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Coupled nonlinear drift and ion acoustic waves in dense dissipative
electron-positron-ion magnetoplasmas
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Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an
inhomogeneous electron-positron-ion �e-p-i� quantum magnetoplasma with neutrals in the
background using the well known quantum hydrodynamic model. In this regard, Korteweg–de
Vries–Burgers �KdVB� and Kadomtsev–Petviashvili–Burgers �KPB� equations are obtained.
Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent
hyperbolic �tanh� method. The variation in the shock profile with the quantum Bohm potential,
collision frequency, and the ratio of drift to shock velocity in the comoving frame, v* /u, is also
investigated. It is found that increasing the positron concentration and collision frequency decreases
the strength of the shock. It is also shown that when the localized structure propagates with velocity
greater than the diamagnetic drift velocity �i.e., u�v*�, the shock strength decreases. However, the
shock strength is observed to increase when the localized structure propagates with velocity less
than that of drift velocity �i.e., u�v*�. The relevance of the present investigation with regard to
dense astrophysical environments is also pointed out. © 2009 American Institute of Physics.
�doi:10.1063/1.3253623�

I. INTRODUCTION

The field of quantum plasmas has grown tremendously
in the past couple of years owing to its wide range of appli-
cability in numerous situations of interest such as in micro-
electronic devices,1 in dense astrophysical environments2,3

�for instance, white dwarfs and neutron stars�, in high inten-
sity laser produced plasmas,4 as well as in dusty plasmas.5–7

Traditional plasma physics deals with the study of regimes
that are characterized by low density and high temperatures
where the quantum effects are negligibly small. However, in
the systems mentioned above, the importance of quantum
effects has been acknowledged. When quantum effects begin
to play a role, an additional scale length is introduced,
namely, the de Broglie wavelength of the charged species,
�B=h / �2�mvT�. It roughly represents the spatial extent of
the particle wave function—the larger it is, the more pro-
nounced these effects are.

The two mathematical formulations that have been fre-
quently employed in quantum plasmas are the Wigner–
Poisson and the Schrödinger–Poisson, respectively. These
two approaches are generally employed to describe the sta-
tistical and hydrodynamic behavior of charged species at
quantum scales in dense plasmas. These two approaches are
the quantum analogs of kinetic and fluid treatments of clas-
sical plasmas, respectively. The two approaches have been
expounded in detail by Manfredi.8 The quantum hydrody-
namic �QHD� model is based on the Schrödinger–Poisson
formulation. It has been extensively used to study the linear
and nonlinear propagation characteristics of several waves in
the quantum plasmas.6,7,9,10 The benefits of the QHD model
rest in its simplicity, numerical efficiency, the direct use of
macroscopic variables of interest such as energy and momen-

tum, and the ease with which the boundary conditions are
implemented. The major shortcoming of the QHD model is
that the velocity space effects such as Landau damping can-
not be studied in its realm as the QHD equations are obtained
by taking the moments of the Wigner distribution function.11

The QHD model has also been used to study the propa-
gation of linear and nonlinear waves in inhomogeneous
quantum plasmas. El-Taibany and Wadati11 studied the dy-
namics of nonlinear quantum dust acoustic wave in a non-
uniform quantum dusty plasma and found that the formation
of solitons manifested a dependence on a critical value of
plasma parameters unlike a homogeneous plasma. Shukla
and Stenflo12 found new drift modes in nonuniform quantum
magnetoplasmas and observed that the Bohm potential term
significantly modified the electron drift wave frequency. Wu
et al.13 studied the electrostatic drift vortices in quantum
magnetoplasmas employing the QHD model and found that
the waves got modified significantly by the quantum correc-
tions. Masood et al.14 investigated quantum ion acoustic vor-
tices in an inhomogeneous plasma and found that electro-
static monopolar, dipolar, and vortex street type solutions
could appear in such a plasma. It was observed that the in-
clusion of the quantum statistical and Bohm potential terms
appreciably modified the scale lengths of these structures.

Electron-positron plasmas have been observed to behave
differently as opposed to the typical electron-ion �e-i�
plasmas.15,16 An interesting feature of electron-positron �e-p�
plasma by comparison with the usual electron-ion plasma
is the same mass and equal magnitude of charge of the
components of an e-p plasma. Electron-positron plasmas
have been observed in active galactic nuclei,17 in pulsar
magnetospheres,18 in the polar regions of neutron stars,19 as
well as in the intense laser fields.20 Electron-positron plas-
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mas are also believed to have existed in the early universe21

and are also present at the center of our own galaxy.22

Electron-positron-ion plasmas have also been a subject of
investigation in quantum plasmas. Ali et al.10 studied the
linear and nonlinear ion acoustic waves in an unmagnetized
electron-positron-ion �e-p-i� quantum plasma. The authors
derived the Korteweg–de Vries equation for quantum e-p-i
plasma and an energy equation for arbitrary amplitude ion
acoustic waves and discussed the relevance of their results.
Khan and Masood23 investigated quantum ion acoustic wave
propagation in a magnetized e-p-i plasma and found that the
structure of the ion acoustic soliton depended on the quan-
tum pressure, concentration of positrons, strength of mag-
netic field, and the angle of propagation. Masood et al.24

studied the propagation of quantum ion acoustic shock
waves in planar and nonplanar geometries and found that the
strength of the shock was maximum for spherical and mini-
mum for the planar geometry. It was also found that the
increase in quantum Bohm potential decreased the strength
of the quantum ion acoustic shock waves. Sabry et al.25 in-
vestigated the propagation of ion acoustic envelope solitary
waves in dense e-p-i plasmas and found that such a plasma
was modulationally unstable for nonplanar geometry that had
no counterpart in planar geometry. Haque et al.26 studied the
linear and nonlinear drift waves in inhomogeneous quantum
plasmas with neutrals in the background in e-p-i plasmas and
found that the positron concentration and quantum correc-
tions appreciably modified the drift solitons and shocks in
quantum magnetoplasmas. Recently, Ren et al.27 studied the
linear electromagnetic drift waves in nonuniform quantum
e-p-i magnetoplasma employing the QHD model and applied
their results in the dense astrophysical environments.

It is a well established fact that shock waves can be
excited in a dissipative nonlinear medium. There can be sev-
eral dissipative processes in a plasma. The important ones
include Landau damping, kinematic viscosity among the
plasma constituents, as well as collisions between charged
particles and neutrals present in the system. However, when
a medium has both dispersive and dissipative properties, the
propagation of small amplitude perturbations can then be
adequately described by Korteweg–de Vries–Burgers
�KdVB� equation. The dissipative term �i.e., the Burgers
term� in the KdVB equation arises by taking into account the
kinematic viscosity among the plasma constituents.28–30

When wave breaking due to nonlinearity is balanced by the
combined effect of dispersion and dissipation, a monotonic
or oscillatory dispersive shock wave is generated in a
plasma.30–33 It is well known that transverse perturbations
would always exist in the higher dimensional system.
The inclusion of transverse perturbation introduces an aniso-
tropy in the system, which modifies the wave structure and
the stability of the system.34,35 In this paper, shock propaga-
tion in the presence of parallel perturbation is considered in
an inhomogeneous electron-positron-ion �e-p-i� quantum
magnetoplasma.

In this paper, coupling of nonlinear drift and ion acoustic
waves in dissipative dense e-p-i magnetoplasmas is investi-
gated. In this regard, both quantum KdVB and Kadomtsev–
Petviashvili–Burgers �KPB� equations are derived and their

solutions are given using the tanh method. The dissipative
effect appears due to the collisions of the ions with the neu-
trals in the background. This paper is organized as follows.
In Sec. II, we present the basic set of nonlinear equations for
the system under consideration. In Sec. III, linear dispersion
relation of the quantum ion acoustic wave in an inhomoge-
neous quantum magnetoplasma is presented and different
limiting cases are also discussed. In Secs. IV and V, nonlin-
ear KdVB and KPB equations are derived and their solutions
are given by using the tanh method. Stability analysis of
KPB is presented in Sec. VI. In Sec. VII, results are pre-
sented and discussed. Finally, in Sec. VIII, the conclusion of
the current investigation is presented.

II. GOVERNING EQUATIONS

Consider an inhomogeneous quantum magnetoplasma
composed of electrons, positrons, and ions with neutrals in
the background. The equilibrium magnetic field is in the
z-direction, i.e., B0= ẑB0, whereas the density and tempera-
ture gradients are assumed to be in the negative x-direction,
i.e., �nj0

=−x̂�xnj0
and �TFj0

=−x̂�xTFj0
. The phase velocity

of the wave is assumed to be vFi�� /k�vFe, vFp �vFi, vFe,
and vFp are the ion, electron, and positron Fermi velocities,
respectively�. We, therefore, ignore the quantum pressure
and Bohm potential contributions of ions. Using the QHD
model, we can write down the governing equations as
follows.

The equation of motion for electrons and positrons is

mjnj� �

�t
+ v j . ��v j = qjnj�E +

1

c
v j � B0� − �pj

+
�2nj

2mj
� ��2�nj

�nj
� , �1�

where j=e �electron� and p �positron�, qj = �−c ,+c� for elec-
tron and positron, E=−�	 is the electrostatic field �	 is
electrostatic potential�, �=h /2� �h is Planck’s constant�, and
me, ne, and e are the electron mass, density, and charge,
respectively. In Eq. �1�, two different quantum effects, i.e.,
the quantum diffraction �due to Bohm potential� and quan-
tum statistical pressure �due to Fermi–Dirac distribution�, are
included.

The electron and positron pressures are defined as36

pj =
�2

5mj
�3�2�2/3nj

5/3. �2�

The parallel component of Eq. �1� for inertialess electrons
gives

e�z	 −
1

ne
�zpe +

�2

2me
�z��2�ne

�ne
� = 0 �3�

using the pressure given in Eq. �2�. Integrating Eq. �3� and
using boundary conditions ne=ne0

, and 	=0 at z→ 
�, ex-
panding Eq. �3� by Taylor series, and assuming that the
Bohm potential term is small, Eq. �3� after back substitution
can be written as37
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� ne˜

ne0

� =
3e	

2kBTFe
+

3e2	2

8kB
2TFe

2 +
9e�2

16mekB
2TFe

2 �2	 , �4�

where ne˜ is the perturbed electron density, while ne0
is the

equilibrium density and ne�̃ne0
. Similarly, for positrons, we

have

� np˜

np0

� = −
3e	

2kBTFp
+

3e2	2

8kB
2TFp

2 −
9e�2

16mpkB
2TFp

2 �2	 , �5�

where kB is the Boltzmann constant and TFj
= ��2�3�2�2/3nj

2/3 /2mjkB� is the Fermi temperature for either
species �j=e , p�.

The equation of motion for ions is

mini��t + vi · ��vi = eni�E +
1

c
vi � B0� − mini�invi, �6�

where �in is the collisional frequency between ions and neu-
trals. The quantum force acting on the ions is small owing to
their large mass by comparison with electrons and positrons,
and hence is neglected in Eq. �6�. The perpendicular compo-
nent of the velocity from Eq. �6� can be written as

vi� =
c

B0
�ẑ � ��	� −

c�in


ciB0
��	 −

c

B0
ci
�t��	 , �7�

where the usual limit �t�
ci �
ci=eB0 /cmi is the ion cyclo-
tron frequency� has been used for low frequency drift waves
and ��� means the direction perpendicular to the magnetic
field B0.

The parallel component of velocity from Eq. �6� is

Âviz = −
e

mi
�z	 , �8�

where Â is an operator defined as

Â = ��t + �in + viz�z� .

Using the Poisson equation

�2	 = − 4�e�ni + np − ne� , �9�

and the perturbed ion number density from Eq. �9�, we
obtain

� ni˜

ni0
� =

3

2
a1	 + b1	2 − c1�

2	 + d1�
2	 . �10�

Here, a1=e /kBTFe��ne0
/ni0

�+ �np0
/ni0

��TFe /TFp��, b1

=3e2 /8kB
2TFe

2 ��ne0
/ni0

�− �np0
/ni0

��TFe /TFp�2�, c1=1 /4�eni0
,

and d1=9e�2 /16mekB
2TFe

2 ��ne0
/ni0

�+ �np0
/ni0

��TFe /TFp�2�, re-
spectively.

The ion continuity equation is

�tni + � · �nivi� = 0. �11�

Using Eqs. �7�, �8�, and �10� in Eq. �11�, multiplying both
sides by kBTFe /e, we have

3

2
a�t	 + b�t	

2 − �q
2�t�

2	 + Hq
2�t�

2	 − �s
2�t��

2 	

− �s
2�in��

2 	 +
3

2
v*�y	 + D1�y	

2 +
kBTFe

e
�zviz = 0,

�12�

where

a = ��ne0
/ni0

� + �np0
/ni0

��TFe/TFp�� ,

b = 3e/8kBTFe��ne0
/nt0

� − �np0
/ni0

��TFe/TFp�2� ,

�q = ��Fe
2 �ne0

/ni0
�

��Fe is the electron Fermi wavelength given by
�kBTFe /4�e2ne0�,

Hq = �9�2/16mekBTFe��ne0
/ni0

� + �np0
/ni0

��TFe/TFp�2�

is quantum diffraction length, v*= �2ckBTFe /3eB0��ni is the
drift velocity, D1=3c /4B0��ne0

/ni0
���ne−�TFe

�+ �TFe /TFp��,
�nj

= �dx ln nj0
� and �TFj

= �dx ln TFj0
� are the inverse density

and temperature gradient scale lengths for j=e �electron� and
p �positron�, respectively. Also, �ni= �dx ln ni0

�= ��ne0
/ni0

��ne

− �np0
/ni0

��np� is the inverse density gradient scale length for
ions.

Assuming �x��z��y and applying operator Â, Eq. �12�
gives

Â	 3
2a�t	 + b�t	

2 − �q
2�t�y

2	 + Hq
2�t�y

2	 − �s
2�t�y

2	

− �s
2�in�y

2	 + 3
2v*�y	 + D1�y	

2
 − cs
2�z

2	 = 0, �13�

where cs=�kBTFe /mi is the quantum ion acoustic speed and

�s=�kBTFe /mi
ci
2 is the ion Larmor radius at electron tem-

perature. It is emphasized here that the term b�t	
2 does not

appear in Eq. �11� of Ref. 26 because the authors linearized
the electron density and threw away the higher order contri-
bution very early in their calculations, which later introduces
nonlinearity in the system. Note that the coefficient of non-
linearity in Ref. 26 contains only the effects due to inhomo-
geneity and ignoring the density inhomogeneity would make
nonlinearity vanish in their work. A similar error was com-
mitted in Refs. 26 and 38–40 where the authors discussed
drift solitons and shocks in quantum and classical plasmas,
respectively. The nonlinearity should not disappear with the
disappearance of inhomogeneity as the KdV and KP equa-
tions are derived in homogeneous plasmas where the source
of the nonlinearity is the convective derivative term. It is,
therefore, imperative that the procedure given in this paper
be followed to arrive at the correct equation. It is also worth
mentioning that the nonlinearity coefficients obtained in
Refs. 26 and 38–40 make, in fact, very small contributions
as these contain the inhomogeneity term.
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A. Case 1

Here we consider the case when collisions dominate, i.e.,
�t��in, then Eq. �13� takes the form

3

2
a�t	 + b�t	

2 − �q
2�t�y

2	 + Hq
2�t�y

2	 − �s
2�t�y

2	

− �in�s
2�y

2	 +
3

2
v*�y	 + D1�y	

2 −
cs

2

�in
�z

2	 = 0. �13��

The last term of Eq. �13�� can be ignored because �in �which
is large in this case� appears in the denominator and also due
to the fact that perturbation in the parallel direction is weak.
Thus, Eq. �13�� becomes

3
2a�t	 + b�t	

2 − �q
2�t�y

2	 + Hq
2�t�y

2	 − �s
2�t�y

2	

− �in�s
2�y

2	 + 3
2v*�y	 + D1�y	

2 = 0. �14�

B. Case 2

When �t��in, Eq. �13� gives

3
2a�t

2	 + b�t
2	2 − �q

2�t
2�y

2	 + Hq
2�t

2�y
2	 − �s

2�t
2�y

2	

− �in�s
2�t�y

2	 + 3
2v*�t�y	 + D1�t�y	

2 − cs
2�z

2	 = 0.

�15�

III. LINEAR ANALYSIS

Upon linearizing Eq. �15� and assuming that the pertur-
bation ��ikyy+ ikzz− i�t�, the dispersion relation for the
coupled quantum drift ion acoustic mode in dissipative quan-
tum e-p-i plasma reads as

� =
��* − � 2

3�i�inky
2�s

2� 
 ���* − � 2
3�i�inky

2�s
2�2 + 8

3cs
2kz

2�a + 2
3 ��q

2 + �s
2 − Hq

2�ky
2�

2�a + 2
3 ��q

2 + �s
2 − Hq

2�ky
2� , �16�

where �*=v*ky is the drift frequency, � is the wave fre-
quency, ky and kz are the wave numbers, and �a+ 2

3 ��q
2+�s

2

−Hq
2�ky

2��0 must hold for a finite solution. In the absence of
positrons, i.e., a=1, Eq. �16� reduces to the same dispersion
relation as obtained for an e-i quantum plasma.37 From Eq.
�16�, separating the real and imaginary parts, we obtain

�r =
�* + ��*

2 + 8
3cs

2kz
2�a + 2

3 ��q
2 + �s

2 − Hq
2�ky

2�
2�a + 2

3 ��q
2 + �s

2 − Hq
2�ky

2� , �17�

�i =

2

3
�in�s

2ky
2 +

2
3�*�in�s

2ky
2

��*
2 + 8

3cs
2kz

2�a + 2
3 �kq

2 + �s
2 − Hq

2�ky
2�

2�a + 2
3 ��q

2 + �s
2 − Hq

2�ky
2� ,

�18�

where �r and �i are the real and imaginary frequencies,
ky =k cos �, and kz=k sin �. It can be seen from Eqs. �17� and
�18� that for small k, the numerator dominates since it is
proportional to k and, hence, the corresponding increase in �
�real and imaginary�. However, for large k, the denominator
increases resulting in a decrease in � �real and imaginary�.
Figures 1 and 2 show the variation in real and imaginary
frequencies �related to damping� of the coupled quantum
drift ion acoustic mode as a function of obliqueness. It is
found that the real frequencies enhance, whereas the imagi-
nary frequencies decrease with the increase in the oblique-
ness angle �. Figures 3 and 4 show the variation in real and
imaginary frequencies as a function of positron concentra-
tion. By increasing the positron concentration, quantum ef-
fects become pronounced, resulting in an increase in real and

imaginary frequencies for small k. The variation in the real
frequency and the damping rate could similarly be found by
varying the other plasma parameters.

In the absence of collisions between ions and neutral
particles, i.e., �in=0, Eq. �16� can be written as

� =
�* 
 ��* + 8

3cs
2kz

2�a + 2
3 ��q

2 + �s
2 − Hq

2�ky
2�

2�a + 2
3 ��q

2 + �s
2 + Hq

2�ky
2� . �19�

In the absence of inhomogeneity in density and temperature,
i.e., �*=0, Eq. �16� can be written as

� =

�2

3cskz

��a + 2
3 ��q

2 + �s
2 − Hq

2�ky
2�

. �20�

It is evident from Eqs. �16�–�18� that quantum corrections
affect the dispersion characteristics of the coupled quantum
ion acoustic and drift mode in dissipative quantum e-p-i
plasma.

IV. DERIVATION OF KdVB

In order to find the localized solution, let us choose a
coordinate � in the moving frame such that �=� �y−ut�,
where � is nonlinear wave number and u is the velocity of
the nonlinear structure moving with the frame. Equation �14�
in the transformed frame can be written as

− S1d�	 + S2d�	2 + S3�2d�
3	 − S4�d�

2	 = 0, �21�

where S1= 3
2 �a−v* /u�, S2=−�b−D1 /u�, S3= ��q

2+�s
2−Hq

2�,
and S4=�s

2�in /u. Equation �21� can further be simplified to
obtain
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− d�	 + Ad�	2 + B�2d�
3	 − C�d�

2	 = 0, �22�

where A=S2 /S1, B=S3 /S1, and C=S4 /S1.
There are numerous methods to solve the nonlinear par-

tial differential equations �NLPDEs�, for instance, inverse
scattering method,41 Hirota bilinear formalism.42 Backlund
transformation,43 tangent hyperbolic �tanh� method,44 etc.
However, when the partial differential equation in a system is
formed by the combined effect of dispersion and dissipation,
the most convenient and efficient method to solve such
NLPDE is tanh.45 Therefore, using tanh method, we arrive at
the following solution of Eq. �22�:

	��� =
25B + 3C2

50AB
−

3C2

25AB
tanh��� −

3C2

50AB
tanh2��� ,

�23�

where �=��y−ut+�z�=C /10B�y−ut+�z� and the value of
C for which the above solution satisfies the boundary condi-
tions turns out to be �25B /6. The width of the shock struc-
ture can be found by taking the inverse of �= �C /10B�. It
should be mentioned here that the solution of KdVB pre-
sented in Ref. 26 is wrong as it does not satisfy the KdVB

�i.e., Eq. �14� in Ref. 26�. Equation �23� presents the correct
solution of the quantum KdVB equation in an electron-
positron-ion plasma.

V. DERIVATION OF KPB

For the localized solution, we assume a new coordinate
� in the moving frame such that �=��y+�z−ut�, where � is
the angle between wavefront normal and xy-plane. Equation
�15� in the transformed frame and can be written as

d��A1d�	 + A2d�	2 + A3�2d�
3	 + A4�d�

2	� + �2A5d�
2	

= 0, �24�

where A1= 3
2 �a−v* /u�, A2= �b−D1 /u�, A3=−��q

2+�s
2−Hq

2�,
A4=�in�s

2 /u, and A5=−cs
2 /u2. Equation �24� can be simpli-

fied further to obtain

d��d�	 + Ad�	2 + B�2d�
3	 + C�d�

2	� + �2Dd�
2	 = 0,

�25�

where A=A2 /A1, B=A3 /A1, C=A1 /A1, and D=A5 /A1.
Again, employing the tanh method, we obtain the following
solution for the quantum KPB �Eq. �25��:
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FIG. 1. �Color online� Variation in the real frequency of the coupled drift
ion acoustic wave with the obliqueness angle �. Other parameters are
ne0

=1.9�1027 cm−3, ni0
=1.6�1027 cm−3, np0

=3�1026 cm−3, B0=109 G,
and �=5° ,10° ,15°.
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FIG. 2. �Color online� Variation in the imaginary frequency of the coupled
drift ion acoustic wave with the obliqueness angle �. Other parameters are
ne0

=1.9�1027 cm−3, ni0
=1.6�1027 cm−3, np0

=3�1026 cm−3, B0=109 G,
and �=5° ,10° ,15°.
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FIG. 3. �Color online� Variation in the real frequency of the coupled
drift ion acoustic wave for increasing positron concentration, i.e.,
np0

=3�1026 cm−3 �dashed line� and np0
=7�1026 cm−3 �solid line�. Other

parameters are B0=109 G and �in=1010 s−1.
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FIG. 4. �Color online� Variation in the imaginary frequency of the
coupled drift ion acoustic wave for increasing positron concentration, i.e.,
np0

=3�1026 cm−3 �dashed line� and np0
=7�1026 cm−3 �solid line�. Other

parameters are B0=109 G and �in=1010 s−1.
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	��� =
− 25B + 3C2 − 25�2BD

50AB
+

3C2

25AB
tanh���

−
3C2

50AB
tanh2��� , �26�

where the value of � for which the above solution satisfies
the boundary condition turns out to be ��6C2−25B� /25BD.
The width of the shock structure can be found by taking the
inverse of �= �C /10B�. Note that the second term that in-
volves tanh term in Eq. �26� is responsible for the shocklike
structure as it destroys the balance between dispersion and
nonlinearity unlike the ordinary KP which has a sech2 type
solution and admits solitary wave solution.

VI. STABILITY ANALYSIS

In order to check the stability of the KPB, we proceed as
follows. Integrate Eq. �25� twice to obtain

− Ay2 − B�2d�
2y + C�d�y + �1 − �2D�y = 0, �27�

where A=A2 /A1, B=−A3 /A1, C=A4 /A1, and D=−A5 /A1,
y=	. Appropriate boundary conditions are imposed, namely,
y→0, d�y→0, d�

2y→0 at �→−� to investigate the
asymptotic behavior of Eq. �27� by linearizing it with respect
to y.46 Simplifying, we get

− B�2d�
2y + C�d�y − �1 − �2D�y = 0. �28�

The solutions of Eq. �28� are proportional to exp�W��,
where W=5�1��1−4B�1−�2D� /C2�. From Eq. �28�, it is
clear that the quantum corrections appear in the dispersion
coefficient B. Also note that there will be a stable shock if
4B�1−�2D� /C2�1, else there will be an oscillatory shock.

VII. RESULTS AND DISCUSSION

In this section, we numerically investigate the depen-
dence of wave potential of the quantum drift ion acoustic
shock wave on the quantum Bohm potential, collision fre-
quency, and the ratio of drift to shock velocity in the comov-
ing frame, i.e., v* /u in dense e-p-i plasmas. In high density
plasmas found in dense astrophysical objects such as neutron

stars and white dwarfs, the plasma densities are enormous
and quantum effects may be important. For illustration, pa-
rameters are chosen which are representatives of the plasma
in dense astrophysical bodies, i.e., no�1026–1028 cm−3 and
Bo�109–1011 G.26 Graphical analysis of ion acoustic drift
shock profile given by Eq. �26� is presented by plotting the
potential 	 against different parameters affecting the wave.
In Fig. 5, the variation in the wave potential with the increas-
ing positron concentration is shown. It is found that increas-
ing the positron concentration decreases the strength of the
shock. It is also seen from Eq. �26� that the expression of the
quantum Bohm potential involves density, and therefore the
variation in density indirectly represents the change in the
wave potential with the quantum Bohm potential term.

Figure 6 shows the effect of increasing collision fre-
quency on the wave potential. It is found that the increasing
collision frequency decreases the shock strength of the drift
acoustic shock wave. Finally, Fig. 7 explores how the ratio of
drift to shock velocity in the comoving frame, v* /u, affects
the shock structure. In this regard, two cases are considered,
i.e., v*�u. It is found that for u�v*, the shock strength
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FIG. 5. �Color online� Variation in the electrostatic potential 	 for
different values of positron concentration, i.e., np0

=1�1026 cm−3

�solid line� and np0
=3�1026 cm−3 �dashed line�. Other parameters are

ne0
=1.9�1027 cm−3, B0=109 G, and �in=1010 s−1.
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FIG. 6. �Color online� Variation in the electrostatic potential 	 for different
values of collision frequency, i.e., �in=1.1�1010 s−1 �dashed line� and
�in=1010 s−1 �solid line�. Other parameters are ne0

=1.9�1027 cm−3 and
B0=109 G.
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FIG. 7. �Color online� Variation in the electrostatic potential 	 for different
values of v

*
/u, i.e., u�v

*
�solid line� and v

*
�u �dashed line�. Other pa-

rameters are ne0
=1.9�1027 cm−3, B0=109 G, and �in=1010 s−1.
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decreases, whereas it increases for the case when u�v*.
This owes to the change in the sign of the nonlinearity coef-
ficient, A, appearing in Eq. �26�.

VIII. CONCLUSION

Linear and nonlinear propagation characteristics of drift
ion acoustic shock waves in a two-dimensional �2D� inho-
mogeneous e-p-i quantum magnetoplasma are studied here
using the QHD model. In this regard, a quantum KPB equa-
tion for an inhomogeneous plasma is derived using the drift
approximation. It is found that the ion acoustic mode couples
with the drift wave if the parallel motion of ions is taken into
account. Discrepancies in the earlier works have also been
pointed out and a correct theoretical framework is presented
to study the one-dimensional �1D� as well as the 2D propa-
gation of shock waves in an inhomogeneous quantum
plasma. Furthermore, the solutions of KdVB and KPB equa-
tions are presented using the tangent hyperbolic �tanh�
method. The effects of quantum Bohm potential �via the
varying positron concentration�, collision frequency, and the
ratio of drift to shock velocity in the comoving frame on the
shock profiles are numerically illustrated in Figs. 5–7. It is
found that increasing the positron number density and colli-
sion frequency decreases the shock strength. Finally, it is
found that when the localized structure propagates with ve-
locity greater than the drift velocity, the quantum drift ion
acoustic shock strength decreases, whereas it enhances when
the localized structure propagates with velocity less than the
drift velocity. The present study may be relevant to the study
of dense astrophysical environments such as neutron stars
and white dwarfs where the quantum effects are expected to
dominate.

ACKNOWLEDGMENTS

One of the authors �S.K.� would like to thank Salam
Chair, Government College University, Lahore, Pakistan, for
providing the financial assistance to carry out this research
work.

1A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations
�Springer, Vienna, 1990�.

2M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk, and J. M. Dawson,
Phys. Plasmas 8, 2454 �2001�.

3Y. D. Jung, Phys. Plasmas 8, 3842 �2001�.
4M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78, 591 �2006�.
5P. K. Shukla and S. Ali, Phys. Plasmas 12, 114502 �2005�.

6W. Masood, A. Mushtaq, and R. Khan, Phys. Plasmas 14, 123702 �2007�.
7S. A. Khan, W. Masood, and M. Siddiq, Phys. Plasmas 16, 013701
�2009�.

8G. Manfredi, Fields Inst. Commun. 46, 263 �2005�.
9W. Masood and A. Mushtaq, Phys. Lett. A 372, 4283 �2008�.

10S. Ali, W. M. Moslem, P. K. Shukla, and R. Schlickeiser, Phys. Plasmas
14, 082307 �2007�.

11W. F. El-Taibany and M. Wadati, Phys. Plasmas 14, 42302 �2007�.
12P. K. Shukla and L. Stenflo, Phys. Lett. A 357, 229 �2006�.
13Z. Wu, H. Ren, J. Cao, and P. K. Chu, Phys. Plasmas 15, 082103 �2008�.
14W. Masood, A. M. Mirza, and S. Nargis, Phys. Plasmas 15, 122305

�2008�.
15F. B. Rizatto, J. Plasma Phys. 40, 288 �1988�.
16M. Y. Yu, Astrophys. Space Sci. 177, 203 �1985�.
17H. R. Mille and P. Witta, Active Galactic Nuclei �Springer, Berlin, 1987�,

p. 202.
18F. C. Michel, Rev. Mod. Phys. 54, 1 �1982�.
19F. C. Michel, Theory of Neutron Star Magnetosphere �Chicago University

Press, Chicago, 1991�.
20V. Berezhiani, D. D. Tskhakaya, and P. K. Shukla, Phys. Rev. A 46, 6608

�1992�.
21W. Misner, K. Thorne, and J. A. Wheeler, Gravitation �Freeman, San

Francisco, 1973�, p. 763.
22M. L. Burns, in Positron-Electron Pairs in Astrophysics, edited by M. L.

Burns, A. K. Harding, and R. Ramaty �American Institute of Physics,
Melville, NY, 1983�.

23S. A. Khan and W. Masood, Phys. Plasmas 15, 062301 �2008�.
24W. Masood, A. M. Mirza, and M. Hanif, Phys. Plasmas 15, 072106

�2008�.
25R. Sabry, W. Moslem, and P. K. Shukla, Eur. Phys. J. D 51, 233 �2009�.
26Q. Haque, S. Mahmood, and A. Mushtaq, Phys. Plasmas 15, 082315

�2008�.
27H. Ren, Z. Wu, J. Cao, and P. K. Chu, J. Phys. A 41, 115501 �2008�.
28B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 072310 �2007�.
29A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1468 �2002�.
30J.-K. Xue, Phys. Plasmas 10, 4893 �2003�.
31P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 �2003�.
32S. V. Vladimirov and M. Y. Yu, Phys. Rev. E 48, 2136 �1993�.
33S. V. Vladimirov and M. Y. Yu, Phys. Rev. E 49, 1569 �1994�.
34J.-K. Xue, Phys. Plasmas 10, 3430 �2003�.
35J.-K. Xue, Phys. Lett. A 314, 479 �2003�.
36L. Landau and E. M. Lifshitz, Statistical Physics �Oxford University

Press, Oxford, 1980�, Pt. 1, p. 167.
37W. Masood, S. Karim, H. A. Shah, and M. Siddiq, Phys. Plasmas 16,

042108 �2009�.
38Q. Haque and S. Mahmood, Phys. Plasmas 15, 034501 �2008�.
39H. Saleem, Phys. Plasmas 13, 034503 �2006�.
40H. Saleem and N. Batool, Phys. Plasmas 16, 022302 �2009�.
41M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equa-

tions and Inverse Scattering �Cambridge University Press, Cambridge,
1991�.

42R. Hirota, Phys. Rev. Lett. 27, 1192 �1971�.
43M. R. Miura, Backlund Transformation �Springer-Verlag, Berlin, 1978�.
44W. Malfliet, Am. J. Phys. 60, 650 �1992�.
45W. Malfliet, J. Comput. Appl. Math. 164, 529 �2004�.
46V. I. Karpman, Nonlinear Waves in Dispersive Media �Pergamon, Oxford,

1975�.

112302-7 Coupled nonlinear drift and ion acoustic waves… Phys. Plasmas 16, 112302 �2009�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

69.166.47.134 On: Mon, 15 Dec 2014 03:54:35

http://dx.doi.org/10.1063/1.1362533
http://dx.doi.org/10.1063/1.1386430
http://dx.doi.org/10.1103/RevModPhys.78.591
http://dx.doi.org/10.1063/1.2136376
http://dx.doi.org/10.1063/1.2803775
http://dx.doi.org/10.1063/1.3055599
http://dx.doi.org/10.1016/j.physleta.2008.03.057
http://dx.doi.org/10.1063/1.2750649
http://dx.doi.org/10.1063/1.2717883
http://dx.doi.org/10.1016/j.physleta.2006.04.057
http://dx.doi.org/10.1063/1.2967479
http://dx.doi.org/10.1063/1.3036931
http://dx.doi.org/10.1103/RevModPhys.54.1
http://dx.doi.org/10.1103/PhysRevA.46.6608
http://dx.doi.org/10.1063/1.2920273
http://dx.doi.org/10.1063/1.2949702
http://dx.doi.org/10.1140/epjd/e2008-00286-8
http://dx.doi.org/10.1063/1.2974798
http://dx.doi.org/10.1088/1751-8113/41/11/115501
http://dx.doi.org/10.1063/1.2753741
http://dx.doi.org/10.1063/1.1458030
http://dx.doi.org/10.1063/1.1622954
http://dx.doi.org/10.1088/1367-2630/5/1/317
http://dx.doi.org/10.1103/PhysRevE.48.2136
http://dx.doi.org/10.1103/PhysRevE.49.1569
http://dx.doi.org/10.1063/1.1594186
http://dx.doi.org/10.1016/S0375-9601(03)00951-4
http://dx.doi.org/10.1063/1.3109663
http://dx.doi.org/10.1063/1.2842362
http://dx.doi.org/10.1063/1.2184947
http://dx.doi.org/10.1063/1.3073672
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1119/1.17120
http://dx.doi.org/10.1016/S0377-0427(03)00645-9

