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Abstract Microscopic trapping of electrons is considered

in one- and two-dimensional potential wells (shallow and

deep) and its effect on vortex formation is investigated by

deriving modified Hasegawa Mima (HM) equations. In-

homogenieties in the number density and magnetic field are

taken into account. The modified HM equations are ana-

lysed by considering bounce frequencies of the trapped

particles. Solitary vortices are obtained via Kortweg deV-

ries (KdV) type of equations and both exact and Sagdeev

potential solutions are obtained. In general it is observed

that trapping produces stronger non-linearities and this

leads to the modification of the original HM equation.
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Introduction

Beginning with the seminal work of Hasegawa and Mima

[1], who generalized the work of Charney [2], on the for-

mation of vortices in inviscid fluids, two-dimensional

dynamics and the subsequent formation of vortices in

plasmas has captured the attention of many authors. This

was followed by a flurry of activity in the area of vortices

in plasmas. Early work on vortices was summed up com-

prehensively in the review paper by Horton [3], whereas

Nycander [4] reviewed work in both plasmas and geo-

physical flows. And more recently Tsintsadze et al. [5, 6]

described a new concept of generation of vortex rings by

strong electromagnetic radiations and by the laser wake

fields.

One of the simplest equations that admit localized vor-

tex structures is the Hasegawa–Mima (HM) equation

describing a two-dimensional flow in a non-uniform low

frequency plasma. Due to its simple form the HM-equation

has been studied extensively both analytically [1] and

numerically [7]. In addition to vortex solutions the HM-

equation contains drift waves which are a result of the non-

uniform number density. In the weak turbulence approach

[8] three of the linear drift modes interact resonantly via

paremetric interactions and are subsequently used in the

HM equation. In strong turbulence, however, a more

accurate description would be a superposition of linear

modes and vortex structures [9]. Since both linear waves

and non-linear vortex structures exist in the HM-equation,

a study of plasma turbulence (e.g. vortex–wave interaction)

in the frame of this equation is natural.

Starting with the work of Bernstien, Greene and Kruskal

(BGK) [10] in 1957 it became known that trapped particles

exert a significant effect on the non-linear dynamics of

plasmas. In this pioneering work [10] trapping was con-

sidered directly by the wave itself. However trapping as a

microscopic process was considered by Gurevich [11] in

1967 where the solution of the Vlasov equation along with

Maxwell’s equations was used. BGK modes were investi-

gated by Schamel [12] in unmagnetized plasmas for

electrostatic perturbations however Schamel and coworkers

continued to refine and further study BGK modes and the

ensuing distribution functions of the trapped particles over

the last forty years, these investigations have been summed

up in reviews [13, 14]. Based on the results of Schamel
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mentioned above coherent electric field structures in the

magnetosphere were investigated in Ref. [15] using the drift

kinetic equation and solitary wave structures and electro-

static broadband noise were considered in Ref. [16, 17].

On the other hand computer simulations [18] and

experimental work [19] confirmed the existence of trapping

of particles as a microscopic phenomena. In. [20, 21] the

effect of trapping of particles on the propagation charac-

teristics of ion acoustic solitons by using Maxwellian and

non-Maxwellian distribution functions, respectively was

investigated. It was seen in both cases that dynamics of the

ion acoustic solitons are considerably modified when

trapping is taken into account.

In the present work we consider some new aspects of

vortex formation in a plasma consisting of ions and elec-

trons with the effect of adiabatic trapping of electrons in

one and two dimensions taken into account. We consider a

drift ion acoustic wave which is the most basic electrostatic

low-frequency drift mode in an inhomogeneous plasma

with a magnetic field with a gradient in the direction per-

pendicular to the ambient magnetic field. The electrons are

considered hot enough to neglect their magnetization [22]

and subsequently their drift velocities are also neglected in

comparison to the electron thermal velocity. The ions are,

however, considered to be cold and magnetized and their

drifts are taken to be significant.

The paper is organized as follows. In section ‘‘One-

dimensional Potential Well’’ we give the basic mathe-

matical formulation for one-dimensional trapping and

derive a modified HM equation. Various solutions to the

modified HM equation for both the shallow and deep well

trapping are considered. In section ‘‘Two-dimensional

Potential Well’’ we consider two-dimensional trapping and

again a modified HM equation is derived and investigated.

Finally in section ‘‘Disussion and Conclusion’’ we present

a general conclusion and discussion.

One-dimensional Potential Well

We begin by considering the trapped particle distribution

function in one dimension only. Following Lifshitz and

Pitaevskii [23], we can obtain the distribution of electrons

in the shallow well case when eU/T \ 1

ne ¼ n0 1þ eU
Te
� 4

3
ffiffiffi

p
p eU

Te

� �3
2

 !

ð1Þ

and for the deep well potential, i.e., for eU/T [ 1 we

obtain,

ne ¼ 2n0

ffiffiffiffiffiffiffiffi

eU
pTe

r

ð2Þ

We note here that e, U, and Te are the electronic charge,

potential and electron temperature, respectively and the

free electrons are considered to obey a Maxwell Boltzmann

distribution function.

The equations now needed for a complete description of

low frequency electrostatic drift waves in plasmas are the

equations of motion and continuity for ions and expressions

(1) and (2) for the electrons trapped in a shallow and deep

potential well cases, respectively. The ion equations in the

MKS units are

o

ot
þ vi � r

� �

vi ¼
e

mi
Eþ vi � Bð Þ � 1

mini
rpi þ g ð3Þ

oni

ot
þr � nivið Þ ¼ 0 ð4Þ

Here ni, vi, mi, pi, g are the ion density, velocity, charge,

mass, ion pressure and gravitational acceleration,

respectively. We assume the plasma to be quasineutral

and only ions are magnetized by an ambient magnetic field

B ¼ B0ðxÞbz which is assumed to have a weak dependence

in the x direction. We assume that Te � Ti so that we can

neglect the ion pressure in Eq. 3 for the sake of simplicity.

Following the method elaborated in Weiland [24],

which proceeds by taking the curl of Eq. 3 and using Eq. 4

we obtain in the absence of baroclinic pressure the fol-

lowing equation.

d

dt
ln

Xi þ Xci

ni

� �� �

¼ 0 ð5Þ

where Xi is the vorticity which is defined as

Xi ¼ r� vi

and Xci ¼ eB=mi is the ion gyrofrequency. We further note

that

d

dt
¼ o

ot
þ vi � r

where vi in the drift approximation [24] is taken as

vi ¼ ve þ vg

where ve and vg are the E 9 B and gravitational drifts

given by the following expressions, respectively

ve ¼ �
rU� bz

B0

� �

vg ¼
mg� B0

B2
0

Considering two-dimensional propagation, we take r ¼
bx o

ozþ by o
oy ; and vorticity Xi only in the z direction can be

expressed as

Xi ¼ r� við Þ � bz ð6Þ
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We use the quasineutrality condition for perturbed

number densities (plasma approximation) i.e., dni = dne =

dn, where dn � n0 and n0 is the unperturbed ion number

density. Further by taking Xi � X ci [24] we can write

Eq. 5 as

d

dt
ln

Xci

n0

þ Xi

Xci
� dn

n0

� �

¼ 0 ð7Þ

In the presence of the inhomogeneous magnetic field

B0(x) in the z direction, Eq. 6 can be rewritten as

Xi ¼
r2U
B0

� mg
o

ox

1

B0

� �

þ o

ox

1

B0

� �

oU
ox

ð8Þ

We now proceed to develop Eq. 7 for the shallow well

case by comparing ne ¼ no 1þ dn
no

� �

and Eq. 1 we obtain

dn

no
¼ eU

Te
� 4

3
ffiffiffi

p
p eU

Te

�

�

�

�

�

�

�

�

3
2

ð9Þ

using Eqs. 8 and 9 in 7, we obtain finally by ignoring

higher derivatives of magnetic field as its inhomogeneity is

considered to be weak.

ot þ vgoy

	 


.2r2W�W
	 


� v�e þ vrB

	 


oyW

¼ .2

B0

rW� zð Þ � r r2W
	 


� 4

3
ffiffiffi

p
p ot þ vgoy

	 


W
3
2 ð10Þ

where

W ¼ eU=Te

is the normalized potential and ve
* is the electron diamag-

netic drift which may be expressed as v�e ¼ jTe=eB0 and j
is the inverse of the scale length of the number density

inhomogeneity j ¼ �ð1=n0Þ=ðdn0=dxÞ and vr B is the grad

B drift given by vrB ¼ ð.=B0Þ csðdB0=dxÞð Þ and . is the ion

larmour radius given by . ¼ cs=Xci: cs is the ion sound

velocity given as cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Te=mi

p

:

A similar equation can be developed for the deep well

case. Here as we have n [ n0 and using the electron dis-

tribution given by Eq. 2, we rewrite Eq. 7 as

d

dt
ln Xci þ Xið Þ � ln ni½ � ¼ 0

where it may be noted that

ln ni ¼ ln
2
ffiffiffi

p
p n0

ffiffiffiffi

W
p
¼ ln

2
ffiffiffi

p
p þ ln n0 þ

1

2
ln W

Thus the above expression can be recast in the form

d

dt
ln

Xci

n0

þ Xi

Xci
� 1

2
ln W

� �

¼ 0

Finally we get the equation for deep well case as

ot þ vgoy

	 


.2r2W
	 


� v�e þ vrB

	 
 oW
oy

¼ .2

B0

rW� zð Þ � r r2W
	 


þ ot þ vgoy

	 
 1

2
ln W ð11Þ

where once again the higher order terms have been

neglected as was done for the shallow well case.

We see here that the presence of trapped particles in

both shallow and deep well cases produces a modified HM

equation by the addition of another non-linear term (the

second term on the right-hand sides of Eqs. 10 and 11). We

note that this term makes a larger contribution than the

original non-linear HM term (the first term on the right-

hand side of the above equation). We may thus drop the

original HM non-linear term in Eqs. 10 and 11 to obtain

o

ot
þ vgyoy

� �

.2r2W�W
	 


� v�e þ vrB

	 
 oW
oy

¼ � 4

3
ffiffiffi

p
p o

ot
þ vgyoy

� �

W
3
2 ð12Þ

and

.2 o

ot
þ vgyoy

� �

r2W� v�e þ vrB

	 
 oW
oy

¼ 1

2

o

ot
þ vgyoy

� �

ln W ð13Þ

Equations 12 and 13 are the modified HM equations for

the shallow and deep potential well trapped electron cases,

respectively. The second term on the left-hand side of

Eqs. 12 and 13 can be written as v�e þ vrB

	 


¼
qcs ðd=dxÞ lnðB0=n0Þð Þ where three distinct conditions

may be considered, i.e., when qcs ðd=dxÞ lnðB0=n0Þð Þ is

[0, \0 or =0. The last corresponds to the frozen in

condition. Different solutions of Eq. 12 are considered in

the subsequent subsections. However we note here that the

stationary solutions of the original HM equation (when no

trapping is taken into account) are expressed through

Bessel function using piecewise linear solutions [3]. This is

no longer possible here and we consider certain alternate

strategies to get insights to the effect of trapped electrons

on the formation of vortices.

Bounce Frequencies in Potential Well

In this section we consider that the particles which become

trapped in the potential well can undergo oscillatory

motion in the well itself, if their energy is less than the

potential energy associated with the well then these parti-

cles remain trapped. We can use the non-linear evolution
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Eqs. 12 and 13. for the shallow and deep well cases to

estimate the ‘‘bounce’’ frequency of the particles within the

wells. We first consider the shallow well case and expand

W around fixed minimum value W0 of the potential well in

the following way.

W ¼ W0 þW1

We linearize Eqs. 12 and 13 (around the value W0) and

solve those Eqs. 12 and 13 by using a plane wave solution

exp[i(k�r - xt)] to obtain

xb ¼
ky v�e þ vrB

	 


.2k2 þ 1� 2
ffiffi

p
p

ffiffiffiffiffiffi

W0

p� � ð14Þ

and

xb ¼
ky v�e þ vrB

	 


.2k2 þ 1
2W0

� � ð15Þ

where xb = x - kyvgy is the bounce frequency as the

particle is reflected off the walls of the potential well for

the shallow and deep well cases, respectively.

We note that when we compare the terms in the

denominators of Eqs. 14 and 15 and take into account the

fact that in most cases .2k2\1 then we see that for the

shallow well case Eq. 14 the value of the trapping potential

W0 only has a small corrective effect on the bounce fre-

quency xb. On the other hand for the deep potential well,

both terms in the denominator can be of the same order

making the bounce frequency large. Thus we can conclude

that in case of the deep well, the fixed value of the potential

has a more significant effect on the bounce frequency of the

trapped particles.

We see in Fig. 1 for the shallow well case that as the

potential rises above 0.9, the bounce frequency becomes

infinity which means that the particle no longer remains in

the potential well. However in the deep well case Fig. 2 we

can see that as the potential grows, the bounce frequency

increases gradually and the particles remain trapped. Here

we can conclude that the bounce frequency for the deep

well case has a more significant effect as compared to that

in the shallow well case.

Analytic Solutions for the Shallow Potential Well Case

In this section we consider only the shallow well case and

derive a Kortweg deVries (KdV) type of equation from

Eq. 12. For this we use the reductive perturbation (stret-

ched variable) technique which is introduced in the

following manner [25]

g ¼ e
1
4 y� utð Þ; s ¼ e

3
4t; x ¼ x

where u is the speed of the perturbation in the comoving

frame of reference. The potential perturbations are

expanded as follows

W1 ¼ eW1 þ e
3
2W2

Using these perturbations in Eq. 12, we get in the lowest

order of e (i.e. e
5
4Þ

vg � u
	 


.2oxx � 1
	 


ogW1 � v�e þ vrB

	 


ogW1 ¼ 0 ð16Þ

which corresponds to the linear case. Here we introduce a

separation of variables

W1 ¼ A g; sð ÞYðxÞ

so that from Eq. 16 we obtain

€Y ¼ 1

.2
tþ 1ð ÞY ð17Þ

where t ¼ v�e þ vrB

	 


= vg � u
	 


: In the next order (~e7=4Þ
we obtain,

os .2oxx�1ð ÞW1þðvg�uÞog .2oxx�1ð ÞW2þ.2 vg�u
	 


ogggW1

� v�eþvrB

	 


ogW2þ 4
3
ffiffi

p
p vg�u
	 


ogW
3
2

1¼0

ð18Þ

Following the method outlined in Dodd et al. [25], we

can write Eq. 18 asFig. 1 Potential versus bounce frequency for shallow well

Fig. 2 Potential versus bounce frequency for deep well
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os .2 €Y�Y
	 


Aþ.2 vg�u
	 


YogggAþ 4

3
ffiffiffi

p
p vg�u
	 


Y
3
2ogA

3
2¼0

using Eq. 17, finally we get

otAþ aogggAþ bogA
3
2 ¼ 0 ð19Þ

where a, and b are the coefficients given by respectively,

a ¼
q2ðvg � uÞ

R

x2

x1

Ydx

R

x2

x1

vYdx

b ¼ 4

3
ffiffiffi

p
p ðvg � uÞ

R

x2

x1

Y3=2dx

R

x2

x1

vYdx

The above integrals can be solved by using appropriate

boundary conditions. The solution to Eq. 19 is given as

W ¼ 25

16

k
b

� �2

sec h4 1

4

ffiffiffi

k
a

r

g� ktð Þ
 !

ð20Þ

We note that we have used the boundary conditions that

as x! �1; Y; oY
ox ; . . .! 0: Here 25

16
k
b

	 
2
is the amplitude

and where k is the speed of comoving frame of reference.

Another form of the solution which can be obtained for

Eq. 12 proceeds by moving to a comoving frame of reference

by setting g = y - ut, then Eq. 12 is cast in the form

r2W ¼ aWþ bW
3
2 ð21Þ

Here

a ¼ 1

.2
1þ

v�e þ vrB

	 


vg � u

� �

and b ¼ � 4
3
ffiffi

p
p

.2

Equations of this type have a general solution of the

form Ref. [26]

W ¼ �2b cos h2z

aðnþ 1Þ

� �

1
1�n

ð22Þ

where n ¼ 3
2

in our case and such a solution is valid when

a[ 0 and b (n + 1) \ 0

In the solution given by Eq. 22

z ¼ �
ffiffiffi

a
p

4
x sin c1 þ y cos c1ð Þ þ c2

where c1 and c2 are arbitrary constants thus in general the

solution to Eq. 21 is given by

We see that both solutions, i.e., those given by Eqs. 20

and 23, the two solutions are of the same form.

Sagdeev Potential

We can also investigate the solutions of the Eqs. 12 and 13

by employing the Sagdeev Potential approach [18]. Eq. 21

for the shallow well trapping is rewritten with the help of

the Sagdeev (pseudo) potential V in the form

� dV

dW
¼ aW� bW

3
2

The Sagdeev potential V can be found by integrating

above equation and using the boundary condition, i.e., W
= 0 at x = 0.

V ¼ b
2

5
W

5
2 � a

2
W2 ð24Þ

Similarly for the deep well case, we may write from Eq. 13

dV

dW
¼ bW� a ln W

Integrating the above equation w.r.t W we get

V ¼ b
2

W2 � a W ln W�Wð Þ ð25Þ

For the shallow well case, we obtain minima for a \ b
at

W ¼ a
b

� �2

For the deep well case, we obtain minima for a [ b at

W ¼ a
b

ln W

This is evident from Figs. 7 and 8 also.

If it is a potential well as in our case, a particle entering

from left will go to the right-hand side of the well, reflect

and return to x = 0 making a single transit. Such a pulse is

a soliton, propagating to the left with an arbitrary velocity

u. Now, if a particle suffers a loss of energy while in the

well, it will never return to x = 0 but will oscillate in time

about some positive value of x. This behavior is depicted in

Figs. 7 and 8.

W ¼ 225p
256

1þ
v�e þ vrB

	 


vg � u

� �2

sec h4 c2 �
1

4.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
v�e þ vrB

	 


vg � u

s

x sin c1 þ y cos c1ð Þ
 !

ð23Þ
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Two-Dimensional Potential Well

In this section we discuss the same problem but now with

two-dimensional trapping. We adopt the same strategy to

derive a modified HM-equation but we first calculate the

number density in two dimensions again by following [21].

We thus have

ne ¼ n0A

Z 1

�1
dPk

Z 1

0

dP? exp �
P2
k

2mTe
� P2

?
2mTe

þW

 !

where A is the normalization factor and P?;Pk;m; Te are

perpendicular and parallel momentum with respect to

ambient magnetic field B0, mass and temperature of

electrons, respectively. and W ¼ eU
Te

is the normalized

potential. After integration with respect to Pk; we obtain

ne ¼ 2pmTeð Þ
3
2n0

Z P?

0

P?dP?

�

þ
Z 1

P?

P? exp � P2
?

2mTe
þW

� �

dP?

�

from where we finally obtain

ne ¼ n0 1þWð Þ

Using this in Eq. 7, we obtain in the same way for two-

dimensional trapping for the shallow and deep potential

trapped electrons, respectively

d

dt
.2r2W�W
	 


� v�e þ vrB

	 
 oW
oy

¼ .2

B0

rW� zð Þ � r r2W
	 


� 1

2

dW2

dt
ð26Þ

and

.2 d

dt
r2W� v�e þ vrB

	 
 oW
oy

¼ .2

B0

rW� zð Þ � r r2W
	 


þ d

dt
ln 1þWð Þ

ð27Þ

By considering Eq. 27 we see that we cannot ignore

the non-linear HM term on the right-hand side since the

order of the non-linearity due to trapping is the same as

that in the original HM-equation. Thus for the shallow

potential case both non-linear terms are retained. For the

case of a deep well we see that if we compare Eqs. 27

and 13 it is seen that both equations, i.e., one-dimensional

and two-dimensional are similar in structure. Thus we

conclude here that trapping effect in the one-dimensional

is the same as in the two-dimensional trapping in deep

well case while for the shallow well case, the trapping

effect is stronger in the one-dimensional case than in the

present two-dimensional case.

Solution of Shallow Potential Well Case

We now obtain a KdV equation for the two-dimensional

shallow well trapping case by introducing the stretched

variables in the following manner:

g ¼ e
1
2ðy� utÞ

s ¼ e
3
2t

x ¼ x

and the potential is expressed as

W ¼ eW1 þ e2W2 þ � � � :

Using these perturbations in Eq. 24 we get for the

lowest order (i.e., e
3
2Þ

vg � u
	 


og .2oxx � 1
	 


W1 � v�e þ vrB

	 


ogW1 ¼ 0 ð28Þ

In the next order ðe5
2Þ; we obtain

Once again following [24], we get

otAþ aogggA� bogA2 ¼ 0 ð29Þ

This is the standard KdV equation and constants a ,b are

given by, respectively

a ¼
�
R1
�1 Y2dx

R1
�1

Y2 .2mþ1ð Þ
.2ðvg�uÞ dx

b ¼
R1
�1

Y2

.2 dx
R1
�1

Y2 .2mþ1ð Þ
.2ðvg�uÞ

� 1

B0

R1
�1

mY3

vg�u dx
R1
�1

Y2 .2mþ1ð Þ
.2ðvg�uÞ

where

m ¼ ðvg � uþ v�e þ vrBÞ
.2ðvg � uÞ :

The solitary vortex solution is given by

A ¼ A0 sec h2j1

os .2oxx � 1
	 


W1 þ ðvg � uÞog .2oxx � 1
	 


W2 þ .2 vg � u
	 


ogggW1

� v�e þ vrB

	 


ogW2 ¼
.2

B0

ogW1oxxxW1 � oxW1ogxxW1

� �

þ 1

2
vg � u
	 


ogW
2
1
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where A0 ¼ �v=2b is the amplitude, 1 ¼ g� vt denoting

that we have a stationary solution and j ¼
ffiffiffiffiffiffiffiffiffiffi

v=4a
p

is the

inverse width of the soliton.

Bounce Frequencies in Potential Well

We can use the non-linear evolution Eqs. 26 and 27 for the

shallow and deep well cases to estimate the ‘‘bounce’’

frequency of the particles within the wells. We first con-

sider the shallow well case and expand W around the fixed

value W0 of the potential well in the same way as done in

section ‘‘Bounce Frequencies in Potential Well’’.

W ¼ W0 þW1

By taking W1	 exp iðk � r � xtÞ; we obtain the bounce

frequencies for the shallow and deep well cases,

respectively.

xb ¼
ky v�e þ vrB

	 


.2k2 þ 1� 2W0ð Þ

and

xb ¼
ky v�e þ vrB

	 


.2k2 � 1þW0ð Þð Þ

where xb is the bounce frequency given by xb = x -

kyvgy same as in section ‘‘Bounce Frequencies in Potential

Well’’. We see that the expressions for the bounce fre-

quencies in both cases are similar to that of the shallow

well case in the one-dimensional case.

Discussion and Conclusion

The basic model equation which is derived in section

‘‘Two-Dimensional Potential Well’’ is a modified HM

equation. The modification occurs due to the effect of one-

dimensional trapping. We see that we obtain stronger non-

linear terms when trapping is taken into account as com-

pared to the standard HM equation and it was for this reason

that we ignored the non-linearities of the original HM

equation which is small in comparison with the non-linear

term which arises due to the trapped particle effect in case

of one-dimensional problem. Further we split the problem

into two cases, namely the shallow potential well case and

the deep potential well case. We have shown that there

exists a family of localized vortex solutions of Eq. 12 which

are stationary and have strongly non-linear structures. Next

we calculated the bounce frequency of the electrons within

the potential well. We noted that in the deep well case, the

potential due to trapping has a stronger effect on the bounce

frequency than in the shallow well case.

Further in section ‘‘Analytic Solutions for the Shallow

Well Case’’ we made use of the reductive perturbation

method and reduced the modified HM equation Eq. 12 for

the shallow well case and obtained a KdV equation with a

non-linearity of power 3/2. We also obtained an analytic

solution to this equation. In section ‘‘Analytic Solutions for

the Shallow Well Case’’ we also gave another stationary

solution to the HM equation. This is given by Eq. 23. In

section ‘‘Sagdeev Potential’’ we analyzed Eqs. 12 and 13

for both the shallow and deep well cases, via the Sagdeev

Potential approach. It was shown in both cases that solitary

vortices can exist. In section ‘‘Bounce Frequencies in

Potential Well’’ we analyzed the bounce frequencies for

electrons trapped in both shallow and deep one-dimen-

sional potential wells. It is observed that the bounce

frequency in the deep well is more significant than in the

shallow well.

In section ‘‘Two Dimensional Potential Well’’ we con-

sidered two-dimensional trapping of electrons and

investigated the evolution of vortices. We saw that in the

shallow well case the non-linearity which arises is of the

same order as the non-linearity occurring in the original

HM equation. Hence in this case both terms have to be

included in the analysis and in section ‘‘Solution of Shal-

low Well Case’’ we have obtained the usual KdV equation

for two-dimensional trapping in the shallow well case.

However in the case of a deep potential well we observe

that it does not differ from the corresponding one-dimen-

sional case. We then investigated the bounce frequencies

for the deep well and the shallow well cases and noted that

the two frequencies are nearly the same and also similar to

the shallow well case in one dimension. While the bounce

frequency in the deep well case in one dimension has

stronger influence than in any other cases. Thus we con-

clude here that the bounce frequency in one dimension is

more significant than in two dimensions as is also evident

in Figs., 1 and 2 for the shallow and deep potential well

cases, respectively.

These results have been shown graphically. We have

plotted KdV solution given by Eq. 20 in one-dimensional

shallow well case in Figs. 3, and 4 and by giving different

arbitrary values to the constants a, b, and k, we got dif-

ferent values of the amplitudes of the solution. We took

a = 1, b = 1, k = 1 for Fig. 3 and a = 1, b = 1,

k = 10 for Fig. 4 in which we get different amplitudes.

Then we plot the graphs for the Eq. 23 for the shallow well

case in one dimensions in Figs. 5 and 6 in which amplitude

is plotted against its two arguments x and y. It is noted that

by giving different values to constants C1 and C2, we get

the rotation of amplitude in perpendicular direction. In

Fig. 5, we took C1 ¼ p
10
; C2 = 0 and in Fig. 6, C1 ¼ � p

4

and C2 = 0 and noted that the amplitude is rotated.
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Analysis using the Sagdeev Potential method for the

shallow and deep potential wells confirmed the existence of

solitary vortices for both the shallow and deep potential

well cases .We also obtained conditions for the occurrence

of minimas of the potential wells. These results were pre-

sented graphically in Figs. 7 and 8.

The originality of our study was to start from an exact

and realistic solution of the modified Hasegawa Mima

equation and to provide analytical results and relevant

parameters for the trapping process. Moreover, we have

considered the effect of small-scale fluctuations on the

motion of the trapped electrons inside the vortex structure.

These theoretical result have been formulated in the con-

text of electron–ion plasma but they can clearly have

applications in other fields of astrophysics and geophysics.

Fig. 4 KdV solution for shallow well when a = b = 1, k = 10

Fig. 5 Solution for shallow well when C1 ¼ p
10
; C2 = 0

Fig. 6 Solution for shallow well when C1 ¼ � p
4
; C2 = 0

Fig. 7 Sagdeev potential for shallow well

Fig. 8 Sagdeev potential for deep well

Fig. 3 KdV solution for shallow well when a = b = 1, k = 1
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