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Effects of positron concentration, ion temperature, and plasma b value
on linear and nonlinear two-dimensional magnetosonic waves
in electron–positron–ion plasmas

A. Mushtaqa) and H. A. Shah
Physics Department, Government College University Lahore, P.O. Box 54000, Lahore, Pakistan

(Received 25 June 2004; accepted 9 September 2004; published online 23 November 2004)

Magnetosonic waves are intensively studied due to their importance in space plasmas and also in
fusion plasmas where they are used in particle acceleration and heating experiments. This work
considers magnetosonic waves propagating obliquely at an angleu to an external magnetic field in
an electron–positron–ion plasma, using the effective one-fluid magnetohydrodynamic model. Two
separate modes(fast and slow) for the waves are discussed in the linear approximation, and the
Kadomstev–Petviashvilli soliton equation is derived by using reductive perturbation scheme for
these modes in the nonlinear regime. It is observed that for both the modes the angleu, positron
concentration, ion temperature, and plasmab-value affect the propagation properties of solitary
waves and behave differently from the simple electron–ion plasmas. Likewise, current density,
electric field, and magnetic field for these waves are investigated, for their dependence on the above
mentioned parameters. ©2005 American Institute of Physics. [DOI: 10.1063/1.1814115]

I. INTRODUCTION

In contrast to the usual plasma consisting of electrons
and positive ions, it has been observed that nonlinear waves
in plasmas having an additional component of positrons be-
have differently.1 Electron–positron–ion plasmas appear in
the early universe,2–4 in the active galactic nuclei,5 pulsar
magnetospheres,6 and also in the solar atmosphere7 and in
fact most of the astrophysical plasmas usually consist of
ions, in addition to electrons and positrons, and it is pertinent
to study the behavior of nonlinear wave motions in an
electron–positron–ion plasma. When positrons are intro-
duced in the plasma, the response of the plasma to distur-
bances changes drastically.

Recently, there has been a great deal of interest in study-
ing linear as well as nonlinear wave motions in electron–
positron plasmas.8–14 The nonlinear studies have been fo-
cused on the nonlinear self-consistent structures,8,9 such as
envelope solitons, vortices, etc. In Ref. 15 the solitary wave
solutions propagating perpendicular to the magnetic field
were discussed. Effects of particle reflection(by the mag-
netic field) have been investigated both theoretically and nu-
merically in Refs. 16 and 17. Korteweg–de Vries(KdV)
equation for magnetosonic waves and modified KdV equa-
tion for the Alfvén waves were also discussed.18,19

Nonlinear waves propagating in electron–positron–ion
plasmas have also attracted a great deal of attention in ex-
amining the nonlinear structures.20–24 Energy transfer in a
shock wave in an electron–positron–ionse-p-id plasma was
studied using particle simulation in Ref. 20, in which ions
were assumed to be a minority population. The effect of the
ion temperature on large amplitude ion-acoustic waves in an
electron–positron–ion plasma was studied theoretically by
Nejoh,21 where it was shown that the ion temperature in-

creases the maximum Mach number and decreases the am-
plitude of the ion-acoustic waves. The region of existence of
soliton structures sensitively depends on the ion temperature
and the positron density and temperature.

Ion-acoustic waves propagating obliquely with respect to
an external magnetic field in a homogeneous magnetized
electron–positron–ion plasma were studied by Mahmoodet
al.,22 here the authors found that the amplitude of the solitary
structure increases with the percentage presence of positrons.

Berezhianiet al.23 have investigated envelope solitons of
electromagnetic waves in three-component electron–
positron–ion plasmas, and it was shown that electromagnetic
radiation of arbitrary amplitude in presence of heavy ions, in
contrast to the case of puree-p plasma, may be localized
with the generation of a humped ambipolar potential in the
plasma, i.e., the driving field intensity creates intense soliton
in the plasma with the generation of double hump ambipolar
potentials. With increase of the value ofnpo/neo, they found
a tendency that a single hump soliton becomes a double
humped one. In their investigation they neglected the ion
dynamics.

Ion-acoustic solitons in electron–positron–ion plasma
were also studied by Popelet al.,24 where they presented an
investigation of the nonlinear ion-acoustic waves in the pres-
ence of cold ions and hot electrons and positrons. In this case
the ion dynamics were shown to be governed by hydrody-
namic equations, whereas the electron and positron fluids
follow the Boltzmann distribution. Accordingly, the phase
velocity of the oscillation is assumed to be smaller(larger)
than the thermal velocity of the electrons and positrons
(ions). It was found that the presence of the positron compo-
nent in such a multispecies plasma can result in reduction of
the ion-acoustic soliton amplitudes.

Nonlinear characteristics of magnetosonic waves have
been the subject of investigation by many authors25–29due to
their importance in space plasmas and also in fusion plasmasa)Permanent address: PINSTECH(PRD), PO Nilore Islamabad, Pakistan.
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where they are used in particle acceleration and heating ex-
periments. Adlam and Allen25 and Daviset al.26 found sta-
tionary solutions of finite amplitude magnetosonic waves
propagating perpendicular to a magnetic field. Gardner and
Morikawa27 showed that these waves propagating perpen-
dicular to a magnetic field can be described by the KdV
equation. Magnetosonic waves propagating obliquely to an
external magnetic field were also shown to obey the KdV
equation.28,29 De Vito and Pantano30 have investigated the
propagation of two-dimensional nonlinear magnetosonic
waves in a cold plasma where only one mode of this wave is
excited and it was shown that the propagation characteristics
of these waves is governed by the Kadomstev–Petvashvilli
(KP) equation. Obliquely propagating nonlinear magneto-
sonic waves in warm plasma were investigated by Shah and
Bruno,31 it was found that for both slow and fast modes the
governing nonlinear evolution equation is the KP equation.

However, the study of obliquely propagating(with re-
spect to an external magnetic field) two-dimensional nonlin-
ear magnetosonic waves using the Kadomstev–Petviashvilli
(KP) equation has not yet been studied in an electron–
positron–ion plasmas. Hence in this paper, we theoretically
and numerically investigate two-dimensional linear and non-
linear propagation of fast and slow modes for magnetosonic
waves in electron–positron–ion plasmas. It is shown that
propagation of such waves is also governed by the KP soli-
ton equation. The effects of ion temperature, plasmab (the
ratio of kinetic energy to magnetic energy) value, and the
concentration of positrons modify the magnetosonic wave
dynamics both in the linear as well as in the nonlinear re-
gimes. The main goal of the paper is to derive a compact
closed set of nonlinear equations[for se-p-id hot plasmas],
which would describe two-dimensional nonlinear magneto-
sonic waves and provide a basis for further analysis. The
organization of the paper is as follows

In Sec. II the basic set of nonlinear equations and dis-
persion relation are presented and the nonlinear KP equation
is obtained by using reductive perturbation technique. In Sec.
III the numerical results of linear and nonlinear magneto-
sonic waves(MAW ) are presented along with brief discus-
sion of these results. Finally in Sec. IV, conclusion of the
results is presented.

II. BASIC EQUATIONS AND FORMULATION

Let us consider a magnetized three-componentse-p-id
plasma. We consider a Cartesian coordinate system, where
the ambient magnetic fieldBo lies in sx,yd plane making a
small angleu with the x axis and propagation is considered
in the sx,zd plane. The basic equations that are used in this
paper are the effective one-fluid isotropic isothermal magne-
tohydrodynamic(MHD) equations. An effective one-fluid
MHD model for e-p-i plasma can be developed by starting
with the usual fluid equations for the electrons, positrons,
and ions. For low frequency motion one can neglect the elec-
tron and positron inertia term in their corresponding momen-
tum equations and due to the fact that we consider only low
frequency waves the displacement current term in Ampère’s
law is also neglected. To develop equations for effective one-

fluid MHD model for e-p-i plasmas we follow the work of
Rao32 and the basic equations fore-p-i plasmas can be writ-
ten as

mini
dvi

W

dt
= nieEW +

nie

c
svW i 3 BW d − =¢ pi , s1d

0 = npeEW +
npe

c
svWp 3 BW d − =¢ pp, s2d

0 = −neeEW +
nee

c
svWe 3 BW d − =¢ pe, s3d

where Eqs.(1)–(3) are the equations of motion for the ions,
positrons, and electrons, respectively, withme=mp=0.

For number density conservation, we use the continuity
equations, which are given by

]ns

]t
+ =¢ · snsvWsd = 0 s4d

and the Maxwell equations are given by

=¢ 3 BW =
4p

c
jW, s5d

where

jW = o
s=e,p,i

qsnsvs
W ,

=¢ 3 EW = −
1

c

]BW

]t
. s6d

Herevs, nssnsod, andps are the fluid velocity, perturbed(un-
perturbed) particle density, and thermal pressure ofs species,
respectively, wheres=e,p, i stands for electrons, positrons,
and ions, respectively,ps=nsTs, whereTs is the thermal en-
ergy,mi is the ion mass,q is the charge ons, e is the electron

charge,c is the speed of light,EW is the electric field vector,BW

is the magnetic field vector,j is the current density, and
sd/dtd=s] /]td+sv ·= d is the hydrodynamic derivative.

In order to derive the basic governing equations of the
MHD model, we substitute forvWe in Eq. (3) from Eq. (5) to
obtain

EW = −
1

nec
SnivW i + npvWp −

c

4p
=¢ 3 BWD 3 BW −

=¢ pe

nee
. s7d

Using Eqs.(1), (2), and(7), we obtain the momentum equa-
tions for ions and positrons, respectively,

mini
dvi

W

dt
=

ni

4pne
s=¢ 3 BW d 3 BW +

ninpe

cne
svW i − vWpd

3 BW −
ni

ne
=¢ pe − =¢ pi , s8d
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0 = −=¢ pp −
np

ne
=¢ pe −

ninpe

cne
svW i − vWpd

3 BW +
np

4pne
s=¢ 3 BW d 3 BW , s9d

and further by using the quasineutrality condition

ni + np . ne s10d

and adding Eqs.(8) and(9) we obtain the effective one-fluid
momentum equation

ni
dvi

W

dt
=

niovA
2

Bo
2 s= 3 BW d 3 BW − cs

2s1 + sd=¢ ni

− cs
2s1 + rd=¢ np. s11d

On the other hand, eliminatingEW between Eqs.(1) and (6),
the magnetic field induction equation takes the form

]BW

]t
= =¢ 3 svW i 3 BW d −

Bo

Vi
S=¢ 3

dvi
W

dt
D . s12d

Here the subscript zero represents the background quantities,
vA=Bo/ s4pniomid1/2 is the Alfvén velocity,cs=sTe/mid1/2 is
the ion sound speed,Vi =seBo/micd is the ion gyrofrequency,
s=Ti /Te is the ratio of ion and electron temperature, andr
=sTp/Ted is the ratio of positron and electron temperatures.

From Eq.(9) we obtain

vWp' <
1

B2BW 3 svW i 3 BW d +
csni + npd
ninpeB2 sBW 3 =¢ ppd

+
c

nieB2sBW 3 =¢ ped −
c

4peniB
2BW

3 fs=¢ 3 BW d 3 BW g. s13d

Neglecting the positron fluid velocity component parallel
to the magnetic field32 and using Eq.(13) in the positron
continuity equation(4), we finally obtain

]np

]t
+ =¢ ' ·F np

B2BW 3 svW i 3 BW d −
cnp

4peniB
2BW 3 fs=¢ 3 BW d 3 BW g

+
csni + npd

eniB
2 sBW 3 =¢ ppd +

cnp

nieB2sBW 3 =¢ pedG = 0. s14d

Equations(11) and (14) together with the ion continuity
equation(4) and the induction equation(12) are the basic
governing equations of the effective one-fluid model for
electron–positron–ionse-p-id plasmas.

We need a procedure which, in a systematic fashion, will
reduce the above sets of equations to simpler forms so that
linear and nonlinear analyses are possible. Such procedures
are usually perturbative in nature and the one we use is
known as the reductive perturbation method. The main sig-
nificance of the reductive perturbation technique is that it
enables us to look in a natural way for long waves, that is,
waves whose wavelengths are long compared to a typical
length scale. This technique has been extensively used in
plasma physics33–39and is mostly applied to small amplitude
nonlinear waves(e.g., Refs. 33 and 34). This technique, on a

mathematical level, enables us to rescale both space and time
variables in the original equations of the system, thereby
making it possible to consider long wave length phenomena.
This rescaling isolates from the system the relevant equa-
tions, which describes how the system reacts on new space
and time scales. The reduction process is slightly ill defined
in that it rests on experience in knowing how to pick the
relevant scales; however, a method on how to pick these
scales is given in Ref. 40, where it is used for deriving ion-
acoustic soliton. It may be noted that the reductive perturba-
tion technique is a special form of multiple scale expansion
technique(e.g., Ref. 38). However in our case we follow
Refs. 30 and 31, by expanding the variables in the following
manner:

ns = nso+ ens1 + e2ns2 + ¯ ,

vsx= eus1 + e2us2 + ¯ ,

vsy= evs1 + e2vs2 + ¯ ,

vsz= e3/2ws1 + e5/2ws2 + ¯ , s15d

Bx = Bo cosu,

By = Bo sinu + eBy1 + e2By2 + ¯ ,

Bz = e3/2Bz1 + e5/2Bz2 + ¯ .

It is noted here that all perturbed quantities are functions of
x, z, and t, and e is a small parameter such thate,1.
Stretched variables are introduced in the standard fashion

j = e1/2sx − vphtd,

h = ez, s16d

t = e3/2t,

wherevph is the phase velocity and its exact expression is
evaluated below. This variable stretching procedure(e.g.,
Refs. 35 and 39) assumes the possibility of introducing new
coordinates and variables such that the slowness of coordi-
nate dependence and smallness of some of the physical vari-
ables can be taken out in a uniform way.

Substituting Eqs.(15) and(16) into ion continuity equa-
tion of Eq.(4) and in Eqs.(11), (12), and(14), and collecting
terms of lowest order ine, i.e., se3/2d we obtain

− vAl
]ni1

]j
+ nio

]ui1

]j
= 0,

l

vA

]ui1

]j
= sinu

]

]j

By1

Bo
+ bs1 + sd

]

]j

ni1

nio
+ bs1 + rd

]

]j

np1

nio
,

l

vA

]vi1

]j
= − cosu

]

]j

By1

Bo
, s17d

vAl
]

]j

By1

Bo
= sinu

]ui1

]j
− cosu

]vi1

]j
,
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vAl
]

]j

np1

npo
= sin2 u

]ui1

]j
− sinu cosu

]vi1

]j
,

whereb=cs
2/vA

2 andl is the normalized phase velocity given
by l=vph/vA, and letni1/nio=f, np1/npo=np1, npo/neo=p,
npo/nio=p/ s1−pd, By1/Bo=By1, sBz1/Bod=Bz1, w1=swi1/vAd,
u1=sui1/vAd, v1=svi1/vAd, g=bs1+sd, z=bs1+rd, and jm

= jm /eniovA (wherem=x,y,z).
Using the set of Eqs.(17), the fluctuating variablesu1,

v1, By1, andnp1 can be expressed in terms off as

u1 = lf,

v1 = −
l cosu

sinu 3l2 − g − zS p

1 − p
Dsin2 u

l2 + zS p

1 − p
Dcos2 u 4f,

By1 =
l2

sinu3l2 − g − zS p

1 − p
Dsin2 u

l2 + zS p

1 − p
Dcos2 u 4f, s18d

np1 = 3 l2 − g cos2 u

l2 + zS p

1 − p
Dcos2 u4f.

Using Eqs.(17) and (18) one can obtain

l2 =

1 + g + zS p

1 − p
Dsin2 u

2

331 ± 11 −
4g cos2 u

F1 + g + zS p

1 − p
Dsin2 uG22

1/2

4 . s19d

Equation (19) is the linear dispersion relation for two-
dimensional magnetosonic waves propagating obliquely, i.e.,
making an angleu with external magnetic field in an
electron–positron–ionse-p-id plasma. This expression shows
that the obliquely propagating low frequency magnetosonic
wave depends on the angleu, ratio of ion to electron tem-
peraturess, the plasmab (the ratio of kinetic energy to
magnetic energy)-value, and the relative positron concentra-
tion p. For p=0, we get the relation given in Ref. 41 for two
component electron–ion plasmas. In expression(19) the up-
per (positive) sign corresponds to the fast mode and the
lower (negative) sign to the slow magnetosonic mode. We
note here that atu=0, Eq. (18) shows apparent divergences
for v1 andBy1. The reasons for this are the following. First at
u=0, the wave decouples into a parallel propagating Alfvén
wave (l2=1 or v=kvA) and an ion-acoustic wave(l2=g or
v=k cIA); for the former casev1svy1d and By1Þ0 but ni1

=ne1=np1=0 and for the latter, which is an electrostatic
wave, v1svy1d=By1=0, but the fluctuating number densities
are not equal to zero. Thus the set of expressions given by
Eq. (18) should not be used to obtain the limiting cases with-
out taking the above into account. However, the linear dis-

persion relation yields the correct results in the case when
u=0. We further mention that atu=p /2 we obtain a perpen-
dicularly propagating magnetosonic wave with the effect of
positron concentration.

The detailed calculations for further analysis of linear
dispersion relation given by Eq.(19) are found in the Appen-
dix.

To develop the nonlinear KP soliton equation for both
the slow and fast modes of the two-dimensional magneto-
sonic waves in electron–positron–ionse-p-id plasmas, we
substitute Eqs.(15) and(16) into the ion continuity equation
[Eq. (4)] and in Eqs.(11), (12), and(14), and then collecting
terms of ordere2 ande5/2, we have in ordere2

l
]w1

]j
= sinu

]By1

]h
− cosu

]Bz1

]j
+ g

]f

]h
+ zS p

1 − p
D ]np1

]h
,

− l
]Bz1

]j
= cosu

]w1

]j
+

lvA

Vi

]2v1

]j2 . s20d

From Eqs.(18) and(19), we get the following two equa-
tions for w1 andBz1 in terms off andl:

]w1

]j
=

l3

l2 − cos2 u

]f

]h
−

l2vA sinu cos2 u

Visl2 − cos2 ud2

]2f

]j2 ,

]Bz1

]j
= −

l2 cosu

sl2 − cos2 ud
]f1

]h
+

l3vA cosu sinu

Visl2 − cos2 ud2

]2f

]j2 . s21d

From term of ordere5/2 we obtain the following set of
equations:

l
]By2

]j
− sinu

]u2

]j
+ cosu

]v2

]j
= f1,

− l
]ni2

]j
+

]u2

]j
+

1

vA

]f

]t
+

]

]j
su1fd +

]w1

]h
= 0,

lvA
]v2

]j
+ vA cosu

]By2

]j
−

]v1

]t
= 0, s22d

lvA
]u2

]j
− vA sinu

]By2

]j
− vAg

]ni2

]j
− vAzS p

1 − p
D ]np2

]j
= f2,

l
]np2

]j
− sin2 u

]u2

]j
+ sinu cosu

]v2

]j
= f3,

where f1=1/vAs]By1/]td+sinus]w1/]hd+s] /]jdsu1By1d
+slvA/Vids]2w1/]j2d−slvA/Vids]2u1/]j]hd, f2=s]u1/]td
+vABy1s]By1/]jd, f3=s1/vAds]np1/]td+2 sinu cos2 us] /]jd
3su1By1d + cosu s1−2 cos2 uds] /]jdsv1By1d + sin2 u s] /]jd
3su1np1d−sinu cosus] /]jdsv1np1d+ f4, and f4=s]w1/]hd
−svA/Vidcosufsinus]2Bz1/]j2d+cosus]2By1/]h]jdg.

By eliminating quantities with subscript 2 and terms
containingBz1 andw1 from Eq. (22) by using Eqs.(18) and
(19) we obtain

012301-4 A. Mushtaq and H. A. Shah Phys. Plasmas 12, 012301 (2005)

Downloaded 23 Oct 2012 to 111.68.103.123. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



]

]j
F ]f

]t
+ lf

]f

]j
− q

]3f

]j3 G + r
]2f

]h2 = 0. s23d

Equation(23) is the KP equation for the propagation of mag-
netosonic solitons in two dimensions for electron–positron–
ion plasmas. KP equation considered the evolution of weakly
nonlinear long waves in dispersive media in which the trans-
verse coordinateh is also taken into account. This KP equa-
tion is considered to be a two-dimensional KdV equation. In
the above Eq.(23) the coefficientsl, q, andr are given by

l = b/a, s24d

q =
c

a
, s25d

r = d/a, s26d

wherea, b, c, andd are given by

a = l6s1 + sin2 ud

+ l4Hg − 2 cos2 u + zS p

1 − p
Dcos2 u sin2 uJ

+ l2Hs1 − 2gdcos2 u + zS p

1 − p
Ds1 + cos2 u sin2 udJ

+ Sg cot2 u −
zp

1 − p
Dcos2 u sin2 u,

b = 3l7vA sin2 u + l5vAHS 7zp

1 − p
− 2Dcos2 u sin2 u + 2gJ

+ l3vAH 2zp

1 − p
ssin2 u − cos4 udsin2 u

+ 2 cos2 us1 − gdJ ,

c =
l5vA

3 cos2 u sin2 uhsz + 1dp − 1j
Vi

2s1 − pdsl2 − cos2 ud
,

d =

l5vASl2 + zS p

1 − p
Dcos2 uDsl2 − cos2 ud

sl2 − 2 cos2 ud
.

Following Ref. 42, the solution of Eq.(23) can be writ-
ten as

f = fo sech2a, s27d

wherefo=−s12q/ ldKj
2 and a=Kjj+Khh−Vt. HereKj and

Kh are the nonlinear wave number alongx and z axes, re-
spectively, such thatKj

2+Kh
2 =K2, andV is the nonlinear fre-

quency for the KP soliton. The KP equation and its solution,
which we have obtained, are for low frequency magneto-
sonic waves, which are partially electrostatic and partially
electromagnetic and, in the case considered here, incorporate
the effect of positrons on the propagation characteristics
(which are discussed later). From the point of view of the
reductive perturbation method that has been used to obtain

the KP equation, we point out that the expansion scheme that
has been used is valid only in the long wavelength approxi-
mation (see, e.g., Refs. 40 and 43) and the KP equation is
valid only for small angle of propagation(since the coordi-
nateh is of a higher order than the coordinatej). We further
note that since we have consideredTe,p.Ti, that is, the elec-
trons and positrons are more energetic as compared to the
ions there by satisfying the general condition which is nec-
essary for magnetosonic waves,vTi! sv /kzd!vTe,p (where
vTi andvTe,p are the thermal velocities of ions and electrons,
positrons, respectively).41 Here this is easily satisfied since
both electrons and positrons are taken to be massless as com-
pared to the more massive ions.

The nonlinear dispersion relation is obtained by using
Eqs.(23) and (27), we getfo=−s12q/ ldKj

2 and

VKj + 4qKj
4 − rKh

2 = 0. s28d

Equation(28) is the nonlinear dispersion relation which re-
latesKj, Kh, andV to each other. In the expressions forl, q,
andr the upper(positive) sign forl represents the fast mag-
netosonic solitons and the lower(negative) sign represents
the case of slow magnetosonic solitons with two dimensions
in e-p-i plasmas. The magnetosonic soliton which makes an
angleu (u is taken as small due to the way we have used the
stretched variables) with the x axis and propagates with a
phase velocity, is obtained from Eq.(28) as

V

K
=

rKh
2

KjsKj
2 + Kh

2d1/2 −
4qKj

3

sKj
2 + Kh

2d1/2. s29d

Using Eqs.(21) and(27) thew1 andBz1 in terms off can be
calculated as

w1 = S l3

sl2 − cos2 ud
Kh

Kj

+
2l2KjvA cos2 u sinu

Visl2 − cos2 ud2 tanhaDf, s30d

Bz1 = − S l2 cosu

sl2 − cos2 ud
Kh

Kj

+
2l3vAKj cosu sinu

Visl2 − cos2 ud2 tanhaDf. s31d

With the application of Eqs.(7), (9), and (19), we find the
expressions for the normalized electric field components of
the two-dimensional obliquely propagating magnetosonic
waves ine-p-i plasmas,

cEx

Bo
= w1 sinu +

2vAKj

Vi
fbs1 − pdP1

+ P2 sin2 ugf tanha, s32d

cEy

Bo
= − w1 cosu − S2vAKjP2 cosu sinu

Vi
Df tanha,

s33d
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cEz

Bo
=

− l3 sinu

sl2 − cos2 ud
f, s34d

where

P1 =
l2 + psz − gdcos2 u

sl2 − l2p + zp cos2 ud
,

P2 = S l2

sl2 − cos2 ud
+ pb +

pbsz + pdsl2 − g cos2 ud
sl2 − l2p + zp cos2 ud D .

Using Eqs.(5), (18), (27), (30), and(31), we find the expres-
sions for the normalized current density components of the
two-dimensional obliquely propagating magnetosonic waves
in e-p-i plasmas,

jx =
2l2vAKh sinu

Visl2 − cos2 ud
f tanha, s35d

j y = −
2l2vAKj

Vi
F cosu

sl2 − cos2 ud
Kh

Kj

tanha

−
lvAKj

Vi

cosu sinu

sl2 − cos2 ud2s1 − 3 tanh2 adGf, s36d

jz = −
2l2vAKj tanha

Visl2 − cos2 ud
f. s37d

III. RESULTS AND DISCUSSION

Equations(19), (27), and(35)–(37) are investigated nu-
merically for linear and nonlinear two-dimensional magneto-
sonic waves obliquely propagating at an angleu to an exter-
nal magnetic field Bo in electron–positron–ionse-p-id
plasmas under the required conditions for the existence of
the localized solution. It is assumed in all cases that the
electron temperature is equal to the positron temperature,
i.e., r=Te/Tp=1. The plot of linear phase velocitysv /kd for
both slow and fast modes of magnetosonic waves against
ps=npo/neod is shown in Fig. 1 forb=0.01, s=0.2, andu
=15°. In this figure the phase velocity of slow wave shows a
decreasing trend and the fast wave shows an increasing
trend, as the positron concentration increases.

The results of Fig. 2 are obtained from the numerical
solution of Eq.(27). The dependency of the amplitude of the
nonlinear ion densityfspd of magnetosonic soliton on the
fractional number ofps=npo/neod for both fast and slow
mode is shown in Figs. 2(a1) and 2(a2). It is found that for

slow mode of the wave, by increasingp between 0 and 1, the
amplitude of soliton increases, however, the results are not
valid atp<1. While the fast mode decreases in amplitude as
the positron concentration increases. This behavior is also
evident in Figs. 2(b1) and 2(b2) for b=0.01, s=0.2, r=1,
Kj=0.48310−5 m−1, and Kh=0.12310−5 m−1 by varying
the value ofp from 0 to 0.4. In Figs. 2(b1) and 2(b2) the
solid curve shows the normalized nonlinear ion density
hump in the presence of positrons, i.e.,p=0.4 and the dashed
curve represents the density structure in the absence of pos-
itron, i.e.,p=0. A similar behavior of variation of amplitude
for slow and fast modes, respectively, are shown in Figs.
2(c1) and 2(c2), and 2(d1) and 2(d2). We have found that for
b,1 both the modes of magnetosonic waves are supersonic
sMa=vp/cs.1d, whereMa is the Mach number, and forb
ù1 the fast mode of the waves are supersonic and slow
waves are subsonicsMa,1d. The plots of Figs. 2(c1) and
2(c2) and 2(d1) and 2(d2) have been obtained for the follow-
ing parametersb=0.1 [for Figs. 2(c1) and 2(c2)], s=0.2 [for
Figs. 2(d1) and 2(d2)], r=1, p=0.4, Kj=0.48310−5 m−1,
andKh=0.12310−5 m−1. The set of Figs. 3 are the graphical
representation of the solution given by the Eq.(35) for x
component of current density as a function ofa. From Figs.
3(a1) and 3(a2), 3(b1) and 3(b2), 3(c1) and 3(c2) it is clear
that the amplitude ofx component of current densityJx in-
creases for slow mode and decreases for fast mode for nega-
tive values ofJx by varying the values ofp, s, and b, re-
spectively. Set of Figs. 4 are the graphical results of Eq.(36)
for y component of current density. The behavior of the plots
in Fig. 4 is the same as in the Fig. 3, i.e., for the fast mode
for positive values ofa the values of the amplitude ofJy

initially is negative and becomes positive asa increases. The
plots in the set of Fig. 5 show that the amplitude of thez
component of current density as a function ofa increases for
slow mode and decreases for fast mode for positive values of
the amplitude. The plasma parameters for Figs. 3–5 are the
same as in Fig. 2. LikewiseEx, Ey, Ez, Bz, andBy follow a
similar behavior for fast and slow modes; however, these
plots are not shown here.

IV. CONCLUSION

We have theoretically studied linear and nonlinear
propagation of obliquely propagating magnetosonic waves in
a three componente-p-i plasmas and have presented our
results graphically. The linear dispersion relations of the two
modes have been discussed in detail and it is noted that when
magnetosonic waves propagate obliquely to the magnetic

FIG. 1. Linear dependency of phase velocity onps=npo/neod for both slow and fast modes of the two-dimensional magnetosonic wave ine-p-i plasmas.
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field the phase velocity of the waves becomes appreciably
different from the case when purely parallel or perpendicular
cases are considered. We assume that the angles at which the
waves propagate relative to magnetic field are small so that
the dispersion is determined by the fact that the ion Larmor
radius is finite and also satisfies the limitations imposed by
the reductive perturbation technique. It is also found that for
b,1 both modes of the wave are supersonicsMa

=vp/cs.1d and for bù1, the fast mode is supersonic and
slow one is subsonicsMa,1d.

In the nonlinear regime the solitons of these magneto-
sonic waves are described by the KP equation given by Eq.
(23), which are obtained by using reductive perturbation
technique. This technique imposes restrictions on the ampli-
tude of the wave, which means that this method can be ap-
plied for small amplitude waves and not for arbitrary ampli-
tudes. This technique also restricts us to investigate the long

wave length magnetosonic solitons only. According to the
perturbation technique we have used, the angle of propaga-
tion will be small, because the effect of the perpendicular
direction is small and the maximum contribution comes from
the longitudinal direction(x axis).44 It is also noted that for
oblique propagation of the magnetosonic waves, if the fre-
quency is not very high and the wavelength is not very short,
then in the whole range, exceptuu−p /2uø sm/mid1/2 (where
m=me=mp), the contribution of the terms containingm/mi is
negligible, that is,m/mi =0, and that is why under this limi-
tation, for u,0, no contribution from positron occurs, i.e.,
p,0 otherwise it can give some contribution even atu,0.

It has been observed that for small angles of propaga-
tion, the fast magnetosonic soliton propagates as a negative
pulse and the slow soliton as a positive pulse. It has been
also found that the amplitude of the solitary structure de-
pends in a complicated fashion on the different plasma pa-

FIG. 2. Dependency of nonlinear normalized ion density as a function ofa (a1, a2) on the fractional numberp, (b1, b2) on positron concentration, i.e., when
p=0 and whenp=0.4, (c1, c2) on the variation of ratio of ion temperature to electron temperature, and(d1, d2) on the value ofb-parameter, for both modes
of the magnetosonic wave ine-p-i plasmas for small angle of wave propagation.
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rameters, i.e., the positron concentration, the ratio of ion
temperature to electron temperature, and the plasmab-value
(which was not investigated in earlier work of Ref. 31).
From the graphical representations it is found that by in-
creasing the values of positron concentration, ion tempera-
ture, and plasmab-value, for the slow mode, the amplitude
increases and the opposite is observed for the fast mode. We
also note that forb,0, we obtain only one mode of the
magnetosonic wave.

Nonlinear characteristics of magnetosonic waves in mul-
tispecies plasmas may find application in space plasmas and
also in fusion plasmas where they are used in particle accel-
eration and heating experiments.25–29Presently we have stud-
ied the case of two-dimensional magnetosonic waves by us-
ing effective one-fluid model, we think these results should
be extended to include relativistic effects ine-p-i plasmas
which are believed to exist in space and astrophysical plas-
mas.

ACKNOWLEDGMENTS

The authors would like to thank the referee for his com-
ments.

One of the authors(M.A.) thanks the Higher Education
Commission(HEC) and the PAEC for financial support of
this work.

APPENDIX: FURTHER ANALYSIS OF LINEAR
DISPERSION RELATION

We shall analyze briefly the dispersion relation given by
Eq. (19) in different limits.

1. Parallel propagation „u=0° …

In this case the dispersion relation(19) is reduced to the
following:

l2 = F1 + g ± s1 − gd
2

G .

Whenu=0, then the fast mode of magnetosonic waves gives
the ion-acoustic waves

l2 = g

or

v2

k2 = CIA
2 =

Ti + Te

mi
,

and the slow one gives ion-Alfvén waves

l2 = 1,

v2

k2 = VIA
2 =

Bo
2

4pminio
.

FIG. 3. Effects of the(a1, a2) positron concentration,(b1, b2) ion temperature, and(c1, c2) plasma pressure, on the amplitude ofJx for a for both slow and
fast modes of the two-dimensional magnetosonic waves ine-p-i plasmas for small angle of wave propagation.
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For u=0, the positron contribution vanishes; however, if
we considermpÞ0 then the positron contribution would ap-
pear here.

2. Perpendicular propagation „u=90° …

In this case the dispersion relation(19) implies that

l2 = 31 + g + zS p

1 − p
D

2
±

1 + g + zS p

1 − p
D

2
4 ,

v2

k2 = VM
2 =

sB0
2/4pd + sneoTe + nioTi + npoTpd

minio
.

The upper sign in the above equation corresponds to the
usual fast magnetosonic wave in the long wavelength range.
In this mode, all the three fluids are frozen to the magnetic
field, that is, the perturbed quantities satisfy the relations

dB

Bo
=

dni

nio
=

dne

neo
=

dnp

npo
.

3. Almost perpendicular propagation „uÈ90° …

In this case the dispersion relation(19) is reduced to the
following:

l2 < 31 + g + zS p

1 − p
D

2
±

1 + g + zS p

1 − p
D

2

311 −
2g cos2 u

S1 + g +
zp

1 − p
D224 .

(a) Fast ion-magnetosonic wave:

l2 < 3S1 + g +
zp

1 − p
D2

− 2g cos2 u

S1 + g +
zp

1 − p
D 4 .

(b) Slow ion-magnetosonic wave:

l2 < 3 g

S1 + g +
zp

1 − p
D4cos2 u.

FIG. 4. Variation of normalized nonlineary component of current densitysJyd for a by varying the value of(a1, a2) the ratio of background positron number
density to the electron number densityp, i.e., forp=0 andp=0.4,(b1, b2) the ratio of ion temperature to electron temperatures, and(c1, c2) plasmab-value.
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4. Low plasma pressure „b=cs
2/vA

2 ™1…

Under this condition the spectrum(19) takes an espe-
cially simple form. Then the fast magnetosonic waves be-
come purely transversesE'kd and obey

v+
2 = k2vA

2 .

The slow magnetosonic wave become purely longitudi-
nal in low plasma pressureb!1 and its spectrum takes the
form

v−
2 = k2cs

2 cos2 u.
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