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Abstract
Quantum effects through the Fermi temperature and the Bohm potential on the Debye–Hückel
shielding potential have been examined in a supercold quantum plasma. The Bohm potential
due to collective interaction of the quantum plasma modifies the Debye length significantly
under an appropriate condition. The relevance of our results in supercold dense plasmas, viz.
the microelectronic systems, laser-produced plasmas, compact astrophysical objects, etc has
been pointed out.

PACS numbers: 03.65.−w, 52.27.Lw, 52.35.−g

In recent years, there has been growing interest in the quantum
mechanical effects in plasmas and microelectronic devices
([1] and references therein). The importance of quantum
plasmas has been shown in microelectronic devices [2],
in dense astrophysical systems [3] and in laser-produced
plasmas [4]. New quantum mechanical results have been
predicted in super-cooled dusty plasmas by a number of
workers [5–8].

Basically, if a plasma is cooled to an extremely low
temperature, the de Broglie wavelength of the charge carriers
may be comparable to the dimension of the systems, viz.
the Debye length of the plasma. In such situations, the
ultracold plasmas must behave as a Fermi gas and the quantum
mechanical effects are expected to play a vital role in the
behavior of collective interactions of the charged particles.
However, a plasma is a plasma if the Debye length is smaller
than the size of the plasma systems. So, one could say that
when the de Broglie wavelength of carriers is comparable
to the Debye length, the quantum mechanical effect must be
significant in Debye shielding.

Recently, Shuklaet al [8] have calculated near and far
field potentials of a slowly moving test charge in a quantum
plasma. They have utilized the already derived dielectric
function of Pines [9] considering the Fermi temperature of
the quantum plasma gas. However, they have ignored the
quantum effect arising out of the Bohm potential term due
to the collective interaction in the equation of motion. In
this paper, we show the modification of the usual Debye
shielding in a supercooled Fermi gas plasma using a ‘quantum
hydrodynamic model’ of the plasmas.
3 Permanent address: Department of Physics, Jahangirnagar University,
Savar, Dhaka 1342, Bangladesh.

We consider a zero-temperature Fermi gas, an
electron–ion plasma with motion of plasma particles in
one-dimension (x-direction). Fermi gas obeys the pressure
law [1, 10]

p j = m j V
2
F j n

3
j /3n2

j 0, (1)

where j = e for electrons andj = i for ions, m j is the
mass,VF j = (2kBTF j /m j )

1/2 is the Fermi speed,kB is the
Boltzmann constant, andTF j is the Fermi temperature. Here,
n j is the total number density with its equilibrium valuen j 0.

The linearized equation of motion for thej th species with
quantum Bohm potential term is

m j n j 0

(
∂

∂t
+ ν j

)
v j 1 = − q j n j 0∇φ1 − ∇ p j 1 +

h̄2

4m j
∇(∇2n j 1),

(2)
where q j , m j and ν j are the charge, mass and collision
frequency with the immobile neutrals for thej th species.
Here, φ1 is the potential of an electrostatic wave, ¯h is the
Planck’s constant divided by 2π . The quantum correction in
equation (2) appears through the Fermi temperaturesTF j and
the last term of the Bohm potential.

The continuity equation for thej th species is

∂n j 1

∂t
+ n j 0

∂v j 1x

∂x
= 0. (3)

Assuming that the variation inv j 1x, n j 1 and φ1 is
proportional to exp [−i(ωt − kx)] where ω and k are the
wavefrequency and the wavenumber vector, equation (2)
reduces to

(ω + iν j )v j 1x =
q j k

m j
φ1 +

kV2
F j

n j 0
(1 +γ j )n j 1, (4)
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where

γ j =
h̄2k2

8m j kBTF j
. (5)

Combining equations (3) and (4) and writing the density
perturbation as n j 1 = −χ j k2φ1/4πq j , the susceptibility
function with quantum mechanical effects is given by

χ j = −
ω2

pj

ω(ω + i ν j ) − k2V2
F j (1 +γ j )

, (6)

whereωpj = (4πq2
j n j 0/m j )

1/2 is the plasma frequency of the
j th species.

The dielectric function of the plasma can be obtained
from ε(ω, k) = 1 +χe +χi . Taking VF j > ω/k, we can
immediately obtain

ε = 1 +
1

k2λ2
D

, (7)

where
1

λ2
D

=
1

λ2
De

+
1

λ2
Di

(8)

and

λ2
D j =

V2
F j

ω2
pj

(1 +γ j ). (9)

The electrostatic potential around a test charge in the
presence of an electrostatic mode(ω, k) in a uniform plasma,
whose dielectric response function is given by equation (7),
is [11]

8(x, t) =

∫
qt

2π2k2

δ(ω − k · vt)

ε(ω, k)
exp(ik · r) dk dω, (10)

where r = x − vtt, vt is the velocity vector of a test charge
particulate, andqt is its charge.

Substituting equation (7) in (10), one can easily find the
Debye–Hückel potential for the quantum plasma as

8(r ) =
qt

r
exp(− r/λD), (11)

where the modified Debye length turns out to be

λD =

(
1

λ2
De

+
1

λ2
Di

)− 1/2

, (12)

whereλD j = VF j
√

1 +γ j / ωpj , VF j , is defined earlier, andγ j

is given by equation (5).
In summary, we have analyzed the Debye–Hückel

problem in a zero-temperature supercooled Fermi gas plasma
with quantum effects. Quantum hydrodynamic equations
for the electrons and ions are employed to find the
dielectric function of the quantum plasma. By employing this
appropriate dielectric function for such a quantum plasma,
we have derived an expression for the quantum mechanically

modified shielding potential for a static or a slowly moving
test charge. It is noticed from equations (9) and (11) that the
Debye length does depend on the Fermi temperature(TF j ) and
the quantum correction factorγ j . However, for arbitraryγ j ,
the Debye length is given by equation (12) and forγ j ∼ 1, the
Debye length includes a correction due to the Bohm potential.
Obviously, our results yield the Debye length derived by
Shuklaet al [8] in absence of the Bohm potential correction.

We now discuss two extreme conditions. (i) First, we
considerγ j � 1, i.e. h̄2k2

� 8m j kBTF j . Thus, if we neglect
the Bohm potential term compared to the Fermi temperature
term in the equation of motion, we retrieve the results of
Shukla et al [8]. Here, λD j = VF j /ωpj . (ii) For γ j � 1,
one can have ¯h2k2

� 8m j kBTF j . Under this condition, the
quantum mechanical effect through the Bohm potential in
the equation of motion becomes more dominant than the
collective effect arising through the Fermi temperature of the
quantum system. Then, the Debye shielding is due to quantum
mechanical effect explicitly andλD j ' h̄k/

√
16πe2n j 0m j . A

similar quantum mechanical shielding of electrons in metals
was earlier shown by Bohm and Pines [12]. Thus, the quantum
mechanical effects become important for the supercooled
plasma due to the collective behavior of the quantum plasma.
Our results would be useful in understanding the modified
Debye–Hückel potential around a test charge in ultracold
quantum plasmas, e.g. in micro- and nano-systems, dense
laser-produced plasmas, and dense astrophysical objects like
white dwarfs and neutron stars.
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