
J. Plasma Physics (2008), vol. 74, part 6, pp. 847–853. c© 2008 Cambridge University Press

doi:10.1017/S0022377808007046 Printed in the United Kingdom
847

Jeans instability in a magneto-radiative
dusty plasma

N.L. T S INTSADZE1,2,3, ROZ INA CHAUDHARY2,3,
H.A. SHAH2 and G. MURTAZA3

1Institute of Physics, Tbilisi, Georgia
2Department of Physics, G. C. University, Lahore 54000, Pakistan

(hashah.gcl@gmail.com)
3Salam Chair in Physics, G. C. University, Lahore 54000, Pakistan

(Received 21 November 2007 and accepted 17 December 2007, first published online
28 February 2008)

Abstract. The importance of thermal radiation on the Jeans instability is discussed
for a magnetized dusty plasma with gravitational effects. The one-fluid MHD
equations are developed by assuming that the entropy of each subsystem of plasma
is conserved, when the temperature of the plasma species is non-relativistic. The
dispersion relation in this case shows that thermal radiation helps to stabilize
the Jeans instability. It is shown that the plasma is stable in a certain range of
wavelengths. The magnetic field stabilizes the Jeans instability when the wave
propagates across the magnetic field. However, for oblique propagation it is seen
that the magnetic field does not stabilize the Jeans instability.

In recent years a great deal of attention has been paid to the phenomena of
collective processes in dusty plasmas (see, for example, Verheest (2000); Shukla and
Mamun (2002); Mendis (2002); Tsytovich et al. (2002); Morfill et al. (2003); Cramer
and Verheest (2005); Tsintsadze et al. (1996, 2006a,b); Mamun and Shukla (2001)),
because dusty plasmas are now known to be rather common in space—ranging
from interplanetary, interstellar to intergalactic media and such plasmas can play
a role in the formation of stars, galaxies, planetary systems, quasar accretion,
planetary rings, tails of comets, etc. In cosmic conditions, self-gravitation of the
medium is important in understanding the formation of dust clouds and equilibrium
structures, as well as for the study of collective processes.
The properties of the Jeans aperiodic instabilities in fully (Tsintsadze et al.

2000) and partially ionized dusty magnetoplasmas (Verheest et al. 2000) have been
considered, by assuming that the dusty plasma constituents are electrons, ions and
extremely massive charged dust grains. Recently, a model was put forward, by
Tsintsadze et al. (2000), where all species of dusty plasma were taken to be hot, a
charge neutrality was maintained in the equilibrium state and all species were under
the influence of both gravitational and electrostatic forces. It was shown that the
propagation of spiral electrostatic gravitational waves in a rotating dusty plasma
leads to the oscillatory Jeans instability. Jeans instability has also been investigated
in papers by Shukla and Stenflo (2006a,b) where a self-gravitating dusty plasma
was considered and later the same problem was considered in a quantum dusty
plasma.
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In this paper we consider Jeans instability in a dusty magnetized gravitating
plasma in which thermal radiations are also present. For such a plasma, a set
of MHD equations is constructed. We have derived a dispersion relation which
is subsequently analyzed for different cases and then the main conclusion of our
results is given.
The theory of thermal radiation in one-component systems was developed quite

some time back and is referred to in, for example, Chandrasekhar (1957), Landau
and Lifshitz (1998) and Zeldovich and Raiser (1967). We note here, however, that
originally Planck considered radiation as a collection of particles (photons) in a va-
cuum where it became known as black-body radiation and the radiation frequency
could be expressed through the standard dispersion relation ω = ck. It was shown
later (Tsintsadze 1995, Tsintsadze et al. 1996) that the behavior of photons in a
plasma is radically different from the behavior in a vacuum. As plasma particles
perform oscillatory motion in the field of electromagnetic waves, the radiation field
is affected. The oscillation of electrons in an isotropic homogenous plasma causes
the index of refraction to depend on the radiation frequency which is not close to
unity in a dense plasma, and is given by

ω = (ω2
pe + k2c2)1/2 ,

where

ωpe =
(

4πn0e
2

me

)1/2

is the Langmuir frequency, and ne and me are the density and the rest mass of
electrons, respectively. Plancks’ theory is violated when l0α = �ωpα/kBTα � 1
(where kB is the Boltzmann constant and Tα is the temperature of the different
species). As an example, in the early prestellar period of the evolution of the universe
the parameter l0α ≈ 1. However, it is obvious that the parameter l0α is different
in different astrophysical objects. If we apply this ratio to dusty plasmas in the
interstellar medium, the ratio becomes much less than unity. Therefore, for such
dusty clouds we can use Planck’s theory, and in this case the energy density can
be written for the thermal radiation as

urα =
k4
Bπ2

45(�c)3 T 4
α = 7.57 × 10−15T 4

α erg cm
−3

and the radiation pressure as

prα =
urα
3

.

Thus, the equilibrium radiation can be considered from a thermodynamic point of
view as a perfect gas with a specific heat energy γ = 4/3.
Tsintsadze (1995) derived the electromagnetohydrodynamic equations for a

plasma and photon gas, where the latter was in thermal equilibrium with the
plasma. In the equation of motion there were two pressure terms—the first being
the usual plasma pressure pα = kBnαTα and the second being the radiation pressure
of each plasma species. In general, we follow here the formalism developed in
the aforementioned reference. In order to establish the importance of radiation
in determining the local properties of a plasma, we consider the ratio of the plasma
internal energy density εin to the radiation energy density ur, for all plasma species,
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when the temperature of plasma particles is non-relativistic,

ηα =
εα
in

urα

where εα
in = 3

2 nαkBTα . In general, this ratio can have any value for different
astrophysical objects; however, radiation is important when ηα < 1, which, as
will be shown later, holds for the case under consideration.
Based on the condition of quasineutrality and the fact that the temperature of

the dust grains is normally less than the temperature of the electrons and ions, it
is possible to neglect the gas dynamics and radiation pressures of the dust grains.
Now we derive magnetohydrodynamic equations for the dusty plasmas, under the
effect of thermal radiation and a gravitating field. For this we write the set of fluid
equations for each species separately (Tsintsadze et al. 2007):

∂nα

∂t
+ ∇ · (nαvα ) = 0, (1)

mαnα
dvαj

dt
= eαnα

[
E+

1
c
(vα × B)

]
− ∇ptα − Rα − mαnα ∇Ψ, (2)

∇ · B = 0. (3)

The quasineutrality condition is
∑
α

eαnα = 0

and Poisson’s equation for the gravitational potential is

∇2Ψ = 4πGmdnd, (4)

whereG is the gravitational constant and nα , vα , ptα andRα are the number density,
velocity, total pressure (which is the sum of the usual gas dynamics pressure pα

and the radiation pressure prα ) and the frictional force of each plasma species,
respectively. Rα is given as

Rα = mαnα

∑
vαβ (vα − vβ ), (5)

where vαβ is the elastic collisional frequency of particle α with β. To obtain the
one-fluid MHD equations we suppose that collisions between particles are frequent.
In this case it follows from (5) that the mean velocities of the different species of the
plasma must be almost equal (vi ≈ ve ≈ vd) (see Ginsburg 1970), i.e. in this case the
frictional forces can be balanced by each other, which also implies that ∂/∂t � vαβ .
Furthermore, by assuming the electrons and ions to be inertialess, summing up (2)
and taking into account the conservation of momentum, i.e.

∑
α Rα = 0, we obtain

an ideal MHD set of equations,

∂nd
∂t

+ ∇ · (ndvd) = 0, (6)

ρd
dvd
dt

= +
1
c
(J× B) − ∇pt − ρd∇Ψ, (7)
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where ρd = mdnd

∂B
∂t

= ∇ × (v× B), (8)

∇2Ψ = 4πGmdnd, (9)

∇ · B = 0, (10)

J =
c

4π
(∇ × B), (11)

pt = pe +
αr
3

T 4
e + pi +

αr
3

T 4
i , (12)

where αr = π2k4
B/15(�c)3 is the radiation constant. As assumed, (7) and (12) take

into account only the electron and ion pressures. However, in order to obtain a
closed set of equations we shall express pt in terms of the dust grain density. As
shown in Avinash and Shukla (1994), the condition vi � ve � vd leads to a very
important relationship between densities of different species,

ne
n0e

=
ni
n0i

=
nd
n0d

. (13)

We know that for an ideal gas with constant specific heat the entropy is conserved.
Since in our consideration there are three subsystems, i.e. electrons, ions and dust
grains, we suppose that the entropy of each subsystem is conserved. This in turn
leads to Poisson’s adiabatic relation among the density (n), temperature (T ) and
pressure (p) of different species undergoing adiabatic expansion or compression,
which for the case of non-relativistic temperatures is expressed as

pα

n
5/3
α

= cα . (14)

Using (13) and (14) we can express pe, pre and pi, pri through the density of dust
grains in the following manner:

pe = p0e

(
nd
n0d

)5/3

, pi = p0i

(
nd
n0d

)5/3

, (15)

where p0α = n0αT0α , nd is the number density of dust grains, n0α and T0α are the
equilibrium number densities and temperatures, respectively, and

pre =
αr
3

T 4
0e

(
nd
n0i

)8/3

, pri =
αr

3
T 4

0i

(
nd
n0d

)8/3

. (16)

Substituting (15) and (16) into (7), we obtain (6)–(11) as a closed set of MHD
equations.
Now we investigate the propagation of waves by taking the magnetic field into

account along with thermal radiation and gravitational effects. We suppose that
the external magnetic field is directed along the z-axis while the gravitational force
along x-axis. We linearize the set of equations (6)–(11) and look for a plane wave
solution in the form that all fluctuating quantities are proportional to ei(k·r−ωt) and
finally we obtain the linear dispersion relation

ω4 − ω2{k2(V 2
A + u2

j )} + k4(V 2
Au2

j cos2 θ) = 0, (17)
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where VA = B0/(4πρd)1/2 is the Alfvén velocity of the grains and uj = (V 2
d −

(Ω2/k2))1/2 is the Jeans velocity V 2
d = V 2

sd + V 2
rd where

Vsd =
(

5
3

n0ekBT0e + n0ikBiT0i

ρd

)1/2

is the dust acoustic velocity,

Vrd =
(

8
9

αr
ρd

(T 4
0e + T 4

0i)
)1/2

is the dust radiation velocity, Ω = (4πGρd)1/2 is the Jeans frequency, and Vd is the
total dust velocity.
We begin by considering the case when the magnetic field is absent, i.e. B0 = 0,

then from (17) we obtain Jeans equation with radiation taken into account, i.e.

ω2 = k2u2
j = k2

(
V 2
d − Ω2

k2

)
. (18)

As an example, we chose plasma parameters which are typical for photodissociation
regions which separate HII regions from dense molecular clouds (Mamun and
Shukla 2001). The parameters here are ni0 = 2 × 10−3 cm−3 , nd0 = 5 × 10−7 cm−3 ,
ne = 10−3 cm−3 , Zd = 2.0 × 103 , md = 10−11 g, B0 = 10 μG, Te = 30 K, Ti = 10 K
and Td = 1 K. For these parameter values ηe ≈ 10−9 , ηi ≈ 5 × 10−7 and ηd ≈ 10−8

which shows that the conditions for the radiation being important are fulfilled for
each subsystem of the plasma that we consider. For an instability we thus have the
condition V 2

d − Ω2λ2/(2π)2 < 0 or λ > 2πVd/Ω where λ = 2π/k. Using the above
parameters we obtain λ > 6.3×103 au. The MHD condition kVA � ωcd in turn leads
to the result that the wavelength λ > λm, where λm = 2πVd/ωcd = 13.4 au, i.e. for
the above the parameters.We note here that MHD is valid if λ � λm. The above
inequalities of length show that for the region of length λm � λ < λj the plasma
is stable. In the expression for V 2

d the second term due to radiation is in this case
much larger than the sound velocity, which leads to an increase in the wavelength
of the Jeans instability,

λ � λr =
2πVd

Ω
� λs =

2πVs
Ω

.

Here λr and λs are the wavelengths associated with the radiation and dust acoustic
velocities, respectively. This leads to the result that thermal radiation can very
effectively stabilize the Jeans instability.
Now we consider the influence of the external magnetic field on the Jeans in-

stability. For this purpose we solve (17) and obtain two solutions

ω2
1,2 =

k2(V 2
A + u2

j )
2

± k2

2
((V 2

A + u2
j )

2 − 4V 2
Au2

j cos2 θ)1/2 . (19)

Furthermore, from (19) it follows that if the wave propagates along the magnetic
field (θ = 0), we obtain two independently propagating waves, namely the Alfvén
and Jeans waves. If θ = π/2, one of the roots vanishes and the other is given by

ω2 = k2(V 2
A + u2

j ). (20)
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In this case the magnetic field can stabilize the Jeans instability if

V 2
A > |u2

j | =
∣∣∣∣V 2
d − Ω2

k2

∣∣∣∣. (21)

For oblique propagation of waves, we will show that the magnetic field cannot
influence the Jeans instability. Indeed, the product of the roots (19) is given by

ω2
1 · ω2

2 = k4V 2
Au2

j cos2 θ. (22)

Now from (22) follows that, if u2
j < 0, one of the root squares becomes negative,

which means that this root has only one imaginary part and in this case the Jeans
instability always develops.
In this paper we have investigated the effect of gravitation and thermal radiation

on the Jeans instability for a magnetized dusty plasma. It has been shown that in
the case when the magnetic field is absent radiation has a stabilizing effect on the
instability. In the case when there is a finite ambient magnetic field it too stabilizes
the Jeans instability when the MHDwave is perpendicularly propagating. However,
for the case of oblique propagation no stabilizing effect is found to be associated
with the magnetic field.
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