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Nonlinear Zakharov—Kuznetsov equation for obliquely propagating
two-dimensional ion-acoustic solitary waves in a relativistic, rotating
magnetized electron-positron-ion plasma

A. Mushtag® and H. A. Shah

Physics Department, Government College University Lahore, P. O. Box 54000, Lahore, Pakistan
(Received 23 November 2004; accepted 10 May 2005; published online 23 June 2005)

The purpose of this work is to investigate the linear and nonlinear properties of the ion-acoustic
waves (IAW), propagating obliquely to an external magnetic field in a weakly relativistic, rotating,
and magnetized electron-positron-ion plasma. The Zakharov—Kuznetsov equation is derived by
employing the reductive perturbation technique for this wave in the nonlinear regime. This equation
admits the solitary wave solution. The amplitude and width of this solitary wave have been
discussed with the effects of obliqueness, relativity, ion temperature, positron concentration,
magnetic field, and rotation of the plasma and it is observed that for IAW these parameters affect the
propagation properties of solitary waves and these plasmas behave differently from the simple
electron-ion plasmas. Likewise, the current density and electric field of these waves are investigated
for their dependence on the above-mentioned parameters. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.1946729]

I. INTRODUCTION

In contrast to the usual plasma consisting of electrons
and positive ions, it has been observed that the nonlinear
waves in plasmas having an additional component of posi-
trons behave differently.1 The electron-positron-ion plasma
has an important role in the understanding of the plasmas in
the early univelrse,z_4 in the active galactic nuclei,5 in the
pulsar magnetospheres,6 and in the solar atmosphere.7’8

It is well known that when positrons are introduced into
electron-ion (e-i) plasma the response of the plasma changes
significantly. The positrons can be used to probe particle
transport in tokamaks and, since they have sufficient life-
time, the two-component (e-i) plasma becomes a three-
component (e-i-p) one.”'® During the last decade, e-p-i
plasma has attracted the attention of several authors.'''°
They have studied linear and nonlinear wave propagations in
e-p-i plasmas using different models. The ion-acoustic
waves (IAW) in multicomponent plasmas has long been
studied and both the linear'’ " and nonlinear*' ™’ dynamics
associated with this wave have been investigated.

Relativistic plasmas can be found in many situations, for
example, under the influence of high-power laser radiation,
plasma particles may attain relativistic speeds.zg’29 A number
of nonlinear phenomena occur in relativistic plasmas, and
thus relativistic Langmuir and electromagnetic waves have
been studied as subjects of laser-plasma interaction™ and
space-plasma phenomena.31 In the nonlinear regime relativ-
istic effects can significantly affect the wave character.

Plasmas with high-energy ion beams occur in the plasma
sheet boundary layer of the Earth’s magnetosphere32 and in
the Van Allen radiation belts.* Propagation of ion-acoustic
waves in a relativistic plasma having streaming ions has been
found to be most interesting.34 The results of Ref. 34 were
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later rederived by the use of the pseudopotential method, ™
with the assumption that the ion temperature is zero (7;=0).
Since the ion temperature is very high in the relativistic plas-
mas of solar flares,’® the solar wind,”’ and interplanetary
space, the ratio of the ion-to-electron temperature is some-
times more than unity. In such situations both the relativistic
effects and the ion temperature appreciably affect the propa-
gation characteristics of the soliton. It is therefore important
to consider finite ion temperature. In previous theories, like
those discussed in Refs. 34 and 35, the investigations made
were restricted to only the one-dimensional flow of the ions
and the electrons. Kadomtsev and Petviashivili*® made the
first attempt to model a soliton in a two-dimensional system,
later Zakharov and Kuznetsov (ZK)* made the first attempt
to model a soliton in a three-dimensional system. For a non-
relativistic magnetized plasma with 7;=0, they obtained a
three-dimensional differential equation, which is known as
the ZK equation. However, this ZK equation may also be
used for a two-dimensional magnetized system.40

The rotating flows of electrically conducting fluid (such
as plasma) in the presence of a magnetic field is encountered
in cosmic and geophysical fluid dynamics. It can provide an
explanation for the observed maintenance and secular varia-
tion of the geomagnetic field.*' It is also important in the
solar physics involved in sunspot development, the star
cycle, and the structure of rotating magnetic stars.*> When a
star is transformed into a neutron star, the moment of inertia
decreases strongly; thus, the conservation of angular momen-
tum causes a high rotation of the star. Under the condition of
frozen in force lines, magnetic flux is also conserved; thus,
the field varies in proportion to > (r is the radius of the
star). Therefore; as a rule, neutron stars should rotate quite
rapidly and should be strongly magnetized. The nonlinear
evolution of the electrostatic wave propagation in this type of
highly rotating and strongly magnetized e-p-i plasma is the
aim of the present work. Nonlinear wave propagation in the

© 2005 American Institute of Physics
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electron-positron plasma of a pulsar magnetosphere has been
investigated using different approaches by various
authors.”*

The study of obliquely propagating (with respect to an
external magnetic field) two-dimensional, ion-acoustic soli-
ton via the ZK equation has not yet been studied in a rotat-
ing, strongly magnetized, and collisionless weakly relativis-
tic e-p-i plasma with finite ion temperature (7;# 0). Thus in
this paper, we theoretically investigate two-dimensional
propagation of ion-acoustic waves in such plasmas and show
that the propagation of these waves is governed by the ZK
soliton equation. The effects of ion temperature, relativity,
the external magnetic field, rotation of the plasma, and the
concentration of positrons on the IAW dynamics, both in the
linear as well as in the nonlinear regimes are investigated.
The organization of the paper is as follows.

In Sec. II the basic set of nonlinear equations and dis-
persion relation are presented and the nonlinear ZK equation
is obtained by using the reductive perturbation technique.
The stationary solution of this equation is obtained in Sec.
III. In Sec. IV the numerical results of linear and nonlinear
IAWs are discussed along with the conclusion of these re-
sults.

Il. GOVERNING EQUATIONS AND FORMULATION

We consider a two-dimensional, magnetized, rotating,
and collisionless weakly relativistic three-component
(e-p-i) plasma. The external magnetic field is directed along
the x axis, i.e., By=B¥, and the propagation is considered in
the (x,y) plane. The electrons and positrons are assumed to
be isothermally hot, while the ions are treated as a fluid with
finite temperature. The phase velocity of the IAW is much
larger than the ion thermal velocity and much less than the
electron (positron) thermal velocities, i.e., v; < w/k<v,,, v,
[where v,j=(T;/m;)"* is the thermal speed of jth species
while j=e, p, i]. Since we consider low-frequency IAWs, we
neglect the effect of the electron (positron) inertia. To main-
tain quasineutrality, the dimensions of the system are as-
sumed to be much larger than the electron Debye length. In
the absence of perturbations, we assume that the plasma is in
an equilibrium condition with the relativistic ion streaming
only in the x direction. The y and z components of the ion
velocity are considered to be nonrelativistic. We neglect any
transport properties, such as viscosity and heat conduction,
etc. Under these conditions the nonlinear dynamics of the
low-frequency IAW in a rotating magnetized three-
component plasma are governed by the following set of
equations: the ion continuity equation

on.
ThV (v =0 (1)
ot

and the ion momentum equation

dv.
%:- Vtro v XH-ZVp+20v;X Q). (2)
n;
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The electrons and positrons in the electrostatic potential
perturbation obey the Boltzmann distributions, since they are
considered inertialess. These Boltzmann relations for the
electrons and positrons are, respectively,

ne=exp(¢h) (3)
and

n,=exp(- ad). 4)
The Poisson equation for this system is

Vip=pe?+ (1 - p)e*® —n,. (5)

We have taken E=—V ¢ (where E is the electric field
and ¢ is the electrostatic wave potential normalized by T;/e),
v; is the ion fluid velocity normalized by the ion-acoustic
speed c,;=(T,/m;)""?, and n ; is the number density of particle
species j normalized by their unperturbed density n;,. The
rotation frequency (angular velocity) Q=% (where £ is the
unit vector along x axis and () is the magnitude of rotation
frequency) and the ion gyrofrequency w,;=eBy/m;c (where e
is the magnitude of electron charge, m; is the mass of ion, By
is the magnitude of the ambient magnetic field, and c is the
speed of light) are normalized by ion plasma frequency w,,
=/(4mmn;0e*/m;). The space and time coordinates r and ¢ are
normalized, respectively, by Deby length \,=\T,/4mn;ye*
and the ion plasma period w;[-l. Also pu=1/1-p where
p(=n,,/n,,) is the ratio of positron background density to
electron background density, o(=T;/T,) is the ratio of ion
temperature to electron temperature, and a(=T,/T},) is the
ratio of electron temperature to positron temperature. Here T;
is the temperature of jth species, where j(=e,p,i) represents
an electron, positron, and ion, respectively. The last term in
Eq. (2) represents the Coriolis force due to rotation of the
plasma with frequency ().

Equations (1), (2), and (5) in component form in the xy
plane can be written as

z?ni
ar +d ;) + dy(nv,) =0, (6)

(o
az(Wix) + (vixax + Uiy&y)'yvix + 5x¢ + ;axni = 0’ (7)

l

o
(9[Uiy + (Uix(?x + v,-},(?y)v,-y + (9y¢ + n—ﬁyni - chiz = 0, (8)
i

v, + (v, 0, + Uiyﬁy)viz + chiy =0, 9)
;P i}
(2 2 )= et 1=, (10

where y=[1-(v?/c?)]">=(1+v2/2¢? in the weakly rela-
tivistic regime, ¢ the speed of light is also normalized with
¢,i» and Q.=(w.;+20).

We apply the reductive perturbation technique (RPT) to
Egs. (6)-(10) to obtain the nonlinear Zakharov—Kuznetsov
equation for the two-dimensional, small-amplitude ion-
acoustic solitary waves in the weakly relativistic rotating
magnetized three-component (e-p-i) plasma. The RPT is a
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well-known method* ' mostly applied to small-amplitude

nonlinear waves (see, e.g., Refs. 45 and 46). This technique
on the mathematical level rescales both space and time in the
original equations of the system in order to introduce space
and time variables, which are appropriate for the description
of long-wavelength phenomena. This rescaling gives the iso-
lation from the system of relevant equations, which describe
how the system reacts on the new space and time scales. We
note that the reduction process is slightly ill-defined in that it
rests on experience in knowing how to pick the relevant
scales. The reductive perturbation theory general principles
are based on multiscale expansion (e.g., Ref. 50), which in
our case can be written in the following manner:

ni=1+enl+62n2+ e
Vie=Ug+ €Uy + Eu+ -,
V=€V + €U+ e,
V.= €Pwi+ €Pwy+ e,

b=€p+Ehy+ . (11)

It is noted here that all perturbed quantities are functions
of x, y, and 7, and € is a small (0<e<1) expansion param-
eter characterizing the strength of the nonlinearity, such that
the stretched variables are introduced in the standard fashion,

£= P (lx -\,

1/21

n=€"ly,

=€, (12)

where \ is the normalized phase velocity of the ion-acoustic
wave and [ (=ky/k)=cos 60, and [, (=k  /k)=sin 6, such that
12+12—1 where 0 is the angle between propagation vector k
and the external magnetic field B,. This variable stretching
procedure (see, e.g., Refs. 47 and 51) assumes the possibility
of introducing new coordinates and variables such that the
slowness of coordinate dependence and smallness of some of
the physical variables can be taken out in a uniform way.

Substituting Egs. (11) and (12) into Egs. (6)—(10) and
collecting terms of lowest order in €, i.e. (~€ and /) we
obtain

P P
O Lugy 2 9P P
PYRT: €
d
—(h- uOZ)ﬂH -0,
(7§

n—a ¢ =0,

J d
lyﬂ+olvﬂ—ﬂcwl=0, (13)

an T dn

where y,=(1+3uj/2c?) and d=pu—a(l1-u). Using the first
three equations of the above set of Eq. (13) we obtain

Phys. Plasmas 12, 072306 (2005)
- (N =Lug)yyu, + I,y + al,n; =0,

n =adp,

uy =" (N = ugly) d. (14)

The linear phase velocity for ion-acoustic wave can be
written as

1 o \172
7\=Molx+lx( ” ) . (15)
e Y

It can be noted from Eq. (15) that the linear phase velocity is
influenced by the relativistic effect, positron concentration,
obliqueness, and the ion temperature, but not by the external
magnetic field w,; and rotation of the plasma (). In the case
when #=0 and positron concentration p=0 then we obtain
Eq. (11) of Ref. 52 and Eq. (24) of Ref. 36 in electron ion
plasmas.

In the next order (~€?) by using Eqgs. (9) and (10) we
obtain

-(\- uol) +QCU1—O
P & ,
(lzagz +l§&772> (d ¢2+%,3 dﬁ—”z) =0, (16)

where B=[u+a*(1-pu)]/2, by using Egs. (14) and (16) we
get

w; =0 (1+0'a)al;7] (17)

vy = QLN = upl) (1 + o) P (18)

dEdn
Equation (17) is the E X B drift along z axis and Eq. (18)
is the polarization drift along y axis. These drifts appear in
the higher orders also.
From terms of order €’?> we obtain the following set of
equations:

J 17
= uglyy 2y 92 l—”2
§ 23 29
du,y N 0714% ; ou?
=y — —Ay,— +
" a7 V2 9é uo?’zxag
up (9711
+ 7]lxu1(9_§_o-lxnl&_§’
17 J 17 J
N ugl) T2 =152 = T Ty + 1,5
o Yof  ar o an
J
l,— ¢> 0'l -Qwy=0l nl — (N = uyl, )— (19)
S dn (97]

where y,=3uy/2c%. By eliminating quantities with subscript
2 and terms containing v, and w, from Egs. (16) and (19) by
means of Egs. (14) and (15) we obtain the nonlinear
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Zakharov—Kuznetsov equation for the first-order electrostatic
potential as

ady o Ph P
P +1¢, PY: +r pye +q—r7§r9772_0' (20)

Equation (20) is the ZK equation for the ion-acoustic
soliton in a two-dimensional, magnetized, rotating, and col-
lisionless weakly relativistic three-component (e-p-i)
plasma. The ZK equation describes the evolution of weakly
nonlinear long waves in dispersive media in which the trans-
verse coordinate 7 is also taken into account for a strongly
magnetized plasma. The ZK equation has retained much of
the essential physics including the EX B drift along z axis
and the polarization drift along y axis. In Eq. (20) the coef-
ficients /, r, and g are given by

ﬁ()\—uolx> lf (2,[;’+ c’v3cr):|
5 ,

3
I= Gn—ugly)| = -
a( u()x)|:2

"1 L @ n (N =ugly)
(21)
l4
.t (22)
2y @ (N = ul,)
_ 2r { ay,(1+a a)(\- uolx)z}

17 2@ =gl % '

(23)

The ZK equation (Ref. 39) is one of the better studied
canonical two-dimensional extensions of the Korteweg—de
Vries equation the other being the Kadomtsev—Petviashvilli
(KP) equation (Ref. 38). In contrast to the KP equation,
which is valid only in isotropic situations, the ZK equation is
valid in anisotropic settings, which is exactly the case of
rotating fluids where the differential longitudinal dependence
of the rotation rate causes anisotropy between the meridional
and the longitudinal directions. We also note that for the
nonlinear mode of the electrostatic wave (such as ion-
acoustic wave) the KP equation is valid in an unmagnetized
and unrotating plasma, whereas the ZK equation is valid for
magnetized (Ref. 40) and rotating plasma. Moreover, in con-
trast to the KP equation, the ZK equation supports stable
lump solitary waves. This makes the ZK equation a very
attractive model equation for the study of vortex soliton in
plasmas and fluid physics.53 During the last two decades, the
ZK equation has attracted the attention of several
authors.”*™’ They have studied this equation for different
models in different areas of physics.

lll. SOLUTION OF THE ZK EQUATION

The steady-state solution of the ZK equation [Eq. (20)]
is obtained by transforming the independent variables &, 7,
and 7 into a new coordinate y, and then by following Ref. 4
the solution of Eq. (20) is

¢1 = ¢, sec h’x, (24)

where y=(&+ n—vy7)/A, here v is a constant velocity nor-
malized to ¢y, A is the width of soliton, and ¢,, is the am-

Phys. Plasmas 12, 072306 (2005)

plitude of soliton. Both A and ¢,, (normalized to \,) are
given by

¢m:(%>, A: /4(7""]) (25)
[ Uo

By using Egs. (14) and (24) we can find the solution for
ny and u; as

n, =n,, sec h>y

u, = u,, sec h’y, (26)

where n,, and u,, are, respectively, the peak soliton ion den-
sity and peak soliton x component of ion velocity and are
given by

nm= a, d)m’

_ d()\ - uolx)

m—
Ly

G- (27)

u

The soliton energy &, can be calculated by using the integral
&= f Wi (x)dx. (28)

By substituting Eq. (26) into Eq. (28) and after integration,
we obtain

g,= ;—‘uiA. (29)

With the application of Egs. (17), (18), and (24) w,; (the
E X B drift along 7 axis) and v, (the polarization drift along y
axis) can be calculated and yields

[— 30721 + d o)l
1=

tanh y |sec %y, (30)
QN (r+q) Xl X

2¢,, 1,(1 + @ a)(\y— uyl,)(3sec h*xy —2)

sec h’x. (31)

By using the relation E=—V ¢ and Eq. (24) we find the
expressions for the normalized electric field components of
the two-dimensional obliquely propagating IAW in e-p-i
plasmas as

X

—

3 [3 vS/ZZX tanh y
l\r(}"+ q)

}sec h’x, (32)

3 v%1, tanh
E,= [—0 — X

, sec h%y. (33)
WN(r+q) :|

Using Egs. (11), (12), and (24) we find the expressions
for the normalized current density components of the two-
dimensional obliquely propagating ion-acoustic waves in
e-p-i plasmas as (with ~¢€?)

. {3 \ 03l (3 sec h*x —2)
Jx=

nx, 34
2l(r + g)c }sec X (34)
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.3 0.4
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=
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FIG. 1. Linear dependency of phase velocity (N—uglx) on the relativistic
streaming factor uy/c for different values of (a) o and (b) positron concen-
tration p each marked on the curve.

| 3N vgh(Bsec P x-2)
Iy= 2[(r+q)c

sec hy. (35)

It is seen from Egs. (24)—(35) that all the quantities are sig-
nificantly affected by the streaming relativistic factor, the
finite ion temperature, positron concentration, magnetic field,
and the rotation of the plasma, which are also evident from
the graphical results in the following section.

IV. RESULTS AND DISCUSSION

The graphical results are presented under the required
conditions for the existence of the localized solution. It is
assumed in all cases that the electron temperature is equal to
the positron temperature, i.e., @=T,/T,=1. The dependence
of linear phase velocity of two-dimensional (2D) IAW on the
relativistic streaming effect uy/c, the ratio of the ion-to-
electron temperatures o, and positron concentration p is
shown in Fig. 1. The phase velocity decreases against ugy/c
for all the values of o and p, but for a fixed value of uy/c, the
phase velocity increases as o increases and decreases for the
higher values of p. The plots of Fig. 2 are the graphical
results of the amplitude of electrostatic potential of soliton
¢,, against the relativistic streaming factor u,/c for different
values of (a) o, (b) p, and (c) 6. It is evident that the ampli-
tude increases with uy/c for all values of o, p, and 6; how-
ever, at a fixed value of uy/c it decreases with increasing
values of o and p and increases with higher values of 6. The

Phys. Plasmas 12, 072306 (2005)

a

1.85 Bold line for 0=0.01 .
Single line for ¢=0.03 -

1.6 Dasshed line for 0=0.05 4

3.5¢ Bold line for p=0.01
Single line for p=0.015

Dashed line for p=0.02

FIG. 2. The amplitude of soliton potential ¢,, against the relativistic stream-
ing factor uy/c with the variations of (a) ion-to-electron temperature ratio o,
(b) ratio of positron back ground density to electron back ground density p,
and (c) obliqueness 6.

variations of width A versus uy/c and obliqueness 6 are
shown, respectively, in the plots of Figs. 3 and 4. From Fig.
3 it is clear that the width of the soliton decreases with uy/c
for all values of o and p, and increases for decreasing values
of o and p for a fixed value of u,/c. Figure 4 shows how the
width of the soliton changes with obliqueness # with varia-
tion of (a) rotation (), and (b) the external magnetic field w,;.
In these two cases it is observed that width A increases with
0 for its lower range but decreases for its higher value. The
variation of width in this set of figures has been shown for an
arbitrary value of 6. The graphical representations of the ef-
fects of rotation (), on the amplitude of current density j,
and j, are shown in the plots of Fig. 5. It is shown that the
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O
o
W
o
-y

0 0.1 Q.
U
Cc

FIG. 3. Variation of the width of soliton A with relativistic streaming factor
uy/c by varying the parameters (a) ratio of ion temperature to electron
temperature o and (b) positron concentration p.

amplitudes of j, and j, increase with increasing values of
rotation ).

The numerics of the physical parameters used for all
figures are vy=1, p=0.4, 0=0.01, 6=7u/12, a=T,/T,=1,
B(=uy/c)=0.2, w,=1, and Q;=0.001.

The properties of linear and nonlinear IAW with effects
of different independent parameters in relativistic rotating
magnetized e-p-i plasma have been studied. Since propaga-
tion of the wave depends strongly on the medium (plasma),
the stability and instability (damping or growing) of the
wave depend on the different parameters used in the plasma.
Since soliton formation is due to either some instabilities or
nonlinearities in the medium, the amplitude, maximum am-
plitude, and width of the soliton are strongly dependent on
the parameters used and this is also clear from Figs. 2—4.
Some salient features of the results of this work may be
summarized and concluded as follows.

(1) We have shown that in the linear study of IAW, phase
velocity is inversely related to positron concentration
and the relativistic ion streaming factor, while it is di-
rectly proportional to the ion temperature and cosine of
the angle.

(2) It has been found that for given values of the parameters
in the system, ¢,, is positive, which shows that the ion-
acoustic wave admits only the positive potential (rar-
efactive solitary wave).

(3) The effects of ion temperature and positron concentra-

Phys. Plasmas 12, 072306 (2005)

e we1=0.3 \

FIG. 4. Variation of the width of soliton A with obliqueness 6 by varying
the parameters (a) rotational frequency (), and (b) cyclotron frequency ;.

tion modify the height and width of this wave. It is
found that for increasing values of ion temperature and
positron concentration the height of soliton decreases
with increasing u,/c, while width decreases with de-
creasing ug/c.

(4) It is shown that the obliqueness 6 and the external mag-
netic field w.; modify the stability of the soliton and also
change the amplitude and width of these solitary wave
dynamics. It is obvious from relations (19) and (25) that
amplitude is inversely related to cos 6. From relations
[Egs. (19) and (25)] and graphical results (Fig. 4) it is
obvious that width increases with 6 for its lower range
and decreases for higher values of 6. It should be
pointed out that for large angles the amplitude becomes
o and width goes to zero. It is likely that for large angles
the assumption that the waves are electrostatic is no
longer a valid one and in that case we should look for
fully electromagnetic structures of the wave. It means
there is some restriction imposed on the angle 6 which,
according to our perturbation scheme, means that the
angle should be small. The maxima for width was cal-
culated and the angle for which the width becomes
maximum in Fig. 4 is 54.67° and at this value #A/J6"
<(. Thus 6.=54.67° is called the critical angle below
which the electrostatic nature of this wave is dominant
and for 6> 6. the nature of the wave become more elec-
tromagnetic.

(6) Rotation of the plasma (around the axis of external mag-
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FIG. 5. The effects of rotation (), on (a) x component of current density j,
and (b) y component of current density j, for the two-dimensional IAWs in
e-p-i rotating strongly magnetized plasmas.

netic field) considerably affects the nature of the nonlin-
ear structure of IAW. The magnitude of rotational fre-
quency and the external magnetic field have no direct
effect on the amplitude of the soliton; however, they do
have a direct effect on the width of these solitary waves.
It is shown that as we increase both the rotation and
cyclotron frequencies the width of these solitary waves
decreases, and this means that the coupling effect of
rotation and external magnetic field makes the solitary
structures more spiky. Further, due to rotation the energy
of soliton decreases, and as a result, the amplitude of
soliton u,, also decreases. A decreasing soliton ampli-
tude may, therefore, be attributed to the decreasing soli-
ton energy, which may be possible due to the reflection
of ions and positron from the electrostatic field gener-
ated inside the plasma. Another reason for the decrease
of soliton amplitude may be due to the wave particle
exchange mechanism, the calculations of which are pos-
sible from kinetic theory and beyond the scope of the
present work.

(7) The parameters (ion temperature, positron, relativistic
streaming factor, rotation, and external magnetic) also
affect the current density significantly. It is shown that
for rotation and external magnetic field the amplitude of
current density increases. From relations (31) and (32) it
is obvious that when 3 sec h>y>2 the current density
will be positive otherwise it is negative. In Fig. 5 it is
clear that for y~ (0—+0.65), 3 sec h*y>>2, which make

Phys. Plasmas 12, 072306 (2005)

Jx and j, positive and for y>+0.65, 3 sec h*x<2 the
current densities become negative. Physically it means
that, in the first case, the field is concentrated on ions
and positrons and the electrons are depleted from that
particular region and, subsequently, the currents due to
ions and positrons are dominant, as compared to the cur-
rent due to electrons and vice versa in the latter case.

In the end, we conclude that we have studied the IAW propa-
gating obliquely to the external magnetic field in a weakly
relativistic rotating e-p-i plasma. The system consists of
electrons and positrons as Boltzmannian particles, and ions
provide the dynamics of the system. The ZK-soliton equation
is derived for this wave by employing the RPT. It is noted
that the finite ion temperature, positron concentration, ob-
liqueness of the propagation direction, relativistic ion
streaming term, and the magnitude of external magnetic field
affect significantly the nature of the solitary structure. In par-
ticular, it is shown that due to the rotation of the plasma
(around the axis of external magnetic field) the width of the
soliton becomes narrow. Thus, such a 2D IAW with finite
amplitude and narrow width generated in a rotating plasma
could illustrate the motion of high-energy protons, which are
believed to be present in the Van Allen radiation belts® and
in pulsar magnetospheres.‘m’45 Also, the rotating flows of
plasma in the presence of a magnetic field are believed to
exist in cosmic plasmas and in the solar atmosphere.43 In this
work we have given some insights about a strongly magne-
tized physical system with rotational and relativistic particle
flow in two dimensions. Further studies of different kinds of
solitons and other related nonlinear phenomena in such a
system are subjects for our future investigations.
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