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a b s t r a c t

Taking into account the existence of charged particles in the Earth’s ionosphere the

propagation of acoustic-gravity waves is investigated. The influence of the Coriolis force

is also taken into account. The weakly ionized ionospheric D, E, and F-layers are

considered. The existence of a cut-off frequency at 2O0 (O0 is the value of the angular

velocity of the Earth’s rotation) is noted. It is shown that the linear waves are damped

because of the Pedersen conductivity. When the acoustic-gravity waves are excited by

external events (volcanic eruptions, earthquakes, lightning strikes, etc.) their amplitudes

grow until self-organization of these waves into nonlinear vortex solitary structures is

admitted. Taking into account the interaction of the induced ionospheric current with

the geomagnetic field the governing nonlinear equations are deduced. The formation of

dipole vortex solitary structures of low-frequency internal gravity waves is shown for

the stable stratified ionosphere. The dynamic energy equation for such nonlinear

structures is obtained. It is shown that nonlinear solitary vortical structures damp due

to Joule losses.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic-gravity waves (AGWs) play an important role
for the interpretation of a large number of physical
phenomena in the troposphere, and for the dynamics of
the ionospheric plasma (Hines, 1960; Hooke, 1968).
Traditional methods for observing the ionospheric state
have been improved, the models used for theoretical
calculations of wave characteristics have become more
complicated, better algorithms and programs for numer-
ical calculations have been worked out, and new nonlinear
effects for AGW radiation and propagation have been
found. Another reason for the importance of AGW studies,
ll rights reserved.
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related to their practical applications, is that energy and
momentum fluxes transported by AGWs from the lower to
the upper ionosphere are comparable or even larger than
those coming from the solar wind or other sources
(Francis, 1975; Ebel, 1984; Fritts et al., 1990; Kim and
Mahrt, 1992; Alexander and Pfister, 1995). Theoretical and
experimental studies have showed that AGW sources in
the ionosphere can be earthquakes, volcanic eruptions,
tornadoes, thunderstorms, solar eclipses, terminators, jet
flows, polar and equatorial electrojets, meteors, strong
explosions, and powerful rocket launches (Cole and
Greifinger, 1969; Tolstoy and Lau, 1971; Gossard and
Hooke, 1975; Richmond, 1978; Kato, 1980; Röttger, 1981;
Fovell et al., 1992; Igarashi et al., 1994; Grigor’ev, 1999;
Kanamori, 2004).

AGWs consist of relatively high-frequency acoustic and
low-frequency internal gravity (IG) branches. AGWs have
typical periods of 102 spto1 day and are strongly
affected by the Earth’s gravitational field. Such waves
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have typical wavelengths l � 10 km and propagation
velocities vp � 30 m=s. Various methods of measuring
the parameters of the atmosphere indicate the presence of
AGWs in a large range of heights extending from the
troposphere to zp500 km. A most complete survey of the
observations of these waves in the troposphere has been
provided by Gossard and Hooke (1975). The modern
theory of small-amplitude AGWs in the Earth’s atmo-
sphere has been presented recently by Grigor’ev (1999).

The Earth’s ionosphere consists of electrons, ions and
neutral particles and is weakly ionized. Its behavior is
determined on the whole by its massive neutral particles
due to strong collisional coupling between the ionized and
neutral components. The basis for such a statement is the
condition n=N51, where n and N are the equilibrium
number densities of the electrons and neutrals, respec-
tively. The presence of charged particles causes however
the medium to be electrically conducting. In addition the
ionospheric plasma is immersed in the geomagnetic field
B0 and under influence of the Coriolis force due to the
rotation of the Earth with the angular velocity X0.
Therefore, the interaction of the inductive current with
the geomagnetic field has also to be taken into account.
For typical ionization fractions, the Ampere force will be
comparable to the Coriolis force.

The propagation of AGWs under such conditions for
the conductive ionosphere has not yet been studied
properly. Hence in our investigation we must take into
account the effects of the interaction of the induced
ionospheric current with the geomagnetic field and the
Earth’s rotation, which are inherent to the ionosphere. A
systematic investigation of the influence of the charged
particles in the ionosphere was first made by Kaladze and
Tsamalashvili (1997), Kaladze (1998, 1999) and Kaladze
et al. (2004) to study nonlinear solitary vortical motions
caused by planetary Rossby waves.

In the present paper we will focus our attention on the
influence of the charged particles on the linear and
nonlinear propagation peculiarities of AGWs in the weakly
ionized conductive ionospheric D-, E-, and F-layers taking
into account the effects of the Coriolis force as well.

Our paper is organized in the following fashion: In
Section 2 the basic equations are formulated. The linear
propagation of AGWs in the weakly ionized conductive
ionosphere is investigated in Section 3. In Section 4 the
reduced nonlinear equations for the IG waves accounting
for the conductivity of the Earth’s ionosphere are
obtained. The evolution of nonlinear solitary vortex
structures in the conductive ionosphere is investigated
in Section 5. Our discussions and conclusions can be found
in Section 6.
2. Basic equations

Let us introduce a local Cartesian system of coordinates
(x; y; z) with the x-axis directed from the west to the east,
the y-axis from the south to the north, and the z-axis
along the local vertical. We are primarily interested in the
dynamics at high latitudes in the northern hemisphere.
Thus we assume that the geomagnetic field B0 ¼ �B0ez is
vertical and downward. Analogously we assume that the
Earth’s angular velocity at these latitudes has only a
vertical component, i.e. X0 ¼ ð0;0;O0Þ. Furthermore, for
the AGWs we consider X0 and B0 to be uniform.

The dynamics of the electrically conducting iono-
spheric plasma can be described with the help of the
momentum equation

du

dt
�

qu

qt
þ u.ru

¼ �
rp

R
þ

j� B0

R
� 2X0 � uþ g, (1)

where j is the electric current, u is the bulk (neutral)
velocity, p and R are the pressure and mass density
of the medium, and g ¼ ð0;0;�gÞ is the gravitational
acceleration.

The main purpose of the present study is to find the
Ampere force j� B0, since it significantly determines the
specific character of the ionospheric motions (especially at
high altitudes). The most important impact of this force is
on the inductive damping of the conductive medium
(Cowling, 1976). For sufficiently large-scale motions we
can in Eq. (1) neglect the viscous force relative to the
Ampere force (Dokuchaev, 1959).

We consider the ionospheric plasma as quasi-neutral
and neglect the inner electrostatic electric fields
(E ¼ �rj ¼ 0). Using the so-called noninductive approx-
imation (Dokuchaev, 1959), it is sufficient to consider the
currents arising in the gas whereas the vortex part of the
self-generated electromagnetic field can be ignored.
Assuming the ion and electron pressures to be small as
compared with that of the neutrals one finds that the
effective electric field in the generalized Ohm’s law is
equal to the dynamo field, i.e.,

j ¼ skEdk þ s?Ed? þ
sH

B0
B0 � Ed, (2)

where

sk ¼
ne2

mene
, (3)

sp ¼ s? ¼
ne2ninðnenin þoceociÞ

meðo2
cen2

in þ n2
en2

in þo2
ceo2

ciÞ
(4)

and

sH ¼
ne2n2

inoce

meðo2
cen2

in þ n2
en2

in þo2
ceo2

ciÞ
. (5)

In Eqs. (2)–(5) sk, s?, and sH are the parallel, perpendi-
cular (Pedersen), and Hall conductivities, respectively. The
subscripts k and ? denote in Eq. (2) the components
parallel and perpendicular to the external magnetic field.
The quantities nen and nin are the effective collisional
frequencies of the neutral particles with the electrons and
ions, e is the electron charge, ne ¼ nei þ nen, oce ¼ eB0=me

and oci ¼ ZeB0=mi are the cyclotron frequencies of
electrons and ions, me and mi are the electron and ion
masses, and Z is the ion charge state. The electric field
Ed ¼ u� B0 stands for the so-called dynamo-field.
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Eq. (1) should be supplemented by the continuity
equation and the equation of state, i.e.

qR
qt
þ ðu.rÞRþ Rr � u ¼ 0, (6)

qp

qt
þ ðu.rÞp� c2

s

q
qt
þ u.r

� �
R ¼ 0, (7)

where cs is the sound speed.
Eqs. (1)–(7) constitute a full set of equations for

describing the dynamics of AGWs in the weakly ionized
ionosphere. The background pressure and mass density
are stratified by the gravitational field. In an isother-
mal ionosphere they vary as ½p0ðzÞ;R0ðzÞ� ¼ ½p0ð0Þ;
Rð0Þ� expð�z=HÞ, where H ¼ c2

s =gg stands for the reduced
atmospheric height, and g is the ratio of specific heats.

3. Linear propagation

Linearizing Eqs. (1)–(7) one obtains

R0

qu

qt
þrp� j� B0 þ 2R0X0 � u� Rg ¼ 0, (8)

qR
qt
þ u.rR0 þ R0r � u ¼ 0, (9)

qp

qt
þ u.rp0 � c2

s

qR
qt
þ u.rR0

� �
¼ 0, (10)

which can be used to consider AGWs in different iono-
spheric layers.

The D-layer: The ionospheric D-layer is in the region
between 50 and 80 km from the Earth’s surface. One can
there assume the frequency hierarchy (e.g., Kaladze and
Tsamalashvili, 1997) nenbnei; ninnenboceoci; ninboci and
ocebnen. Then, using Eqs. (3)–(5), we have the reduced
conductivities

sk ¼
ne2

menen
; sp ¼ s? ¼

n2
en

o2
ce

sk

and

sH ¼
nen

oce
sk. (11)

For numerical estimates we use the typical values
O0 ¼ 7:3� 10�5 s�1; B0 ¼ 0:5� 10�4 T, n=N�10�12

210�8,
nei�102 s�1, nen�106 s�1, nin�105 s�1, oce�107 s�1 and
oci�3� 102 s�1. One then finds that the terms containing
sH and s? in Eq. (8) (see Eq. (2)) are negligibly small
relative to the term with O0. Thus, in the momentum
equation (8) at the D-layer heights one can neglect the
contribution of the Ampere force j� B0, i.e.

R0

qu

qt
þrpþ 2R0X0 � u� Rg ¼ 0. (12)

Combining Eqs. (9), (10) and (12) we find

q2u

qt2
þ gruz � c2

srðr � uÞ þ 2X0 �
qu

qt

þ ð1� gÞgr � u ¼ 0, (13)

where u ¼ ðux;uy;uzÞ, i.e. all velocity components have
been taken into account.
Standard calculations for AGWs in a stratified atmo-
sphere (cf. Gershman, 1974) then lead to the dispersion
equation

o4 �o2c2
s k2

þ
1

4H2
þ 4

O2
0

c2
s

 !

þ g2ðg� 1Þk2
? þ 4O2

0c2
s k2

z þ
1

4H2

� �
¼ 0, (14)

where k2
¼ k2

x þ k2
y þ k2

z ¼ k2
? þ k2

z .
Eq. (14) includes the influence of the Coriolis force and

all the three components of the wave vector k. In this
sense it is a general equation for a neutral rotating fluid.
As is seen from Eq. (8), when the equilibrium density
profile R0 is exponential, amplitudes of the velocity
components increase with height, but that the pressure
and density decrease, i.e.

ðux;uy;uzÞ / exp
z

2H

� �
and

ðR; pÞ / exp �
z

2H

� �
. (15)

Our solutions for the Fourier components are not uniform
with regard to the variable z. For a fixed o and fixed
propagation direction defined by the ratio k?=kz Eq. (14)
has a unique solution. But we have two frequency
branches, as the solution of Eq. (14) is

o2 ¼
1

2
c2

s k2
þ

1

4H2
þ 4

O2
0

c2
s

 !

	
1

2
c2

s k2
þ

1

4H2
þ 4

O2
0

c2
s

 !2
8<
:

�4
g2ðg� 1Þk2

?

c4
s

þ 4
O2

0

c2
s

k2
z þ

1

4H2

� �" #)1=2

. (16)

One sees that the incorporation of the Coriolis force
leads to the coupling of the AGWs and the inertial waves
which results in the appearance of so-called inertio-
acoustic-gravity (IAG) waves (cf. Kaladze et al., 2007).

Let us now consider the special cases of waves
propagating along the vertical and horizontal directions.

When k? ¼ 0 (vertical propagation) the acoustic waves
and the inertial waves are decoupled, i.e. Eq. (16) reduces
to the two independent dispersion relations

o2
1 ¼ c2

s k2
z þ

1

4H2

� �
¼ o2

a þ k2
z c2

s (17)

and

o2
2 ¼ 4O2

0, (18)

where oa ¼ cs=2H stands for the acoustic cut-off fre-
quency.

The acoustic waves described by the dispersion
relation (17) are always supersonic, i.e. their phase
velocity vp ¼ o=kz exceeds cs.
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In the other limiting case kz ¼ 0 (horizontal propaga-
tion) one obtains from Eq. (14)

k2
? ¼
ðo2 �o2

aÞðo2 �o2
i Þ

c2
s ðo2 �o2

g Þ
, (19)

where og is Brunt-Väisälä frequency given by

o2
g ¼
ðg� 1Þg2

c2
s

¼
ðg� 1Þg

gH
, (20)

and oi ¼ 2O0 stands for the inertial cut-off frequency. One
sees that oa4og4O0.

The curves, that bound the shaded regions in Fig. 1,
characterize the dependence oðk?Þ for the horizontal
propagation directions, when kz ¼ 0 (see Eq. (19)). The
mode o4oa corresponds to acoustic type waves and the
mode for which oioooog corresponds to gravitational
type waves. When ogooooa and oooi the propagation
of traveling waves becomes impossible. The shaded
regions I and II in Fig. 1 define the zones where the
propagation of gravitational and acoustic atmospheric
waves is possible. There the conditions k2

?40 and k2
z40

are satisfied.
Eq. (14) may be re-written similar to Eq. (19), i.e.

k2
? ¼
ðo2 �o2

a � k2
z c2

s Þðo2 �o2
i Þ

c2
s ðo2 �o2

g Þ
. (21)

If ogooooa or oooi then the condition k2
?40 is

satisfied only when k2
zo0. Thus, we come to the conclu-

sion on the presence of forbidden zones for wave
propagation. When kz ! 0 these zones occupy the
frequency intervals ð0;oiÞ and ðog ;oaÞ. For k2

z40
the lower interval remains the same as for k2

z ¼ 0.
However, the upper limit is defined by a frequency o
a
larger than oa. It is given by

o
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a þ k2
z c2

s

q
. (22)

Propagation of supersonic (acoustic) waves is possible if
o4o
a. Such waves have sufficiently short periods. For
subsonic (gravitational) waves, according to the condition
Fig. 1. A plot of the possible propagation regions for AGWs.
oioooog , we obtain the following limitation on the
period t of the gravitational waves

p
O0
¼ ti4t4tg ¼ 2p gH

ðg� 1Þg

� �1=2

, (23)

where t ¼ 2p=o.
The relations (14) and (21) can be substantially

simplified if k2
zbk2

?. For the gravitational type waves this
is equivalent to the limitation

o2
5o2

g . (24)

Using the condition (24), we obtain from Eq. (14) the
dispersion relation (cf. Stenflo, 1991)

o2 ¼
k2
?o2

g

k2
z þ 1=4H2

þo2
i , (25)

that describes so-called inertio-gravity waves.
From Eq. (14) we can obtain the phase velocity vp ¼

ok=k2 and group velocity vg ¼ qo=qk. The x-component
of the phase velocity vpx characterizes the motion of the
phase front in the azimuthal direction. Such formulae are
in general quite complex. Thus, we limit our study to low
frequencies. Taking derivatives of expression (25) we thus
find the group velocity components

vgx;y ¼
qo
qkx;y

¼
o2

g kx;y

oðk2
z þ 1=4H2

Þ
, (26)

vgz ¼
qo
qkz
¼

o2
g k2
?kz

oðk2
z þ 1=4H2

Þ
2

. (27)

We note that for the region of applicability of these
equations (k2

zbk2
?) we have jvgx;yjbjvgzj. In addition owing

to the existence of O0 we have vgx;y ! 0, when kx;y ! 0
and vgz ! 0, when k? ! 0 or kz ! 0.

For the phase velocities we have

vpx;y ¼
okx;y

k2
z

; vpz ¼
o
kz

. (28)

I.e., when k2
?5k2

z we have jvpx;yj5jvpzj.
The group velocities (26) and (27) are smaller than the

corresponding values without O0. But the phase velocities
(28) are larger in the same comparison. Thus, incorpora-
tion of the Earth’s rotation provides a noticeable change in
the propagation dynamics of low-frequency AGWs.

The E-layer: Let us now consider the ionospheric
E-layer that is situated at heights 100–150 km above the
Earth’s surface. The plasma conditions in this region
(ne � nen; ninnen5oceoci and ninboci) allow us to simplify
the expression for the inductive electric current. First,
since oci5nin the ions can be considered as unmagne-
tized. It is well-known that the ion velocity across
the magnetic field coincides with the wind velocity
(Kaladze et al., 2003, 2004), i.e. vi ¼ v and thus the ions
are completely dragged by the ionospheric winds. In
this limiting case the Hall conductivity is sH � en=B0,
whereas the Pedersen conductivity is small, i.e., sp �

sHoci=nin5sH (see Eqs. (4) and (5)). This allows us
to neglect the ion friction caused by the Pedersen
conductivity in the E-layer. However, the electrons are
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magnetized, ocebnen, and thus they are frozen in the
external magnetic field. For a numerical estimate we
use the typical values n=N�10�8

210�6, nei�103 s�1,
nen�104 s�1, nin�103 s�1;oce�107 s�1,oci�3� 102 s�1,
and sH � 3� 10�4 S=m. Thus, according to Eqs. (2) and
(8) for the E-region the appropriate momentum equation is

R0

qu

qt
þrpþ 2R0X0 � uþ sHB0B0 � u� Rg ¼ 0. (29)

Analogously to Eq. (13) we have

q2u

qt2
þ gruz � c2

srðr � uÞ þ 2X0 �
qu

qt

þ
en

R0

B0 �
qu

qt
þ ð1� gÞgr � u ¼ 0. (30)

Eq. (30) shows that the effect of the geomagnetic field
corresponds to a replacement of the planetary angular
rotation vector according to

2X0 ! 2X0 þ
en

R0

B0. (31)

The ratio of the magnetic term to the Coriolis term
depends on the degree of ionization n=N ¼ mn=R0. For the
E-layer the value enB0=R0 � ðn=NÞoci � 10�4 s�1 is com-
parable to 2O0�10�4 rad=s. In addition we consider the
ratio n=R0 to be independent on height z (Gershman,
1974).

Thus, we conclude that all results in the previous
section remain the same if

oi�!oi �
enB0

R0

. (32)

The F-layer: Let us finally consider the ionospheric
F-layer (150–400 km above the Earth’s surface). In this
region oceocibnenin and ocibnin. From Eqs. (3)–(5) we
then have, respectively,

sk �
ne2

mene
; s? ¼ sp �

nenin

ocioce
sk

and

sH �
nin

oci
sp. (33)

With typical numerical values we have n=N�10�5
210�3,

ne�nei�103 s�1; nen�102 s�1; ninp10 s�1;oce�107 s�1 and
oci�3� 102 s�1. Thus, in this region the contribution of
Hall conductivity in Eq. (2) can be neglected. As a result
we have

j� B0 ¼ �spB2
0u?. (34)

Thus, similar to Eq. (8) we have the equation

R0

qu

qt
þrpþ spB2

0u? þ 2R0X0 � u� Rg ¼ 0. (35)

For the ratio of the magnetic term to the Coriolis term we
have spB2

0=R0 ¼ ninðn=NÞ�10�3 and we can thus neglect
the influence of the Coriolis force in Eq. (35). At these
heights the geostrophic character of the motions is finally
lost and the motion remains the same as in a viscous
medium, where the viscosity appears in the inductive
(magnetic) inhibition (Cowling, 1976). Thus, in the F-layer,
analogously to Eqs. (13) and (30), we have

q2u

qt2
þ gruz � c2

srðr � uÞ þ
spB2

0

R0

qu?
qt
þ ð1� gÞgr � u ¼ 0.

(36)

As in previous sections we can then obtain the dispersion
equation

FðoÞ ¼ o4 �o2c2
s k2

þ
1

4H2

� �
þ k2
?ðg� 1Þg2

� �

� oþ i
spB2

0

R0

 !
þo spB2

0

R0

 !2

� c2
s k2

z þ
1

4H2

� �
�o2

� �
¼ 0. (37)

When obtaining this dispersion equation we have
supposed that the ratio spB2

0=R0 ¼ ninðn=NÞ is conserved
and that it does not depend on height, i.e. on the
z-coordinate (Gershman, 1974). Decomposing the fre-
quency into its real and imaginary parts o ¼ o0 þ iG
(with jGj5jo0j), we obtain from Eq. (37)

iG
qF

qo

				
o¼o0

¼ �Fðo0Þ, (38)

where o0 is the AGW eigenfrequency when O0 ¼ 0 (see
Eq. (14)) and satisfies the equation

o4
0 �o

2
0c2

s ðk
2
þ 1=4H2

Þ þ k2
?ðg� 1Þg2 ¼ 0. (39)

The corresponding zones for possible propagation are
shown in Fig. 1 for oi ¼ 0. From Eq. (38) we then find

G ¼ �
1

4

spB2
0

R0

o2
0 � c2

s ðk
2
z þ 1=4H2

Þ

o2
0 � c2

s ðk
2
þ 1=4H2

Þ
. (40)

With eigenfrequencies o0 given by Eq. (39), this expres-
sion is always negative and defines the damping rate
of AGWs in the ionospheric F-layer. The magnitude of
Eq. (40) is

jGj�
spB2

0

R0

. (41)

4. Nonlinear propagation. Basic equations for IG waves

The nonlinear properties of small amplitude AGWs
have been considered by many authors (e.g., Yeh and Liu,
1981; Miropol’sky, 1981; Weinstock, 1984). Reduced non-
linear equations describing the dynamics of propagation
of AGW solitary structures have also been obtained by
Stenflo (1987, 1990, 1996). Although such nonlinear
equations with vector nonlinearities are useful in the
theory of neutral atmospheric motion, they have to be
improved for the conductive ionospheric motion because
they do not take into account the influence of electro-
magnetic forces. Investigations of the charged particle
influence that makes the atmosphere electrically con-
ducting have therefore been carried out to study solitary
vortical motions caused by Rossby waves (e.g., Kaladze
and Tsamalashvili, 1997; Kaladze, 1998, 1999; Kaladze
et al., 2004).
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In what follows we will obtain reduced nonlinear
equations for the IG waves taking into account the
conductivity of the Earth’s ionosphere.

It is common knowledge that the density variations
due to the IG waves do not exceed 3–4% (Miropol’sky,
1981). In this case the ratio of the density perturbations to
the unperturbed density is ~R=R0 ’ ð124Þ � 10�2. In the
momentum equation (1) we can therefore neglect ~R as
compared with R0ðzÞ for the inertial and Coriolis force
terms and use the equation

R0ðzÞ
du

dt
þ 2X0 � u

� �
¼ �rpþ Rgþ sHB0u� B0 � spB2

0u?. (42)

This is known as the Boussinesq approximation. The other
equation concerns the total density (R ¼ R0 þ ~R), i.e.

dR
dt
¼ 0, (43)

where d=dt ¼ q=qt þ u � r.
To exclude the high-frequency acoustic mode we make

use of the incompressibility condition

r � u ¼ 0. (44)

Eqs. (42)–(44) constitute a full set of equations necessary
for studies of vortex motions for low-frequency incom-
pressible IG waves. We next consider two-dimensional
motion in the (x� z) plane, assuming q=qy ¼ 0,
u ¼ ðu;0;wÞ, X0 ¼ ð0;0;O0Þ and B0 ¼ ð0;0;�B0Þ. The co-
ordinate system is the same as in previous sections. From
Eq. (42) one then obtains the equations

R0ðzÞ
qu

qt
þ u

qu

qx
þw

qu

qz

� �
¼ �

qp

qx
� spB2

0u, (45)

R0ðzÞ
qw

qt
þ u

qw

qx
þw

qw

qz

� �
¼ �

qp

qz
� Rg. (46)

One sees that for the latitudes under consideration the
IG waves are not influenced by the Coriolis force and
Hall conductivity. After differentiating Eq. (45) with
respect to z and Eq. (46) with respect to x, and using
Eq. (44) one obtains

R0

qz
qt
þ u

qz
qx
þw

qz
qz

� �

þ
qR0

qz

qu

qt
þ u

qu

qx
þw

qu

qz

� �

¼ g
qR
qx
� u

q
qz
ðspB2

0Þ � spB2
0

qu

qz
, (47)

where the y-component of the vorticity z is

z ¼
qu

qz
�
qw

qx
. (48)

Condition (44) allows us to introduce the stream function
c from

u ¼ �
qc
qz
; w ¼

qc
qx

. (49)

The vorticity (48) can then be written as
z ¼ �ðq2=qx2 þ q2=qz2Þc ¼ �r2c. Thus, our basic
equations (43) and (47) in terms of c are

R0

q
qt
r2cþ Jðc;r2cÞ

� �

¼ �g
q ~R
qx
�

dR0

dz

q
qt

qc
qz

� �
þ J c;

qc
qz

� �� �

�
q
qz
ðspB2

0Þ
qc
qz
� ðspB2

0Þ
q2c
qz2

, (50)

q ~R
qt
þ
qc
qx

dR0

dz
þ Jðc; ~RÞ ¼ 0, (51)

where Jða; bÞ ¼ ðqa=qxÞðqb=qzÞ � ðqa=qzÞðqb=qxÞ denotes
the Jacobian. As in the previous section we look for the
solutions of Eqs. (50) and (51) in the form

c ¼ ez=2Hc̄; ~R ¼ e�z=2HR̄. (52)

From Eqs. (50) and (51) one obtains

qr2c̄
qt
�

1

4H2

qc̄
qt
þ ez=2H

�
1

2H
r

2c̄
qc̄
qx
�

1

2H
c̄
qnc̄
qx
þ Jðc̄;r2c̄Þ

" #

¼ �e�z=2H g

R0

qR̄
qx
�
spB2

0

R0

�
c̄

4H2
þ

1

H

qc̄
qz
þ
q2c̄
qz2

 !

�
1

R0

q
qz
ðspB2

0Þ
c̄

2H
þ
qc̄
qz

 !
, (53)

qR̄
qt
þ ez=2H Jðc̄; R̄Þ � 1

2H
R̄ qc̄
qx
�

1

2H
c̄
qR̄
qx

" #

¼ ez=H R0

H

qc̄
qx

. (54)

For the nonlinear terms it is reasonable to assume that
expðz=2HÞ � 1, i.e. kzb1=2H (the sufficiently short wave-
length limit). That means that the Jacobian is more
essential than the other terms. Thus, we obtain instead
of Eqs. (53) and (54)

q
qt
r2c̄�

1

4H2
c̄

� �
þ Jðc̄;r2c̄Þ ¼ �e�z=2H g

R0

qR̄
qx

�
spB2

0

R0

c̄
4H2
þ

1

H

qc̄
qz
þ
q2c̄
qz2

 !

�
1

R0

q
qz
ðspB2

0Þ
c̄

2H
þ
qc̄
qz

 !
(55)

and

qR̄
qt
þ Jðc̄; R̄Þ ¼ ez=H R0

H

qc̄
qx

. (56)

Furthermore we use here the R0ðzÞ ¼ R0ð0Þ expð�z=HÞ

distribution and introduce the new variable w ¼ gR̄=
R0ð0Þ. Assuming that spB2

0=R0 is constant along the z-axis
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(Gershman, 1974), we obtain

q
qt
r

2c̄�
1

4H2
c̄

� �
þ Jðc̄;r2c̄Þ

¼ �
qw
qx
�
spB2

0

R0

q2c̄
qz2
�

1

4H2
c̄

 !
, (57)

qw
qt
þ Jðc̄;wÞ ¼ o2

g

qc̄
qx

. (58)

Here og ¼ ðg=HÞ1=2 is the Brunt-Väisälä frequency for the
incompressible fluid (cf. with Eq. (20)).

The system of Eqs. (57) and (58) describes the
dynamics of nonlinear solitary vortices for low-frequency
IG waves in our stable stratified (o2

g40) ionosphere for
sufficiently high latitudes. For the neutral D-layer (sp ¼ 0)
in the linear regime we obtain the dispersion relation for
the IG waves

o2 ¼
k2

xo2
g

k2
x þ k2

z þ 1=4H2
, (59)

propagating along the x-axis (the parallels).
For the upper E- and F-layers of the ionosphere we find

from Eqs. (57) and (58) that these waves decay with the
damping rate

G ¼ �
1

2

spB2
0

R0

k2
z þ 1=4H2

k2
x þ k2

z þ 1=4H2
, (60)

which by the order of magnitude is the same as (40).

5. Evolution of solitary vortex structures

The nonlinear behavior of the low-frequency acoustic-
gravity perturbations is dominated by the presence of the
convective derivative, and the corresponding vector-
product nonlinearity can thus produce various coherent
localized vortex structures for a broad range of back-
ground configurations. The forms of such vortices are
strongly dependent on the spatial profile of the unper-
turbed medium. In a quiescent atmosphere with expo-
nential density and pressure profiles, the standard
traveling dipolar vortices (also called acoustic-gravity
modons) have been found with the transverse dimensions
either much smaller (Stenflo, 1987), or comparable with
the density scale length (Stenflo and Stepanyants, 1995).
We note that Stenflo and Stepanyants (1995) have
considered IG waves in a stable stratified atmosphere.
Stenflo (1987) and Stepanyants (1989, 1991) have con-
structed solutions in the form of acoustic-gravity modons
in an unstable stratified atmosphere (where IG waves do
not exist). Alternatively to the dipolar vortices (with
similar exponential density and pressure profiles) an
acoustic vortex chain analogous to the Kelvin–Stewart
cat’s eyes was found under conditions that exist in the
Earth’s atmosphere at 4–6 km altitude (Stenflo, 1994). The
nonlinear equations presented in Section 4 have been
derived under the assumption of an exponential density
profile. Analogous equations are however applicable for
other density profiles also. Dipolar vortices will thus in
general be formed. If the density gradient is small, tripolar
vortices may also be formed. Such fundamental vortex
structures described by the Euler equation may appear in
two-dimensional incompressible flows (Van Heijst et al.,
1991; Carton and Legras, 1994). Jovanovič et al. (2001)
have generalized the equations for strongly nonlinear low-
frequency acoustic-gravity phenomena to allow for com-
plicated profiles of the density, the pressure and the flow
velocity, as well as for the presence of horizontal shear
flows. For a class of parabolic profiles of the pressure and
density a fully nonlinear solution in the form of a tripolar
vortex was constructed. Apart from the known Kelvin-
Stewart cat’s eyes, dipolar and tripolar structures, new
solutions having the form of a row of counter-rotating
vortices, and several weakly two-dimensional vortex
chains were also investigated (Jovanovič et al., 2002).

From Eq. (59) we conclude that the phase velocity
vph ¼ o=kx is bounded by the interval

�vmaxpvphpvmax, (61)

where in the case of an incompressible atmosphere
vmax ¼ 2Hog ¼ 2ðgHÞ1=2. Thus when a source is moving
in the x-direction with a velocity larger than vmax, there is
no resonance with IG waves. This means that such waves
will not be generated by the source, i.e. there are no
energy losses (Stepanyants and Fabrikant, 1992). Therefore
one can obtain a stationary solution for the localized
nonlinear formation of a pulse propagating horizontally
with a velocity jV j4vmax. Such solutions of the nonlinear
Eqs. (57) and (58) in the form of spatially localized dipole-
vortex solutions (modons) propagating in the neutral
(sp ¼ 0) D-layer have been found by Stenflo and Stepany-
ants (1995). We note that if we take H � 6 km as an
estimate we get vmax � 500 m=s. Thus the formed non-
linear solitary vortex structure should be supersonic and
do not decay due to the generation of linear waves in the
region jV jovmax.

By multiplying Eq. (57) by �c̄ and integrating over x

and z, we get

1

2

q
qt

Z
dx dz½ðrc̄Þ2 þ c̄2=4H2

�

¼ �

Z
wqc̄
qx

dx dz�
spB2

0

R0

�

Z
qc̄
qz

 !2

þ c̄
2
=4H2

2
4

3
5dx dz. (62)

If we multiply Eq. (58) by w, we obtain

wqc̄
qx
¼

1

o2
g

1

2

qw2

qt
þ wJðc̄;wÞ

� �
. (63)

Integration of this equation over x and z gives

Z
wqc̄
qx

dx dz ¼
1

2o2
g

q
qt

Z
w2 dx dz. (64)

The combination of Eqs. (62) and (64) gives the energy
dynamic law

qE

qt
¼ �

spB2
0

R0

Z
qc̄
qz

 !2

þ
c̄

2

4H2

2
4

3
5dx dz, (65)
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where

E ¼

Z
dx dz

1

2
ðrc̄Þ2 þ

c̄
2

8H2
þ

w2

2o2
g

" #
, (66)

is the energy of the nonlinear solitary vortical dipole
structure of the IG waves.

Thus, we conclude that the energy of the solitary
vortex dipole structure of IG waves is decreasing owing to
Ohm losses. The damping rate of such solitary vortex
structures remains typically the same as for linear waves
(see Eq. (41)).

6. Discussion

The purpose of the present paper is to consider the
propagation peculiarities of AGWs in the Earth’s weakly
ionized conductive ionosphere. According to observations
AGWs exist in a large range of heights extending from the
troposphere to zp500 km. At such heights the Earth’s
ionosphere is conductive due to presence of charged
particles. The basic equations that incorporate both
electromagnetic and Coriolis forces are discussed in
Section 2. Using the so-called noninductive approximation
we consider the current arising in the gas but neglect the
vortex parts of the self-generated electromagnetic field.
Thus, only the dynamo electric field is taken into account.
In addition we are primarily interested in the wave
dynamics at high latitudes in the northern hemisphere,
i.e. we assume that the geomagnetic field B0 ¼ �B0ez is
vertical and directed downward. Analogously we define
the Earth’s rotation angular velocity as X0 ¼ O0ez. The
ionospheric gas is vertically stratified, and we consider an
isothermal atmosphere for the adiabatically propagating
AGW perturbations.

In Section 3 with the help of generalized Ohm’s law the
linear propagation of AGWs in different ionospheric layers
is investigated. It is shown that in the D-layer (50–80 km)
the influence of the electromagnetic (ponderomotive)
force is negligibly small. A general dispersion equation is
obtained and analyzed (see Eqs. (14) and (16)). It is shown
that all perturbed velocity components are increasing
with height, while the pressure and density are decreas-
ing. Incorporation of the Coriolis force leads to the
coupling of AGWs with the inertial waves. This results in
the appearance of inertio-acoustic-gravity (IAG) waves.
When k? ¼ 0 the acoustic and inertial waves propagate
differently (see Eqs. (17) and (18)). In the other limiting
case of horizontal propagation (kz ¼ 0) we have found (in
addition to the known acoustic cut-off frequency oa) the
inertial cut-off frequency at oi ¼ 2O0. Possible propaga-
tion regions for AGWs when the influence of the Coriolis
force is taken into account are depicted in Fig. 1. It is found
that the acoustic waves are supersonic.

In conclusion we note that the propagation of acoustic
waves is not influenced by the Coriolis force. Relating to
subsonic (gravitational) waves they represent the low-
frequency branch of the AGWs (we call them IG waves,
see Fig. 1) having the frequency range oioooog . For
numerical estimations we use g ¼ 1:4, H ¼ 10 km
to obtain 10�4 s�1ooo1:7� 10�2 s�1. Considering
intermediate values of the IG wavelengths (k�1=H,
o�og) we find that the group and phase velocities are of
the same order vg�vp�ogH�10�2 s�1 � 104 m�102 m=s.
This estimation agrees with existing observations. We
note that the values of the obtained group velocity are
smaller than the corresponding values without accounting
for O0. However, the phase velocities are increasing in
the same way. Thus, the incorporation of the Earth’s
rotation provides a substantial change in the propagation
dynamics of low-frequency IG waves.

An analogous investigation for the ionospheric E-layer
(100–150 km) is also carried out in Section 3. It is shown
that in this layer the influence of the electromagnetic
force is essential (the Hall conductivity predominates)
along with the Coriolis force and that the effect of the
geomagnetic field is to replace the planetary angular
rotation vector as shown by Eq. (31). We note that the
angular velocity vector X0 and the geomagnetic force B0

provide opposite effects.
Linear propagation of AGW perturbations in the F-layer

(150–400 km) is also considered in Section 3. It is shown
that at such heights the influence of the Coriolis force can
be neglected and that the action of the electromagnetic
forces is defined by the Pedersen conductivity (see
Eqs. (35) and (36)). In this case the dispersion equation
is obtained (see Eq. (37)) and solved with respect to the
frequency. It is shown that AGWs are damped and that the
corresponding damping rate can be found (see Eq. (40)). It
is easy to see that this damping rate is of the same order
for both the high-frequency and low-frequency branches
of AGWs (see Eq. (41)). For typical F-layer values
sp ffi 3� 10�5 S=m, R0 ¼ 10�10 kg=m3, B0 ¼ 0:5� 10�4 T,
we get for the damping rate G�10�3 s�1. Thus linear
AGWs freely propagating through the atmospheric D and
E layers undergo strong damping due to Joule losses in the
F-layer.

In Section 4 we have investigated the nonlinear
propagation of AGWs in the conductive Earth’s iono-
sphere. The main purpose of that investigation is to find
the influence of the conductivity of the Earth’s ionosphere
on the solitary vortical formations induced by external
generation (e.g., earthquakes, volcanic eruptions, etc.). In
particular, nonlinear solitary vortical structures formed by
the IG waves (the low-frequency branch of AGWs) are
considered. Vortical structures deserve attention because
they carry trapped particles and contribute essentially to
transport phenomena. Basic nonlinear equations for the
two-dimensional (in the x2z plane) IG wave motions
taking into account the Pedersen conductivity of the
ionosphere is obtained. We note that for the compara-
tively high latitudes under consideration nonlinear IG
waves are not influenced by the Coriolis force and Hall
conductivity. In the absence of the Ohm’s conductivity the
obtained nonlinear equations describe the propagation of
solitary dipole vortex structures. It is shown that the
necessary condition to obtain such stationary solution is
jV j4vmax, where V is the propagation velocity of the
solitary structure and vmax is the maximum phase velocity
of linear IG waves. We note that such two-dimensional
solitary dipole vortex structures are significantly diffe-
rent from those related to atmospheric Rossby modons
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(e.g., Larichev and Reznik, 1976; Petviashvili and
Pokhotelov, 1992). A main difference is that the restriction
on the velocity in our case is completely symmetrical, i.e.
the modons can propagate faster than the maximum
phase velocity vmax of the linear perturbations in any
horizontal direction. According to estimates for a model
atmosphere with constant equilibrium temperature we
have vmax ¼ 2Hog . For the numerical values given above
(H ¼ 10 km and og ¼ 1:7� 10�2 s�1) we have vmax �

3:4� 102 m=s � cs (where cs is the sound speed). For
smaller velocities (jV jovmax), it is obvious that our vortex
solution will decay due to the generation of linear waves.
The vortex lifetime can, however, be relatively large,
and the vortex solution above can thus be of interest also
in that case. In addition, we should note that the
temperature is not constant in the Earth’s atmosphere,
and that the factor g� 1 in Eq. (20) therefore must be
replaced by g� 1þ HT�1dzT, where T is the equilibrium
temperature. With temperature gradients close to the
instability threshold (Stenflo, 1994) one can therefore have
very suitable conditions, namely vmaxojV j5cs � 330 m=s,
for the occurrence of stationary modons. In Section 5 the
evolution (dynamic) equation for the energy of solitary
vortical structures on IG waves is obtained (see Eq. (65)).
It is shown that the energy of the solitary vortical
dipole structure of IG waves is decreasing owing to Joule
losses. The damping rate of such solitary vortical struc-
tures remains essentially the same as for linear waves
(see Eq. (41)).
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