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Study of non-Maxwellian trapped electrons by using generalized „r ,q…
distribution function and their effects on the dynamics of ion acoustic
solitary wave

A. Mushtaq and H. A. Shah
Department of Physics, Government College University Lahore, P.O. Box 54000, Pakistan

�Received 11 July 2005; accepted 14 November 2005; published online 12 January 2006�

By using the generalized �r ,q� distribution function, the effect of particle trapping on the linear and
nonlinear evolution of an ion-acoustic wave in an electron-ion plasma has been discussed. The
spectral indices q and r contribute to the high-energy tails and flatness on top of the distribution
function respectively. The generalized Korteweg–de Vries equations with associated solitary wave
solutions for different ranges of parameter r are derived by employing a reductive perturbation
technique. It is shown that spectral indices r and q affect the trapping of electrons and subsequently
the dynamics of the ion acoustic solitary wave significantly. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2154639�
I. INTRODUCTION

The ion-acoustic wave �IAW� in a two- or three-
component plasma has long been studied, and both the
linear1–4 and nonlinear5–8 dynamics associated with this
wave have been investigated. It can propagate in both un-
magnetized and magnetized plasma.

In the present paper we want to discuss the effect of
particle trapping on the nonlinear evolution of an ion-
acoustic wave, when the plasma background is represented
by a non-Maxwellian distribution. It has been known from
the early days of plasma physics that trapped particles exert a
considerable influence on the nonlinear dynamics of plasma
waves,9 although in this pioneering work the trapping was
considered directly by the longitudinal wave itself. However,
trapping as a microscopic process was considered in 1967 by
Gurevich10 and involved the solution of the Vlasov equation
together with the Maxwell equations. This microscopic for-
malism subsequently became the topic of investigation in
Ref. 11; here, different aspects of wave-particle interactions
were considered to show the effect of trapping while using
Maxwellian distribution functions. The simulation of one-
dimensional Vlasov-Poisson equations has also confirmed
the existence of trapped particles12 as have experiments car-
ried out in the last two decades.13

Most studies of the waves in plasmas are based on the
assumption of a Maxwellian distribution function. The Max-
wellian distribution is the most popular plasma distribution
and has become the default assumption when the detailed
distribution function is unknown. However, with more and
more empirical data becoming available, it is realized that in
real plasma systems, the particle distributions deviate signifi-
cantly from Maxwellian distributions,14–16 implying that
when we use theoretical models using these distribution
functions to explain or to predict different waves and insta-
bilities, the ensuing results do not give good quantitative fits
with observations.17–19 This means that a Maxwellian is not a
realistic distribution under all circumstances and other distri-

20
butions such as kappa, or generalized �r ,q� distribution
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�which is used in the present work� fit better for observed
results.

Non-Maxwellian distributions are common both in natu-
ral and laboratory plasmas. Examples are found in galactic
cosmic ray distributions, solar flares, the magneto tail, near-
plasma shock waves,21 the Earth’s plasma sheet,22 the solar
wind,23 etc. These distributions may have a significant high-
energy tail arising from some external acceleration mecha-
nism; i.e., a hard spectrum. These observed distribution func-
tions contain a plentiful supply of superthermal particles that
exhibit high- or superthermal-energy tails with approximate
power-law distributions in velocity space, e.g., 4�v2f�v�dv
�v−�dv for �v��vth and can often be modeled by other dis-
tributions such as generalized Lorentzian �kappa� distribu-
tions or generalized �r ,q� distribution and have been found
to be more useful as compared to the Maxwellian distribu-
tion functions.24 The use of the family of kappa distributions
to model the observed nonthermal features of electron and
ion structures was frequently criticized due to lack of its
formal derivation. A classical analysis addressing this prob-
lem was performed by Hasegawa et al.,25 who demonstrated
how the kappa distributions emerge as a natural consequence
of the presence of superthermal radiation fields in plasmas.

Recently, a modified version of the above mentioned
generalized distribution functions has been used to model
and theoretically investigate some electrostatic and electro-
magnetic modes �Ref. 18� by a non-Maxwellian distribution,
which was referred to as the �r ,q� distribution function, and
its one-dimensional version for electrons has the following
form:

f �r�
q =

n0

vT
a�1 +

1

q − 1
� v2

b2vT
2�r+1	−q

, �1�

where vT
2 =Te /me is the thermal speed of electron and a and b
are dimensionless functions of r and q as follows:

© 2006 American Institute of Physics3-1
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a =
1

4�b3

3�q − 1�−3/2�1+r���q�

���q −
3

2�1 + r����1 +
3

2�1 + r��	3/2 , �2�

b = 
3�q − 1�−1/2�1+r����q −
3

2�1 + r���� 3

2�1 + r��
�� 5

2�1 + r����q −
5

2�1 + r���
1/2

.

�3�

It is noted that the restrictions on the indices r and q
result from the normalization of the distribution function and
are r�−1 and q�r+1��3/2 for real values of r and q. This
distribution is a generalized form of the kappa distribution
function with index k of Refs. 9–15 and 24, and reduces to a
kappa distribution function if r=0 and q→�+1, and to a
one-dimensional Maxwellian when q→� and r=0. We note
here that the spectral index q contributes to the high-energy
tails in the distribution functions and r gives rise to the flat or
sharp top of the distribution function; it is the same spectral
index that appears in the Davydov-Druvestyen distribution
functions,28 which have been used to model low-pressure
electric discharge plasmas, and is responsible for the nonlin-
ear �anomalous� damping that may occur in plasmas in qua-
sithermodynamic equilibrium. Data analysis for solar wind
plasmas15 suggest that such �r ,q� distributions give better fits
to data than the simpler kappa distributions.

In this work we want to discuss the effect of particle
trapping, when the plasma background is represented by a
�r ,q� distribution, on the nonlinear dynamics of ion-acoustic
waves via Korteweg–de Vries �KdV�-like equation. We feel
that using a more realistic distribution function will provide a
better insight into the dynamics and effects of trapping on
various wave particle interactions. The organization of the
paper is as follows.

In Sec. II the basic set of nonlinear equations and dis-
persion relation are presented and the KdV equation is ob-
tained by using the reductive perturbation technique along
with its stationary solution. In Sec. III numerical results are
presented along with a discussion of these results. Section IV
gives a conclusion of our work.

II. BASIC EQUATIONS AND FORMULATION

We consider a one-dimensional, unmagnetized, and col-
lisionless two-component plasma consisting of massive cold

ions and adiabatically trapped electrons. The trapped elec-

1 − q b 2�1 + r� 1 − q b
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trons are assumed to follow the non-Maxwellian distribution
function and propagation is considered in the x direction.
Thus, at equilibrium we have neo=nio=no. We neglect any
transport properties such as viscosity, heat conduction, etc.
Under these conditions the nonlinear dynamics of the low-
frequency IAW in such a plasma are governed by the follow-
ing set of equations:

�ni

�t
+

�

�x
�nivi� = 0, �4�

�vi

�t
+ vi

�

�x
vi = −

�

�x
� , �5�

�2�

�x2 = ne − ni, �6�

where ne and ni are the electron and ion number densities,
respectively, normalized by equilibrium density no, vi is the
ion-fluid velocity normalized by the ion-acoustic speed csi

=
Te /mi, and � is the electrostatic wave potential due to
charge separation normalized by Te /e, where Te is the elec-
tron temperature, mi is the mass of the ion, and is e is the
magnitude of electron charge. The time and space variables
are normalized by the ion-plasma period 	pi

−1=
mi /4�noe2

and Debye length 
d=
Te /4�noe2, respectively.
To model the trapped electrons, we consider that the

electrons in general follow the �r ,q� distribution given by
Eq. �1�. The expression for the number density of adiabati-
cally trapped electrons with Maxwellian distribution are
given in Ref. 14, which for the case of ��1 is

ne = 1 + � −
4

3
�
�3/2. �7�

Note that, according to Eq. �7�, the trapping of electrons can
change the ordering, giving rise to a half-integer rather than
an integer power expansion �this is a particular characteristic
of trapping in a Maxwellian plasma� of the number density
in terms of weak potential energy �. Using this type of ex-
pression �Eq. �7��, the KdV-type of nonlinear equation has
been derived for electrostatic waves for electron-ion �e-i�
plasma.29

We consider the case when free and trapped electrons
follow the distribution function f �r�

q . Thus, by following the
procedure developed in Ref. 14 and in Refs. 26 and 27, the
expression for the electron number density �ne=n�r�

q � in terms

of potential energy � for the �r ,q� distribution function is
n�r�
q =

2a

b3

1

��q − 1�
�q − 1�−�2r+5�/�2r+2� −

1

2
�2��1 −

3

2�1 + r����q +
3

2�1 + r�� + b4�q − 1�2/�1+r�

���q −
1

2�1 + r����1 +
1

2�1 + r�� + �b2�q − 1�1/�1+r���q +
1

2�1 + r����1 −
1

2�1 + r�� − 4
a

b

q

�1 − q�1/2�1+r��

− B� 1 � 2
2��1+r

,1 −
1

,− q	 + � 1 �1/�1+r� �
2rB� 1 � 2

2��1+r

,1 −
3

,− q	

1 − q b 2�1 + r�
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+ �1 + q��1 + r�B� 1

1 − q
� 2

b2��1+r

,2 −
3

2�1 + r�
,− �1 + q�	 − 4
2a�1/2

2F1

��q,
1

2�1 + r�
,1 +

1

2�1 + r�
;

1

1 − q
� 2

b2��1+r	 + 2
2a�1/2, �8�

TABLE I. The coefficients �r
q, �r

q, and �r
q for different values of r �i.e., 0, 1 /4, 1 /3 , . . . ,2.

r �r
q �r

q �r
q

0
1 − 2q

3 − 2q

4

3
�

��q + 1��3/2�q − 3/2�
�5/2�q − 1/2�

—

1/4
1

2

��1/5���3/5���q − 6/5���q + 2/5�
�2�2/5��2�q − 2/5�

289

168 � 21/4 � 53/4

��q + 1��7/4�1/5��7/4�q − 6/5�
�11/4�2/5��11/4�q − 2/5�

—

1/3
1

3

��1/8���5/8���q − 9/8���q + 3/8�
�2�3/8��2�q − 3/8�

197

495 � 41/3

��q + 1��11/6�1/8��11/6�q − 9/8�
�17/6�2/5��17/6�q − 2/5�

—

−1/3
1

3

��1/4���13/4���q − 9/4���q + 3/4�
�2�7/4��2�q − 3/4�

�316� � �2/3�1/6

315

��q + 1��7/6�13/4��7/6�q − 9/4�
�13/6�7/4��13/6�q − 3/4�

—

−1/5
1

3

��3/8���23/8���q − 15/8���q + 5/8�
�2�13/8��2�q − 5/8�

2434 � 23/10

4095 � 33/10

��q + 1��13/10�23/8��13/10�q − 15/8�
�23/10�13/8��23/10�q − 5/8�

—

−1/6
1

3

��3/7���19/7���q − 12/7���q + 4/7�
�2�11/7��2�q − 4/7�

4009

3960 � 25/8 � 33/8

��q + 1��11/8�19/7��11/8�q − 12/7�
�19/8�11/7��19/8�q − 4/7�

—

−1/8
1

3

��1/5���17/5���q − 12/5���q + 4/5�
�2�9/5��2�q − 4/5�

4009

1512 � 27/8 � 31/8

��q + 1��9/8�17/5��9/8�q − 12/5�
�17/8�9/5��17/8�q − 4/5�

—

1
1

3

�2�3/4���q − 3/4���q + 1/4�
�2�1/4��2�q − 1/4�

—
3 � �4q − 1��2�q − 3/4�

5 � �2�q − 1/4�

2

6
�
�2�5/6���q − 1/2���q + 1/6�

�2�1/6��2�q − 1/6�

—
��q + 1/2��2�q − 1/2�

10 � �3�q − 1/6�
where �, B, and 2F1 are the, gamma, beta, and hypergeomet-
ric functions, respectively.

Expanding Eq. �8� for small � and for −1/2
r
1/2,
the following general form is obtained:

n�r�
q = 1 + �r

q� − �r
q�r+3/2, �9�

where the coefficients �r
q and �r

q are positive functions of q
and r and are listed for different values of r in Table I.

We now use the reductive perturbation technique and

construct a weakly nonlinear theory for one-dimensional

Downloaded 23 Oct 2012 to 111.68.103.123. Redistribution subject to AIP lic
small but finite amplitude ion-acoustic waves. The stretched
variables for this model in terms of spectral index r are

� = ��2r+1�/4�x − vot� ,

�10�
� = �3��2r+1�/4�t ,

where � is a small �0
��1� expansion parameter charac-
terizing the strength of the nonlinearity and vo is the is the
phase velocity of the ion-acoustic wave normalized by cs the

ion acoustic speed. The ion number density, velocity, and

ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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potential are expanded in the following manner:

ni = 1 + �n1 + �r+3/2n2 + ¯ ,

vi = �u1 + �r+3/2u2 + ¯ , �11�

� = ��1 + �r+3/2�2 + ¯ .

Substituting Eqs. �10� and �11� into Eqs. �4�–�6� and Eq.
�9�, and collecting terms of lowest order in � �i.e., 
� and
�r/2+5/4,� we obtain

− v0
�u1

��
+

��1

��
= 0,

− v0
�n1

��
+

�u1

��
= 0, �12�

n1 − �r
q�1 = 0.

Using the boundary conditions n1→0, u1→0, and �1

→0 as ���→ ±�, from Eq. �12�, we have

n1 = �r
q�1,

�13�
u1 = v0�r

q�1,

which in turn can be solved to give us the dispersion relation

v0 =
1


�r
q

. �14�

This is the dispersion relation for IAW when the �r ,q�
distribution function is used. If r=0 and q→�, then using
the Table I, we retrieve the Maxwellian result v0=1; i.e.,
	 /k=csi of Ref. 29.

In the next order �
�r+3/2� combining Eq. �6� and Eq.
�9�, we obtain

�2�1

��2 = �r
q�2 − n2 − �r

q�1
r+3/2, �15�

and from terms of order �3r/2+7/4 from Eqs. �4� and �5� we
obtain the following set of equations:

− v0
�u2

��
+

��2

��
= −

�u1

��
, �16�

�u2

��
− v0

�n2

��
= −

�n1

��
. �17�

By eliminating quantities with subscript “2” from Eqs.
�15�–�17� by means of Eqs. �13� and �14�, we obtain

��1

��
+ A�1

r+1/2��1

��
+ B

�3�1

��3 = 0, �18�

which is a generalized KdV equation. Here, the coefficients

A and B are given by

Downloaded 23 Oct 2012 to 111.68.103.123. Redistribution subject to AIP lic
A =
�r + 3/2��r

q

2��r
q�3/2 ,

�19�

B =
1

2
��r

q�−3/2.

If in Eq. �18�, r=0, we then get the KdV equation of Ref.
29 in a Maxwellian plasma. The steady state solution of the
generalized KdV equation �Eq. �18�� is obtained by shifting
to a co-moving frame of reference �= ��−u0�� /�, where u0

is a normalized constant velocity, and finally the steady state
solution of Eq. �18� can be written as

�1 = �m sech4/�2r+1���� − u0��/�� , �20�

where the amplitude �m and the width � �normalized by 
D�
in generic form are given by

�m = �u0�1 +
4

2r + 1
��2 +

4

2r + 1
��2r + 1�2

16A
�

2/�2r+1�

,

�21�

� =
 16B

u0�2r + 1�2 .

In Eq. �20�, if we take r=0 and the limit q→�, we
retrieve Eq. �16� of Ref. 30. We note here that the above
results are valid in the range −1/2
r
1/2.

We now expand Eq. �8� for small � again, but this time
for range r�1/2, then we have the following generic form
for the electron number density �ne=n�r�

q � in terms of weak
potential energy �:

n�r�
q = 1 + �r

q� − �r
q�2, �22�

where �r
q and �r

q are positive functions of q and r, which are
listed in Table I for r=1 and 2. For this case, we have the
stretched variables �=�1/2�x−vot� and �=�3/2t, and the quan-
tities are expanded in terms of � in the following manner:

ni = 1 + �n1 + �2n2 + ¯ ,

vi = �u1 + �2u2 + ¯ , �23�

� = ��1 + �2�2 + ¯ .

Then, using the same procedure as was followed for the
case −1/2
r
1/2, the nonlinear evolution equation for
r�1/2 is obtained as

��1

��
+ C�1

��1

��
+ D

�3�1

��3 = 0, �24�

which is the standard KdV equation, and here the coefficients
C and D are given by

C =

�r
q +

3

2
��r

q�2

��r
q�3/2 ,

�25�

D =
1

��r
q�−3/2.
2
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The steady state solution of Eq. �24� can be written as

�1 = �m sech2��� − u0��/�� , �26�

where the normalized amplitude �m and the width � are
given by

�m = � 3u0��r
q�3/2

�r
q +

3

2
��r

q�2� , �27�

� =
2��r
q�−3/2

u0
. �28�

We note here that although Eqs. �24�–�28� do not include
trapped particle effects, but they do, however, contain the
spectral indices of the �r ,q� distribution function.

III. RESULTS AND DISCUSSION

We have derived in computable form the expressions for
solitary ion-acoustic waves propagating in unmagnetized e-i
plasmas with electron trapping with a generalized �r ,q� par-
ticle distribution. To illustrate the behavior of distribution,
we present in Fig. 1, the graphs of this distribution function
against the normalized velocity �Eq. �1��. In these graphs it is

FIG. 2. The amplitude of solitary wave solution potential �m against the

FIG. 1. Comparison of �r ,q� generalized distribution function for different
values of spectral index q and for negative value of r with Maxwellian
distribution function.
� �=��−u0�� /�� for different values of spectral index r.

Downloaded 23 Oct 2012 to 111.68.103.123. Redistribution subject to AIP lic
shown that r �the spectral index� affects the shoulder and q
affects the tail of the distribution function. It is also shown
that for negative values of r, the function becomes more
spiky as compared to the positive values of r where shoul-
ders appear as in Ref. 25. The dependence of solitary wave
solution amplitude on different values of r against � for a
fixed value of q=5 is shown in Fig. 2. It is observed that for
decreasing values of r, the amplitude of solitary wave solu-
tion increases. Figure 3 shows the dependence of solitary
wave solution amplitude on q as a function of velocity uo. It
shows that the amplitude increases with increased values of
q. Figures 4 and 5 are the graphical results of the width of
solitary wave solution � against the solitary wave solution
velocity uo for different values of positive q and negative r,
respectively. These figures show that a decreasing trend for
uo when plotted against width for a fixed value of uo in-
creases with respect to q �for fixed r=1/4� and decreases for
increased negative value of r �for fixed q=0�, respectively.
Figure 6 shows the dependence of width on positive r and q.
It is evident that for increasing q and decreasing r, the width
of solitary wave solution increases. Solitary wave solution
velocity uo is plotted against q, for negative r in Fig. 7, and
shows that uo increases with q, and for a fixed value of q it
also increases with a decreasing negative value of r.

FIG. 3. The effect of spectral index q on the amplitude of solitary wave
solution potential �m as a function of velocity u0.

FIG. 4. Variation of the width of solitary wave solution � with its velocity

u0 for different values of spectral index q.

ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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IV. CONCLUSION

We have studied the ion-acoustic solitary wave solution
with electron trapping with a generalized �r ,q� distribution
function. By using the well-known reductive perturbation
technique, the generalized KdV equation with a solitary
wave solution has been derived for different ranges of the
parameter r. Both from the analytical and graphical results, it
is concluded that for positive values of r, the ion-acoustic
wave becomes supersonic, and for negative values of r it is
subsonic. For r=0 and q→�, the dispersion relation, the
KdV equation, along with the solution and expressions for
amplitude and width, reduces to those with a Maxwellian
distribution function of Refs. 29 and 30. The amplitude of
the solitary wave solution increases for decreasing r and in-
creasing q with respect to its velocity uo. The width of the
solitary wave solution increases for decreasing positive val-
ues of r and increasing q with decreasing velocity uo. How-
ever, we also see that for negative values of r, the width
decreases, which in turn means that negative r makes the
solitary wave solution more spiky. In a nutshell, we conclude
that the spectral index r of the trapped electrons distribution
effects the shoulder of the ion-acoustic solitary wave solution
�makes the profile slightly spiky for positive r and more
spiky for negative r in the range −1/2
r
1/2� and spectral

FIG. 6. The effects of spectral indices q and r on the width of solitary wave

FIG. 5. Variation of the width of solitary wave solution � with its velocity
u0 for different negative values of spectral index r.
solution � as a function of velocity u0.

Downloaded 23 Oct 2012 to 111.68.103.123. Redistribution subject to AIP lic
index q effects the tail of it making the solitary wave faster
than the thermal solitons, which are believed to be exist in
near-plasma shock waves21 and in the solar wind.23
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