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The propagation pattern of electromagnetic waves �EMWs� in dusty plasmas is quite different from
that in electron-ion plasmas. For instance, here the ponderomotive force acts on dust grains as a
negative pressure, and a nonlinear Schrödinger equation with an additional nonlinear term is
obtained. Based on this equation, the modulation instability is examined and it is shown that the
growth rate becomes maximum when that additional term compensates the diffraction term. The
main part of this work is devoted to the localization of the grains by the EMW. Considering both
subsonic and supersonic regimes, it has been shown that under certain conditions the grains are
localized and the ions circumnavigate the grains, whereas the electrons escape from the region of
localization. Further, the localization of grains by the EMW is found to be shape-dependent of the
pulse. Comparing pancake and light bullet shaped pulses in the supersonic regime, and it is shown
that only the light bullet shape leads to the compression of grains. Finally, investigating
nonstationary solution, it is shown that for some parameters, the nonlinear wave breaking and the
formation of a shock wave can take place. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2219740�

I. INTRODUCTION

Nonlinear wave propagation in plasmas has become one
of the most important subjects of plasma studies, and much
work has been devoted to the nonlinear interactions of high-
frequency electromagnetic �EM� waves in an electron-ion
plasma.1–15 However, when an electron-ion plasma contains
extremely massive, micrometer-sized charged dust grains,
there appears the possibility of new normal modes.16–25 The
latter include the dust-acoustic �DA� waves that have ex-
tremely low phase velocities �in comparison with the elec-
tron and ion thermal velocities� and which appear as a nor-
mal mode of a three-component dusty plasma comprising of
electrons, ions, and dust grains. In a dusty plasma, both the
electrons and the ions can at times be considered to be
Boltzmann-distributed, whereas the charged dust particles
are always inertial. Thus, the pressures of the electrons and
ions provide the restoring force, whereas the inertia comes
from the dust mass. Experimental confirmations about the
existence of DA waves have also been made in several labo-
ratory experiments.28–30 In addition, a number of studies
have discussed the properties of complex �dusty�
plasmas.26,27

Many studies have been conducted to examine nonlinear
coupling of high-frequency EM waves �EMWs� and DA or

dust-ion acoustic waves in both unmagnetized and magne-
tized dusty plasmas, and it has been found that the presence
of extremely massive charged dust grains modifies the
strength of the coupling coefficient, because the number den-
sities of the ions and electrons are not equal. It is well known
that the slow modulation of a monochromatic EM plane
wave can be described by the nonlinear Schrödinger �NLS�
equation. For a medium with a positive coefficient of cubic
nonlinearity, the instability that arises in the transverse direc-
tion is known as self-focusing, while that in the longitudinal
direction is referred to as the modulational instability. Sev-
eral theoretical attempts have been made to investigate
modulational instability and to search for nonlinear struc-
tures in dusty plasmas. Recently, the stimulated scattering of
a light wave in a dusty plasma was also considered by
Shukla and Stenflo, in which the dust charge fluctuation ef-
fects were considered.31

In this paper, we consider the nonlinear propagation of
high-frequency, long-wavelength transverse �EM� waves in a
collisionless dusty plasma. A NLS-like equation with an ad-
ditional term is derived and its modulational instability is
investigated, leading to the excitation of DA waves. It is
observed that when the extra nonlinear term compensates the
diffraction term, the growth rate becomes maximum. In this
paper we assume that the size of the dust grains is much
smaller than the Debye radii and the wavelengths of the EM
waves. Our basic emphasis is on the focusing of EM waves
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and we show how, in the area of localization of wave energy,
the density of grains increases and the ions, following the
grains, start clustering around them, while electrons are
pushed away from that region. Further, this localization of
EM waves is dependent on the shape of the EM pulse. Con-
sidering the example of pancake and bullet shaped pulses,
we find that only the latter leads to compression of grains in
the supersonic regime of the focusing region. Here we might
speculate on the possible existence of dust atoms that Tsint-
sadze et al.32 have recently proposed, by deriving a Thomas-
Fermi type equation for dust grains in plasmas, where the
negatively charged dust grain acts as the positive nucleus and
the positively charged trapped ions circumnavigate around it.

The article is organized in the following fashion. In Sec.
II, we present the basic formulation for the motion of dust
grains and discuss the condition for compression of the dust
grains. In Sec. III, we derive a NLS equation governing the
dynamics of modulated DA waves. The discussion of the
compression phenomenon and the possibility of crystalliza-
tion of the dust atoms is presented in Sec. IV. Section V deals
with the nonstationary solution of the NLSE. Finally, conclu-
sions are given in Sec. VI.

II. MATHEMATICAL FORMALISM

We consider a three-component fully ionized plasma
composed of electrons �with mass m and charge e�, ions
�mass mi and charge qi=Zie�, and heavy charged dust par-
ticulates with mass md and charge qd=−Zde in thermody-
namic equilibrium. Our aim here is to consider some phe-
nomena that can arise during the propagation of
electromagnetic waves in such plasmas.

We shall consider some specific properties of such inter-
action in a collisionless dusty plasma, by assuming the oscil-
lation time t0 of EM waves �t0�2� /�0, where �0 is some
characteristic frequency associated with the EM wave� to be
much less than that of all other particulates. Here we are
interested in the motion of dust grains, so we consider that
the time with which velocity and density of grains changes to
be much larger than that of electrons and ions; i.e.,

vd� �vd

�t
�−1

, nd� �nd

�t
�−1

� te
1

�pe
, ti

1

�pi
,

where �pe and �pi are the Langmuir frequencies for electrons
and ions, respectively. It is for this reason that electrons and
ions are taken to be inertialess. We also note as the electrons
are lighter than the ions, they are most effected by the elec-
tromagnetic field via the ponderomotive force. For the spatial
scale, we assume inequalities a�rD���, where a, rD�, and
� are, respectively, the dust grain radius, Debye radius of the
electrons or ions, and wavelength of the EM wave 9. It is
important to mention here that we have assumed that the
occurrence time for the nonlinear processes discussed is
much smaller than that required for further significant
change in dust charge, and therefore we take the dust charge
to be constant.

The Boltzmann distribution for the electrons and ions is
expressed as

ne = noe exp� e� −
e2	A	2

2moc2

Te

 , �1�

ni = noi exp�− Zie�

Ti
� . �2�

We note that the effect of the ponderomotive force is taken
into account only for the electrons for the reason given
above. The ponderomotive force here has been expressed
through the vector potential A, which has the form

A = Ao�r,t�exp i�ko · r − �ot� , �3�

where A0�r , t� is the amplitude of vector potential of the EM
wave, which is slowly varying in space and time.

The continuity and momentum equations of dust grains
are

�nd

�t
+ � · �ndvd� = 0, �4�

�vd

�t
+ �vd · ��vd =

��ZDe��
md

. �5�

In Eq. �5�, we have neglected the pressure term, by consid-
ering that for the temperatures the following inequality, i.e.,
Td�Ti ,Te, holds. The electrons and ion number densities are
given by ne=n0e+�ne, ni=n0i+�ni, respectively, where �ne

and �ni are the respective perturbations. The quasi-neutrality
condition can be expressed as

Zi�ni = Zd�nd + �ne. �6�

We further suppose that 	e�−e2	A	2 /2moc2	�Te and Zie	�	
�Ti, and use in Eq. �1� and Eq. �2� along with the condition
of quasi-neutrality, to express the potential energy e�
through the density of dust grains and ponderomotive poten-
tial. We thus obtain

e� = − �TeZd
�nd

nod
+

noe

nod
�

e2	A	2

2moc27, �7�

where �=nodTi / �noeTi+ZiTenoi�. Substituting Eq. �5� into
Eq. �3�, we get

�vd

�t
+ �vd · ��vd = − ud

2 � ��nd

nod
� + 	 � Upond, �8�

where ud is the dust acoustic velocity, given by ud

=Zd
�Te� /md, 	= �Zd� /md��n0e /n0d�, and the ponderomotive

potential is Upond=e2	A	2 /2moc2.
It is important to emphasize here that the structure of Eq.

�8� is quite different from the case of a two component
plasma, where the ponderomotive force is added to the equa-
tion of motion of the ions as a usual pressure term with a
minus sign. In our case 	 is positive and we can say that the
ponderomotive force acts on dust grains as a negative pres-
sure

Ppond = − 	mdndUpond. �9�

We now assume that the ponderomotive force due to EM
waves is not strong enough to effect the nonlinearity of the
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dust grains; i.e., we can neglect the second term of left-hand
side �l.h.s.� of Eq. �8� and linearize the continuity equation
�4�. Combining the two equations, we obtain

� �2

�t2 − ud
2�2��nd

n0d
= − 	�2Upond. �10�

Equation �10� shows that the right-hand side �r.h.s.� contains
a negative ponderomotive pressure, unlike Zakharov’s
equation,10 where a positive ponderomotive force always ap-
pears.

III. SCHRÖDINGER EQUATION AND MODULATION
INSTABILITY

In spite of the large number of publications devoted to
the derivation of the NLS equation and the investigation of
modulational and filamenational instabilities, envelop soli-
tons, self-focusing, etc., in dusty plasmas, we will show that
in a three-component dusty plasma, the structure of the non-
linear Schrödinger equation is physically different from that
in a two-component plasma.

In order to construct the nonlinear Schrödinger equation
and then to investigate the excitation of dust acoustic waves,
we start with Maxwell’s equations, assuming the amplitude
of the electromagnetic waves to be nonrelativistic. Thus, we
can obtain the following equation for the vector potential:

�2A −
�2A

�t2 =
ne

noe
A . �11�

Here we have introduced the following dimensionless vari-
ables: r→ ��pe /c�r and t→�pet, where �pe=�4�e2n0 /me is
the Langmuir frequency. Substituting expression �6� into Eq.
�11� and expressing the density deviation of the equilibrium
density �ne−n0e��ne� and the density variation of dust
grains and ponderomotive potential, we obtain a new type of
nonlinear Schrödinger equation:

2i�o� �

�t
+ vg ·

�

�r
�Ao + �2Ao

+ �ZD�
�nd

nod
+

Zin0i

n0d
�

Upond

Ti
�Ao = 0, �12�

where �0 is dimensionless frequency, i.e., �0 /�p, and we
have made use of the linear dispersion relation for an EM
wave

�o
2 = �p

2 + k0
2c2. �13�

We note that in Eq. �12�, vg is the dimensionless group ve-
locity given by �1/c����o /�ko�=k0c /�0.

It is important to note that the Schrödinger equation �Eq.
�12�� looks quite different than that obtained in the usual
electron-ion plasma, since the last term of Eq. �12� is new,
and we will show this term introduces new physics, which
contributes to the development of a strong modulation insta-
bility. Using Madelung’s representation of the complex am-
plitude of the electromagnetic wave

A0 = a�r,t�ei
�r,t�, �14�

where the amplitude a and the phase 
 are real, and substi-
tuting this into the nonlinear Schrödinger equation, we obtain
from the imaginary part of Eq. �12� after multiplying through
by a the following equation:

�

�t
a2 + �vg · ��a2 +

1

�
� �a2 � 
� = 0, �15�

and from the real part we get

�


�t
+ �vg · ��
 +

1

2�
��
�2 −

1

2a�
�2a −

�

2�

��Zd
�nd

n0d
+

Zin0i

n0d

Upond

Ti
� = 0. �16�

We will now show how the ponderomotive potential in Eq.
�16� changes the dispersion relation of the linear perturba-
tion. To this end, we linearize Eqs. �15� and �16� with respect
to the perturbations, which are represented as a=a0+�a, 

=
0+�
, where a0 , 
0 denote the equilibrium values and
�a, �
 are small perturbations. Upon solving Eq. �16�, we
observe that 
0 is time dependent and is expressed as


0�t� =
�

2�

Zin0i

n0d

e2a0
2

2mc2Ti
t . �17�

After linearization of Eqs. �10�, �15�, and �16�, we seek plane
wave solutions proportional to exp�i�q ·r−�t��. Finally, we
obtain the following dispersion relation:

�� − q · vg�2 −
q2

4�2�q2 − �
Zin0i

n0d

e2a0
2

moc2Ti
����2 − q2ud

2�

=
�	q4

4�2

e2a0
2

m0c2 . �18�

The third term on the l.h.s. of Eq. �18� is an additional term,
which appears only for a three-component dusty plasma.
This additional term can increase the growth rate, when the
diffraction term becomes of the same order as this term, or
conversely, stabilizes the instability, when the first and sec-
ond terms on the l.h.s. are smaller than the term on the r.h.s.
of Eq. �18� and that �2q2ud

2. We first consider the case
when the third term on the l.h.s. of Eq. �18� compensates the
diffraction term q4 /4�2. By taking �pe�k0c �in a dense
plasma, the group velocity becomes small and can be of the
same order as ud�, we obtain from the dispersion relation
�18� having coincidental roots �=q ·vg+� and �=q ·ud+�,
the following expression for the growth rate:

Im � =
�3

4
qc� n0e

ZdZin0i
� Ti

m0c2�� ea0

Te
�2�1/3

. �19�

Now we assume the plasma to be tenuous ��pe�k0c� and
consider propagation of a short-wavelength EM wave. As-
suming that the diffraction term is much smaller than the
new additional term of ponderomotive pressure in Eq. �15�,
and that ��qc�qud, we can get the imaginary part of � as
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Im � = qc� �p

2�0
�� e2a0

2

m0c2Te
�1/2�1 − � Ti

Te
�� Ti

mdc2��1/2

,

�20�

where we have made the simplifying assumption that Zini

�Zdn0d�n0e.

IV. COMPRESSION PHENOMENON OF DUST GRAINS
BY EMWs

In the present section we investigate the phenomenon of
clustering of dust grains in the region where the EM wave is
localized. If the nonlinear terms �last two terms� in the
Schrödinger equation �Eq. �12�� are positive then the EM
wave can be focused at the focal point. We will now show
the existence of compression of dust grains in the localized
area of electromagnetic wave. First we suppose that the dust
grains are inertialess, so that Eq. �8� reduces to

�nd

n0d
=

	

ud
2Upond  0, �21�

which means that when the energy density of the EM wave
increases, then at that point, the density of the dust gains also
increases. Further, while the ions are attracted towards the
grains, the electrons are expelled from that region. Thus, in
the localized region of the EM wave, dust grains and ions are
found in abundance, suggesting the possibility of crystalliza-
tion of dust atoms.32 We may also note that Eq. �10� de-
scribes subsonic motion when the inequality �2 /�t2�ud

2�2 is
satisfied.

In the opposite case, i.e., when the regime is supersonic
��2 /�t2�ud

2�2�, then Eq. �10� becomes

�2

�t2��nd

nod
� = − 	�2Upond. �22�

If we assume here that the EM wave propagates along the z
axis and introduce r� and �= t−z /vg, then integrating Eq.
�22� twice, we obtain

�nd

nod
= −

	

vg
2 �Upond + vg

2���
��

�

d���
��

��

d��Upond + C� + C1� .

�23�

If we further assume that Upond�r� ,��=0, then we obtain the
condition that C=0=C1.

Let us now consider the example of a radiation pulse
�EM wave� with a unit step function having a profile of the
form

Upond = U0e−r�
2 /2ro

2
���� − �1� − ��� − �2�� , �24�

where �2−�1 is the pulse width, ro characterizes the pulse
length, and ��x� is the unit step function, which has the
property that when x0, ��x�=1, and if x�0, then ��x�
=0. Substituting Eq. �24� into Eq. �23� and integrating, we
obtain the following expression for the fluctuating density of
the dust grains:

�nd

nod
= −

	

2vg
2Upond1 −

vg
2�� − ��2

ro
2 �1 −

r�
2

2ro
2�� . �25�

If we consider in the above expression r�=0 and �=�2, then
in this case Upond=U0=const and

�nd

nod
= −

	U0

2vg
2 �1 −

vg
2�o

2

ro
2 � , �26�

where �0=�2−�1. The above equation shows that if the initial
shape of the EM wave pulse has the form of a light bullet,
i.e., vg�0r0, then the density of dust grains increases in the
area where focusing of the EM wave takes place. However,
when the shape of pulse has a pancake form, i.e., r0vg�0,
then the opposite occurs; i.e., �nd�0. Thus, we have shown
that there exists a regime of interaction of the EM wave
where the dust grains can gather together in the focusing
region of the EM wave.

V. ENVELOPE OF AN EM WAVE

We have shown in Sec. III that the modulated amplitude
of EM waves leads to the excitation of dust acoustic waves,
whose amplitude grows exponentially. After a certain time
the wave stops growing due to the appearance of the nonlin-
ear terms, which did not exist in the linear analysis.

Now we will take into account nonlinear terms but retain
only the quadratic nonlinearities, which is a satisfactory ap-
proximation for nonrelativistic amplitude of the EM waves.
In this case the nonlinearities enter only through the pon-
deromotive force, which redistributes the particles and
changes the density of the plasma �the hydrodynamic nonlin-
earities, i.e., the convective derivative term ��vd .��vd�, re-
main irrelevant, at least as long as the wave does not steepen
too much�.

Introducing the notation F= �1/2m0c2Te�1/2eA0�r , t�, �n
= �Zd� /n0d��nd and rewriting the equations �10� and �12�, we
obtain the following coupled equations:

2i�o� �

�t
+ vg · ��F + �2F + ��n + 	F	2�F = 0, �27�

� �2

�t2 − ud
2�2��n = − ud

2� n0e

nod
���2	F	2. �28�

First, we shall consider the one-dimensional steady state
problem. To this end, we introduce the new variable �=x
−vgt, and write F=F0�� , t� exp�−i��−���t�. The function
F0�� , t� is real and �� is a negative correction to the fre-
quency, which in dimensionless form is

�� =
�p

2 + k0
2c2 − �0

2

2�0
. �29�

In this case, from Eq. �27� and �28� we get the following
coupled equations:

d2F0

d�2 − 2�0��F0 + ��n + F0
2�F0 = 0, �30�
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�n =
1

1 − M2� n0e

n0d
��F0

2, �31�

where M =vg /ud is the Mach number of the DA wave. Sub-
stituting Eq. �31� into Eq. �30�, we obtain the NLS equation
with a cubic nonlinearity, the solution of which is well
known. However, our case is physically different compared
to the case of an electron-ion plasma, and to obtain a soliton
solution, it is necessary that the density perturbation of the
dust grains must be positive. In our case, M �1, which cor-
responds to the subsonic regime, and therefore the variation
of the density of dust grains is positive, which means that the
dust gains would cluster in the maximum regime �crests� of
solitons.

We now consider the quasi-nonstationary regime by in-
troducing new variables � and � and also assume that vg

�ud. In this case Eq. �28� will reduce to

��n

��
=

�ud

2
� n0e

n0d
� �

��
F0

2. �32�

We may rewrite Eq. �30� and Eq. �32� as

�2�

�z2 − � + ��N + fc
2�2�� = 0, �33�

��N

��
=

�

�z
�2, �34�

where �= �1/�2�����F0 / fc�, fc
2= �2/�ud

�2�����n0e /n0d�,
z=�2����, and �N= �Zd� /2������nd /n0d�.

We now examine the general solution of Eq. �33� and
�34� by following Refs. 33 and 34 for arbitrary initial distri-
bution ��z ,0�. Substituting �N from Eq. �33� into Eq. �34�,
we obtain the nonlinear equation for the amplitude of the EM
field

�

��
� 1

�

�2�

�z2 � + fc
2��2

��
= −

�

�z
�2. �35�

Since ��z ,�� is a slowly varying function of time �, we can
neglect the second term on the l.h.s. in comparison with the
r.h.s., and further by multiplying both sides of Eq. �35� by �2,
we rewrite the first term in Eq. �35� in the form

�

�z
��2 �

�z
� 1

�

��

��
�� .

Integrating once and using boundary conditions 	z 	 →� and
��±��=0, we obtain

�

�z
� 1

�

��

��
� = −

�2

2
. �36�

We now introduce the function

��z,�� = �
−�

z

dz��2�z�,�� , �37�

so that Eq. �36� on integration yields

��

��
= −

�2

2
+ C� + C1, �38�

where C1=0, because ��−� ,��=���−� ,�� /��=0.
For z→�, we obtain from Eq. �38� the following:

��+ �,�� = �
−�

�

dz��2�z�,�� = �o, �39�

where �o is a constant. In this case, from Eq. �36�, we have
C=�o /2; thus, Eq. �36� can be written as

��

�t
= −

�

2
�� − �o� . �40�

The above equation has two different solutions correspond-
ing to ��o or ���o.

We first consider the case �o�; then the solution of
Eq. �38� is

� =
�o

2
1 + tanh

�o

4
�� + �o�z��� . �41�

From Eq. �41� at �=0, we obtain for �o�z�

�o�z� = −
2

�o
ln� �o

��z,0�
− 1� , �42�

for which we have �0�+��=� when �=�o and �0�−��
=−� when ��−��=0.

The expression for the energy density of an EM wave
can be obtained by differentiating the function ��z ,�� with
respect to z to obtain

�2�z,�� =
��

�z
=

�o
2

8

��o�z�
�z

sec h2��o

4
��� + �o�z��� .

�43�

Now we analyze Eq. �43� for the special case when the initial
function is

��z,� = 0� =
�o

cosh z
. �44�

In this case, �o�z�= �4/�o�z and �o /2=�o
2.

Finally, we have

�2 = �o
2 sec h2�z +

�o
2

2
�� . �45�

For the density of dust grains in this case, we obtain

Zd
�nd

n0d
=

2

�
��p

2 + k0
2c2 − �o

2

�p
2 � 1

cosh2��o
2

2
� + z� . �46�

We now investigate the second case, when ��o. In this
case the term �o dominates the r.h.s. in Eq. �38� and leads to
��z ,��→� in finite time. The solution of Eq. �40� is

��z,�� =
�o

2
1 + coth��o

4
��� + �o�z��� . �47�

In this, it follows that at �+�o�z�→0, when ��z ,��→�.
At �=0, we obtain from Eq. �47� that
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�o�z� =
2

�o
ln�1 −

�o

��z,0�� . �48�

By differentiating the function ��z ,�� with respect to z, we
find

��

�z
= �2 = −

�o
2

8

��o

�z � 1

sinh2���o

4
��� + �o�z���� . �49�

Expressions �47� and �49� describe the nonlinear breaking of
the wave front and for time �=−�o�z�, a shock wave must
appear.

VI. CONCLUSIONS

In the present work, we have investigated some aspects
of the nonlinear wave propagation in a dusty plasma that to
the best of our knowledge have not been considered before.
We have shown in Sec. II that we are able to obtain an
equation that resembles Zakharov’s equation, but with an
important difference that our equation has a negative pon-
deromotive pressure term. This negative ponderomotive
pressure term introduces new physics having important con-
sequences, which were discussed in later sections. In Sec. III,
we obtained a NLS type equation for the amplitude of EM
waves in a dusty plasma with an additional term that leads to
a strong modulational instability. The growth rates of this
strong modulational instability have been obtained for the
cases of a dense and a tenuous plasma, respectively.

In Sec. IV, we have shown that in our case the EM wave
can be focused and that the dust grains cluster in the focus
region. We have also shown that when the EM wave pulse
has the form of a light bullet, the dust grain density increases
in the focusing region of the EM wave, while the opposite
happens when the EM wave pulse has a pancake shape.

As shown in Sec. III, the nonlinear interaction is gov-
erned by a Schrödinger-like equation for the EM wave enve-
lopes and a driven DA wave equation. The coupled nonlinear
equations admit both stationary and nonstationary solutions.
In Sec. V, the stationary solutions are characterized as EM
wave crest that propagate with a velocity close to the dust
sonic speed and lead to the localization of dust grains, which
in turn may lead to crystallization. On the other hand, a
nonstationary density response to DA wave admits shock-
like structures.

We believe that the results obtained here are important
for the physics associated with the dusty plasmas and will
help in the better understanding of nonlinear phenomena in
such complex plasmas.
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