� = gta

∫
d4pp� −g���(k, p)

pk + iεp0
Tr

[
ta

(
�f (0)

q

�p�
A(1)

� (k)

− �f
(0)
q̄

�p�
A(1)

� (k)

)
+ T a

(
�f (0)

g

�p�
Ã(1)

� (k)

)]
. (2a)

In a more standard form, the perturbed current density J (1)
� can be

expressed as

J (1)
� (k) = ���(k) A(1)

� (k)

where

���(k) = g2
∫

d4p
p�

pk + iεp0

(
p�k · �

�p
− p · k

�
�p�

)
Neq (3)

is the polarization tensor and Neq = 1
2 (f (0)

q + f
(0)
q̄ ) + Ncf

(0)
g is the

quark-gluons equilibrium number density. The above equation
for the current density is the tensor analog of the generalized
Ohm’s Law.

The permittivity tensor ∈�� can be defined in terms of a
polarization tensor ��� as

∈��= ��� − 1

�2
���. (4)

The tensor structure of the dielectric response function ∈��can be
separated into longitudinal and transverse components as

∈L= 1 − 1

c2k2
�00 (5)

and

∈T = 1 − 1

2�2
�ii + 1

2c2k2
�00 (6)

respectively.
Since the quarks and anti-quarks are fermions, and the gluons

are bosons, their equilibrium distribution functions fqq̄ and fg

are given by

f
(0)
qq̄ = 1

z∓1 exp(cp/T ) + 1
, f (0)

g = 1

z−1 exp(cp/T ) − 1
(7)

where cp/T is the kinetic energy of the plasma particles for
a very high temperature relativistic case, normalized over
temperature (in eV). We note that in the high temperature limit
(T > 150 MeV), the rest mass energy is ignored in the relativistic

energy equation. The fugacity number z = exp(�/T ) depends on
the chemical potential � of the particles in that phase.

The conductivity tensor �00 [2, 3], in spherical momentum
space is written as [23]

�00 = − 2g2c

zT (2	)2
×

∫ ∞

0

(
Nf exp(cp/T )

(z−1 exp(cp/T ) + 1)2

+ z2Nf exp(cp/T )

(z exp(cp/T ) + 1)2
+ Nc exp(cp/T )

(z−1 exp(cp/T ) − 1)2

)
p2

×
(∫ 	

0

kv cos(
)

kv cos(
) − � − iε
sin(
) d


)
dp. (8)

The wave number k and frequency � correspond to the pro-
pagation of oscillations in the QGP and v is the thermal speed
of the plasma particles. Similarly the conductivity tensor �ii

[2, 3], in spherical momentum space, in terms of �00, can also
be expressed as

�ii = 2g2c

zT (2	)2
×

∫ ∞

0

∫ 	

0

{
1

2

Nf exp(cp/T )

(z−1 exp(cp/T ) + 1)2

+ 1

2

z2Nf exp(cp/T )

(z exp(cp/T ) + 1)2
+ Nc exp(cp/T )

(z−1 exp(cp/T ) − 1)2

}

×p2 sin(
) d
 dp + �00. (9)

Using the well known Plemelj formula and performing the
integration over 
 in the expression for �00, we obtain

�00 = − 4g2c

zT 2(2	)2

∫ ∞

0

{
1

2

Nf exp(cp/T )

(z−1 exp(cp/T ) + 1)2

+1

2

z2Nf exp(cp/T )

(z exp(cp/T ) + 1)2
+ Nc exp(cp/T )

(z−1 exp(cp/T ) − 1)2

}

×
{

1 + �

2kv

[
log

∣∣∣∣� − kv

� + kv

∣∣∣∣ − i	�
(

1 − �

kv

)]}
p2 dp.

(10)

The mutual dependence of phase transition, chemical potential
� and temperature T (critical temperature Tc with reference to the
bag constant B(m, T )) has been discussed in detail in the literature
[24, 25]. Here we assume thermal and chemical equilibrium for
the relatively long-lived non-interacting quark-gluon plasma of
the early universe with global color neutrality and negligible
average baryon density [23]. Thus for this special case the fugacity
number z = exp(�/T ) becomes unity.

Now, we consider two special cases i.e., the extreme or
ultra- relativistic case (where the plasma particles behave like
radiation in extreme temperature environment) and the case where
the plasma species have some finite mass and hence thermal
speed.

2.1. Extreme or Ultra-relativistic Case (i.e. v = c)

In this case, the particle thermal speed equals the velocity of light
in vacuum i.e., v = c and the integration becomes easy to perform.
As a result the longitudinal and transverse components of the
permittivity tensor become

εL = 1 + 3�2
p

c2k2

(
1 − �

2ck

[
log

∣∣∣∣� + kc

� − kc

∣∣∣∣ − i	�
(

1 − �

kc

)])
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and

εT = 1 − 3�2
p

2c2k2

(
1 − �

2ck

(
1 − k2c2

�2

) [
log

∣∣∣∣� + kc

� − kc

∣∣∣∣
−i	�

(
1 − �

kc

) ])

where 3�2
p = g2T 2

c2 ( 1
6 (Nf + 2Nc)) is the analog of the plasma

frequency [2, 3]. The imaginary parts depend on the
Heaviside unit-step function �(1 − �

kc
) which leads to the con-

clusion that this term survives only if its argument is positive i.e.,
the phase velocity �/k < c (being the particle thermal speed).
Therefore, Landau damping vanishes for the extreme-relativistic
case.

Solving for �2, the real parts of the dispersion relations yield

�2
Lr = �2

p + 3
5c2k2

and

�2
Tr = �2

p + 6
5c2k2.

These expressions show that for QGP near equilibrium, the
color collective modes of oscillations are time-like (�2 > c2k2)
i.e., the phase velocity of the wave is larger than the velocity of
light. The resulting collective mode therefore does not exhibit
damping unlike electron plasma waves. This is a consequence of
having treated quarks and gluons as massless. For massive quarks
however, the plasma does show some weak Landau damping [13].

2.2. Strongly-relativistic Case (i.e. v � c)

In this case, we treat the quark-gluon soup (of the early universe) as
a semiclassical system of particles (quark, anti-quarks and gluons
including their massive components) analogous to an ordinary
plasma, in chemical equilibrium, with some finite average mass
of the plasma species and hence thermal speed less than the speed
of light [23].

We proceed to determine εL and εT for the strongly relativistic
case i.e. v � c . This case is catered by considering v = p/m,
where m is the average mass of the plasma particles (in QGP
soup). After lengthy algebric manipulations, we obtain

�00 = 4g2T 2

c2(2	)2
×

(
1

90	4

(
c2k2

�2

) (
T

mc2

)2

(8Nc + 7Nf )

+ 1
210	6 c4k4

�4

(
T

mc2

)4

(32Nc + 31Nf )

)

− 1
2 i	

4g2T 2

c2(2	)2

(
Nf

�2

c2k2

(
mc2

T

)2

exp

(
− �

ck

mc2

T

))
(10a)

and

�ii = g2T 2

6c2
(Nf + 2Nc) + 4g2T 2

c2(2	)2

(
1

90	4

(
c2k2

�2

) (
T

mc2

)2

×(8Nc + 7Nf ) + 1
210	6 c4k4

w4

(
T

mc2

)4

(32Nc + 31Nf )

)

− 1
2 i	

4g2T 2

c2(2	)2

(
Nf

�2

c2k2

(
mc2

T

)2

exp

(
− �

ck

mc2

T

))
.

(11)

3. Dispersion Relations

Using the expressions for the dielectric response functions, we
obtain the following expressions for the permittivity tensor εl

and εT

εl = 1 − A

�2
− Bc2k2

�4
+ iC

�2

c4k4
exp

(
− �

ck

mc2

T

)
,

�T = 1 − �2
p

2�2
+ A

2�2
− A

c2k2

2�4
+ c2k2 B

2�4
− i

4	

(
1

c2k2
− 1

�2

)

×c2k2
d�

2

c2k2
Nf

(
mc2

T

)2(
exp

(
− �

ck

mc2

T

))

where

�2
p = 1

6c2k2
d(Nf + 2Nc),

A = 1
180	2c2k2

d

(
T

mc2

)2

(8Nc + 7Nf ),

B = 	4

420
(c2k2

d)

(
T

mc2

)4

(32Nc + 31Nf ),

C = 1

4	
(c2k2

d)

(
mc2

T

)2

Nf .

The Debye wave number kd = gT/c2.
Defining � = �r + i�i and assuming �i � �r, the real

part of the dispersion relation for the longitudinal component
becomes [23]

�2
r = A

2
+ 1

2

√
A2 + 4Bc2k2

and the imaginary part �i or the Landau damping rate is given by

�i = −
1

2
C

�6
r

c4k4
exp

(
−wr

ck

(
mc2

T

))
Nf

4�3
r − �rA

. (12)

Similarly for the transverse component, the real part of the
dispersion relation and the Landau damping rate become

�2
r =

(
3�2

p

2
− A

2
+ c2k2

)

+
√(

3�2
p

2
− A

2
+ c2k2

)2

+ 2(A − B)c2k2,

�i = −
C

�6
r

c2k2

(
1

�2
r

− 1

c2k2

) (
exp

(
−�r

ck

mc2

T

))

4�3
r − 2�r

(
3�2

p

2
− A

2
+ c2k2

) .

We note that for both longitudinal and transverse oscillations,
both the real part �r and the imaginary part �i depend strongly
upon the coupling constant g(T ) and temperature T through
the parameters A, B, C and �p. The Landau damping term
vanishes for extreme thermal velocities (i.e. v = c) of the plasma
species as has been reported in earlier literature. However, a
slight departure from this extreme relativistic case introduces
Landau damping. The sensitivity of the damping term can
also be attributed to the choice of the mass of the plasma
species.
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We therefore conclude that in the extreme temperature
environment of the massless plasma species, the Landau damping
disappears while for the case of a relatively massive plasma the
damping term survives. We may therefore expect that the wave-
particle interaction in QGP may result in different signatures
coming out from the different thermal regimes of the QGP.
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