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Drift ion acoustic shock waves in an inhomogeneous
two-dimensional quantum magnetoplasma
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Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an
inhomogeneous quantum plasma with neutrals in the background employing the quantum
hydrodynamics �QHD� model. In this regard, a quantum Kadomtsev–Petviashvili–Burgers �KPB�
equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift
wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift
solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical
framework is presented to study the one-dimensional as well as the two-dimensional propagation of
shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is
presented using the tangent hyperbolic �tanh� method. The variation of the shock profile with the
quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving
frame, v� /u, are also investigated. It is found that increasing the number density and collision
frequency enhances the strength of the shock. It is also shown that the fast drift shock �i.e., v� /u
�0� increases, whereas the slow drift shock �i.e., v� /u�0� decreases the strength of the shock. The
relevance of the present investigation with regard to dense astrophysical environments is also
pointed out. © 2009 American Institute of Physics. �DOI: 10.1063/1.3109663�

I. INTRODUCTION

The field of quantum plasmas has engendered a lot of
interest in the plasma physics community owing to its wide
domain of applicability. Numerous investigations have been
carried out in dense astrophysical environments1,2 in dusty
plasmas3,4 �such as white dwarfs and neutron stars�, in mi-
croelectronic devices,5 in intense laser beam produced
plasmas,6 in nonlinear optics,7,8 etc., to understand the quan-
tum effects on the behavior of linear and nonlinear wave
propagations in these systems. The quantum plasmas are
characterized by high densities and low temperatures in
sharp contrast to the low densities and high temperatures that
constitute the classical plasmas. When the plasma is cooled
to extremely low temperatures, the de Broglie wavelength of
the charge carriers becomes comparable to the dimension of
the system under consideration. In such a situation, the
plasma behaves like a Fermi gas and quantum mechanical
effects are expected to play a significant role in the behavior
of charged particles.9–13 The thermal de Broglie wavelength
for jth species is �Bj =h /2�mjvTj =aj /�Dj, where aj �=h /
4qj

��mjnj0� characterizes the Bohr radius per unit number
density nj0, �Dj is the Debye length, and qj is the charge. For
classical regimes, �Bj ��Dj, while for quantum regimes �Bj

��Dj and the quantum effects, therefore, could no longer be
ignored.

The approaches that are commonly used for quantum
plasmas are the Schrödinger–Poisson, the Wigner–Poisson,
and the Dirac–Maxwell which describe the statistical and
hydrodynamic behaviors of the plasma particles at quantum
scales. These models are the quantum equivalent of fluid and
kinetic models of the classical plasma physics. Manfredi14

wrote a review article on the Schrödinger–Poisson and the

Wigner–Poisson models in a collisionless quantum plasma.
The quantum hydrodynamics �QHD� model is an extension
of the classical fluid model in a plasma. The basic set of
QHD equations describes the momentum and energy trans-
port of the charged species. The departure from the classical
model lies in the fact that an additional term, the so-called
Bohm potential, is introduced in the equation of motion of
the charged particles. In the limit that the quantum effects go
to zero, the classical fluid equation of motion is retrieved in
accordance with the correspondence principle.

The QHD model has also been employed to study the
propagation of linear and nonlinear waves in inhomogeneous
quantum plasmas. El-Taibany and Wadati11 studied the dy-
namics of nonlinear quantum dust acoustic wave in a non-
uniform quantum dusty plasma and found that the formation
of solitons exhibited a dependence on a critical value of
plasma parameters unlike a homogeneous plasma. Shukla
and Stenflo15 found new drift modes in nonuniform quantum
magnetoplasmas and observed that the electron drift wave
frequency was significantly modified by the electron Bohm
potential term. Haque and Mahmood16 studied the linear and
nonlinear drift waves in inhomogeneous quantum plasmas
with neutrals in the background. The authors found that the
quantum corrections appreciably modifed the drift solitons
and shocks in quantum magnetoplasmas. Recently, Haque
and Saleem17 proposed that monopolar and dipolar quantum
vortices could appear in uniform dense plasmas.

It is known that shock waves can be excited in a dissi-
pative nonlinear medium. There can be numerous dissipative
processes in a plasma. The important ones are Landau damp-
ing, kinematic viscosity among the plasma constituents, as
well as the collisions between charged particles and neutrals
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present in the system. However, when a medium has both
dispersive and dissipative properties, the propagation of
small amplitude perturbations can then be adequately de-
scribed by Korteweg–de Vries–Burgers �KdVB� equation.
The dissipative Burgers term in the nonlinear KdVB equa-
tion arises by taking into account the kinematic viscosity
among the plasma constituents.18–20 When the wave breaking
due to nonlinearity is balanced by the combined effect of
dispersion and dissipation, a monotonic or oscillatory disper-
sive shock wave is generated in a plasma.20–23 It is well
known that transverse perturbations would always exist in
the higher-dimensional system. The presence of transverse
perturbation introduces an anisotropy in the system which
modifies the wave structure and the stability of the
system.24,25 In this paper, for the first time, the shock propa-
gation in the presence of parallel perturbation is considered
in an inhomogeneous quantum magnetoplasma. The parallel
perturbation assumes the role of transverse perturbation in
the present case and this point would be elaborated later in
the paper.

In this paper, nonlinear coupling of drift and ion acoustic
waves in an inhomogeneous quantum magnetoplasma is
investigated. In this regard, a quantum Kadomtsev–
Petviashvili–Burgers �KPB� equation is derived and its solu-
tion is presented using the tanh method. The dissipative ef-
fect appears due to the collisions of the ions with the neutrals
in the background. The manuscript is organized as follows:
In Sec. II, we present the basic set of nonlinear equations for
the system under consideration. In Sec. III, linear dispersion
relation of the quantum ion acoustic wave in an inhomoge-
neous quantum magnetoplasma is presented in different lim-
its and discussed. In Sec. IV, nonlinear KPB equation is de-
rived and its solution is presented using the tanh method. In
Sec. V, stability analysis of the quantum KPB equation is
presented. In Sec. VI, results are presented and discussed.
Finally, in Sec. VII, the conclusion of the current investiga-
tion is presented.

II. SET OF NONLINEAR EQUATIONS

Consider an inhomogeneous quantum magnetoplasma
composed of ions and electrons with neutrals in the back-
ground. The equilibrium magnetic field is in the z direction,
whereas the density and temperature gradients are assumed
to be in the x direction. The phase velocity of the wave is
assumed to be vFi�� /k�vFe �vFi and vFe are the ion and
electron Fermi velocities, respectively�. We, therefore, ignore
the quantum statistical and Bohm potential contributions of
ions. Using the QHD model, we can write down the govern-
ing equations as follows.

The equation of motion for electrons,

mene��t + ve . ��ve = − ene�E +
1

c
ve � B0� − �pe

+
	2ne

2me
� ��2�ne

�ne
� , �1�

where E=−�
 is the electrostatic field �
 is the electrostatic
potential� and ne, me, and e are the electron density, mass,

and charge, respectively. In Eq. �1� two quantum effects, i.e.,
quantum diffraction and quantum statistics, are also in-
cluded. The quantum diffraction effects appear due to the
wave nature of particle in a quantum plasma which is taken
into account by the term proportional to 	2 also known as
Bohm potential. However, quantum pressure is obtained by
using the quantum statistics which takes into account the
fermionic nature of electrons. For three-dimensional Fermi
gas, electron pressure is defined as26

pe =
	2�3�2�2/3

5me
ne

5/3. �2�

The parallel component of Eq. �1� for inertialess electrons
gives

e�z
 −
1

ne
�zpe +

	2

2me
�z��2�ne

�ne
� = 0. �3�

Using the pressure in Eq. �3� and expanding it by Taylor
series and integrating Eq. �3�, after using the boundary con-
ditions ne=ne0

and 
=0 at z→ ��, we have

� ne
˜

neo
� =

3e


2kBTFe
+

3e2
2

8kB
2TFe

2 +
3	2

4mekBTFe
��2�ne

�ne
� , �4�

where TFe is the electron Fermi temperature, kB is the Bolt-
zmann constant, ñ is the perturbed electron density, while ne0

is the equilibrium density and ne
˜�ne0

. The electron Fermi
temperature and density are related by TFe= �	2 /2mekB�
��3�2�2/3ne0

2/3.
Using the Taylor expansion for the Bohm potential term

in Eq. �4� and backsubstituting into Eq. �4�, we obtain

� ne
˜

ne0

� =
3e


2kBTFe
+

3e2
2

8kB
2TFe

2 +
9e	2

16mekB
2TFe

2 �2
 . �5�

The equation of motion for ions is

mini��t + vi . ��vi = eni�E +
1

c
vi � B0� − miniinvi, �6�

where in is the collisional frequency between ions and neu-
trals. The quantum force acting on the ions is small due to
the large mass of ions as compared to the electrons and thus
neglected in Eq. �6�. The perpendicular component of the
velocity from Eq. �6� can be written as

vi� =
c

B0
�ẑ � �
� −

cin

�ciB0
��
 −

c

B0�ci
�t��
 , �7�

where the usual limit �t��ci ��ci=eB0 /cmi is the ion cyclo-
tron frequency� has been used for low frequency drift waves
and ��� means perpendicular to the magnetic field B0.

The parallel component of velocity from Eq. �6� can be
written as

Âviz = −
e

mi
�z
 , �8�

where Â is an operator defined as
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Â = ��t + in + vE . �� + viz�z� .

Using the Poisson equation

�2
 = − 4�e�ni − ne� , �9�

the perturbed ion number density from Eq. �9� is given by

� ni
˜

ni0

� =
3e


2kBTFe
+

3e2
2

8kB
2TFe

2 +
9e	2

16mekB
2TFe

2 �2


−
1

4�en0
�2
 . �10�

Here, ni0
=ne0

=n0 is the equilibrium plasma density.
The ion continuity equation is

�tni + � . �nivi� = 0. �11�

Using Eqs. �7�, �8�, and �10� in Eq. �11�, applying operator
and assuming �x��z��y, and finally multiplying the whole
equation by kBTFe /e, we have

Â� 3
2�t
 + a1�t


2 − �Fe
2 �t�y

2
 + H2�t�y
2
 − �s

2�t�y
2


− in�s
2�y

2
 + 3
2v��y
 − D1�y


2	 − cs
2�z

2
 = 0, �12�

where a1=3e /8kBTFe
, �Fe

=�kBTFe
/4�e2n0 is the electron

Fermi wavelength, H=�9	2 /16mekBTFe
is quantum param-

eter, v�= �−2ckBTFe
/3eB0��n is the drift velocity, �n

= 
dx ln n0
 is the inverse of the density scale length, D1

=D2��n−�TFe
�, D2=3c /4B0, �TFe

= 
dx ln TFe

 is the tempera-

ture gradient, cs=�kBTFe /mi is the quantum ion acoustic

speed, and �s=�kBTFe /mi�ci
2 is the ion Larmor radius at

electron temperature in quantum plasma.
It is emphasized here that the term a1�t


2 does not ap-
pear in Eq. �12� of Ref. 16 because the authors linearize the
electron density and throw away the higher order contribu-
tion very early in their calculations; that later introduces non-
linearity in the system. Note that the coefficient of nonlinear-
ity in Ref. 16 contains only the effects due to inhomogeneity
and ignoring the density inhomogeneity would make the
nonlinearity vanish in their work. A similar error was com-
mitted in Ref. 27 where the author discussed drift solitons
and shocks in classical plasmas. The nonlinearity should not
disappear with the disappearance of inhomogeneity as the
KdV and KP equations are derived in homogeneous plasmas
where the source of the nonlinearity is the convective deriva-

tive term. It is, therefore, imperative that the procedure given
in this paper be followed to arrive at the correct equation. It
is also worth mentioning that the nonlinearity coefficients
obtained in Refs. 16 and 27 are in fact very small contribu-
tions as these contain the inhomogeneity term �which is gen-
erally considered small� multiplied by �y


2, making it even
smaller. We note here that the relation between number den-
sity and Fermi temperature inhomogeneities of Ref. 16 is
incorrect and thus their following results are incorrect. Here

�n
� 
�TF


 because the Fermi temperature is related to the
density as TFe= �	2 /2mekB��3�2�2/3ne0

2/3 which implies that

�n
= 3

2 
�TF

.

Case 1: Consider the case when collisions dominate, i.e., �t

�in, then Eq. �12� takes the form

3

2
�t
 + a1�t


2 − �Fe
2 �t�y

2
 + H2�t�y
2
 − �s

2�t�y
2


− in�s
2�y

2
 +
3

2
v��y
 − D1�y


2 −
cs

2

in
�z

2
 = 0. �13�

The last term of Eq. �13� can be ignored because in �which
is large in this case� appears in the denominator and also
owing to the fact that the perturbation in the parallel direc-
tion is weak. Equation �13� therefore reduces to the standard
KdVB form in a comoving frame of reference by taking �
=k�y−ut� as shown in Ref. 16. However, it must be pointed
out that the coefficient A of Eq. �21� is different from Eq.
�15� of Ref. 16 owing to the reasons elaborated in detail
earlier in this paper.

Case 2: When �t�in, Eq. �12� takes the form
3
2�t

2
 + a1�t
2
2 − �Fe

2 �t
2�y

2
 + H2�t
2�y

2
 − �s
2�t

2�y
2


− in�s
2�t�y

2
 + 3
2v��t�y
 − D1�t�y


2 − cs
2�z

2
 = 0.

�14�

Equation �14� can be transformed into a form analogous to
the KPB equation derived for a homogeneous classical
plasma.

III. LINEAR ANALYSIS

On linearizing Eq. �14� and assuming the perturbation
��ikyy+ ikzz− �̇�t�, the dispersion relation for the coupled
quantum ion acoustic and drift mode reads as

� =
��� − �2/3�iinky

2�s
2� � ���� − �2/3�iinky

2�s
2�2 + �8/3�cs

2kz
2S

2S
, �15�

where S= �1+ �2 /3���Fe
2 +�s

2−H2�ky
2�, ��=v�ky is the drift

frequency, � is the wave frequency, ky, kz are the wave num-
bers, and S�0 must hold. Note that the contribution of the
acoustic wave is absent in Eq. �14� of Ref. 16 because the

authors ignored the parallel motion of ions along the ambient
magnetic field in order to arrive at the KdVB equation. It is
also worth mentioning that in Ref. 16 the linear dispersion
reduces to an oscillation if the transverse perturbation is ig-
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nored and goes to zero in the absence of background density
gradient. However, here Eq. �15� does not vanish in any of
these limits because the acoustic mode survives. Separating
the real and imaginary parts �only the upper sign is taken into
account as the lower sign yields nonphysical results� of Eq.
�15�, we obtain

�r =

�� +����
2 +

8

3
cs

2kz
2S�

2S
, �16�

�i =

� 2

3
in�s

2ky
2 +

2

3
��in�s

2ky
2

����
2 +

8

3
cs

2kz
2S��

2S
, �17�

where ky =k cos �, kz=k sin �. �r and �i represent the real
and imaginary parts of Eq. �15�. We see from our Eqs. �16�
and �17� and also from Figs. 1 and 2 that for small k the
numerator dominates as it is proportional to k so correspond-
ingly � �real and imaginary� increases but for large k the
denominator increases; as a result � �real and imaginary�
decreases. Figures 1 and 2 show the variation of real and
imaginary frequencies �related to damping� of the coupled
quantum ion acoustic and drift mode as a function of ob-
liqueness. It is found that the real frequencies enhance,
whereas the imaginary frequencies decrease with the in-
crease in the obliqueness angle �. By increasing the number
density, quantum effects become greater; as a result real and
imaginary frequencies increases with small k, while for large
k they do not show any significant variation. The variation of
the real frequency and the damping rate could similarly be

found by varying the other plasma parameters.
In the absence of collisions between ions and neutral

particles, i.e., in=0, Eq. �15� can be written as

� =
�� � ��� + �8/3�cs

2kz
2S

2S
. �18�

In the absence of inhomogeneity in density and temperature,
i.e., ��=0, Eq. �18� can be written as

� =
���2/3�cskz

�S
. �19�

It is evident from Eqs. �15�–�19� that quantum corrections
affect the wave dispersion.

IV. DERIVATION OF KPB

In this section, KPB equation is derived for an ion
acoustic drift shock wave in an inhomogeneous quantum
magnetoplasma. It should be mentioned that no such work
has been done to date. In order to find the localized solution,
let us choose a coordinate � in the moving frame such that
�=��y+�z−ut�, where � is a nonlinear wave number, u is
the velocity of the nonlinear structure moving with the
frame, and � is the angle between wavefront normal and xy
plane. Equation �14� in the transformed frame can be written
as

���a2��
 + a3��

2 + a4

2�2��
3
 + a5���

2
� + �2a6��
2
 = 0,

�20�

where a2= �3 /2��1−v� /u�, a3= �a1+D1 /u�, a4=−��Fe
2 +�s

2

−H2�, a5=in�s
2 /u, and a6=−cs

2 /u2. Equation �20� can be
simplified further to obtain

0 2×106 4×106 6×106 8×106 1×107
k −−−−−−−−−>

1×1012

2×1012

3×1012

4×1012
ω

−
−

−
−

−
−

−
−

−
−

>

FIG. 1. �Color online� Variation of the real frequency of the coupled-drift ion acoustic wave with the obliqueness angle �. Other parameters are n0=1.9
�1027 cm−3, B0=109 G, and v� /u=0.4.
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�����
 + A��

2 + B�2��

3
 + C���
2
� + �2D��

2
 = 0, �21�

where A=a3 /a2, B=a4 /a2, C=a5 /a2, and D=a6 /a2. Equa-
tion �21� is analogous to the KPB equation derived for the
homogeneous plasmas �see, for instance, the papers by
Xue24,25�. The above equation admits shock solutions. It is
interesting to note that contrary to its homogeneous counter-
part, the KPB equation in an inhomogeneous plasma is pre-
dominantly in the transverse direction and weak in the par-
allel direction. This difference arises due to the drift
approximation used in solving the inhomogeneous plasmas
that assumes a stronger perturbation in the perpendicular di-
rection by comparison with the parallel motion along the
ambient magnetic field. Note that putting the dissipative co-
efficient C would reduce Eq. �21� to KP equation which ad-
mits soliton solutions. Similarly, putting the dispersive coef-
ficients B and D equal to zero leads to Burgers equation.
Finally, if the weak parallel perturbation is dropped, KdVB
equation for a drift wave is retrieved. The ion acoustic con-
tribution would vanish by dropping the parallel motion of
ions as mentioned in the text earlier. However, it must be
pointed out that the coefficient A of Eq. �21� is different from
Eq. �15� of Ref. 16 owing to the reasons elaborated in detail
earlier in this paper. It should be emphasized that the results
of the KPB equation are shown and discussed here rather
than the limiting cases unlike the earlier investigations in one
dimension where only the limiting cases were discussed.16,27

There are a number of methods to solve the nonlinear
partial differential equations �NLPDEs�, for instance, inverse
scattering method,28 Hirota bilinear formalism,29 Backlund
transformation,30 tanh,31 etc. However, when the partial dif-
ferential equation in a system is formed by the combined
effect of dispersion and dissipation, the most convenient and
efficient method to solve the NLPDE is the tanh method.32

Therefore, using the tanh method, we arrive at the following
solution of the Eq. �21�:


�y,z,t� =
− 25B + 3C2 − 25�2BD

50AB
+

3C2

25AB
tanh C

10B
�y

+ �z − ut�� −
3C2

50AB
tanh2 C

10B
�y + �z − ut�� .

�22�

V. STABILITY OF KPB

In order to check the stability of the KPB, we proceed as
follows: Integrate Eq. �21� twice to obtain

Ay2 + B�2��
2y + C���y + �1 + �2D�y = 0, �23�

where y=�1. Appropriate boundary conditions are imposed,
namely, y→0, dy /d�→0, d2y /d�2→0 at �→−� to investi-
gate the asymptotic behavior of Eq. �23� by linearizing it
with respect to y.33 Simplifying, we get

B�2��
2y + C���y − �1 + �2D�y = 0. �24�

The solutions of Eq. �24� are proportional to exp�Wy�, where

W = 51 ��1 −
4B�1 − �2D�

C2 � .

It should be mentioned that in W, the signs of the coefficients
B and D have been used. It should be noted that the quantum
corrections appear in the dispersion coefficient B. Also note
that there will be a stable shock if 4B�1−�2D� /C2�1; else
there will be an oscillatory shock.

0 2×106 4×106 6×106 8×106 1×107
k −−−−−−−−−>

0

2×109

4×109

6×109

8×109

ω
H

gmI
L

−
−

−
−

−
−

−
−

−
−

>

FIG. 2. �Color online� Variation of the imaginary frequency of the coupled-drift ion acoustic wave with the obliqueness angle �. Other parameters are n0

=1.9�1027 cm−3, B0=109 G, and v� /u=0.4.
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VI. RESULTS AND DISCUSSION

In this section, numerical investigation of the depen-
dence of wave potential of the quantum drift ion acoustic
shock wave on the quantum Bohm potential, collision fre-
quency, and ratio of drift to shock velocity in the comoving
frame, i.e., v� /u is explored. In high density plasmas found
in dense astrophysical objects like neutron stars and white
dwarfs, the plasma densities are enormous and quantum ef-
fects may be important. For illustration, typical parameters
are chosen which are representative of the plasma in dense

astrophysical bodies, i.e., n0�1026–1029 cm−3 and B0

�109–1014 G.34,35 Graphical analysis of ion acoustic drift
shock profile is presented by plotting the potential 
 against
different parameters affecting the wave. In Fig. 3, the varia-
tion of the wave potential with density is shown. It is found
that increasing the number density enhances the strength of
the shock. It should be noted that the expression of the quan-
tum Bohm potential involves density and therefore the varia-
tion in density indirectly represents the change in the wave
potential with the quantum Bohm potential term.
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FIG. 3. Variation of the electrostatic potential 
 for increasing number density, i.e., n0=1.9�1027 cm−3 �dashed line� and n0=3�1027 cm−3 �solid line�.
Other parameters are B0=109 G, v� /u=0.8, in=1010 s−1, and �=10−4.
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FIG. 4. Variation of the electrostatic potential 
 for increasing collision frequency, i.e., in=7�109 s−1 �dashed line� and in=1010 s−1 �solid line�. Other
parameters are n0=1.9�1027 cm−3, B0=109 G, v� /u=0.8, and �=10−4.
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Figure 4 shows the effect of increasing collision fre-
quency on the wave potential. It is found that an increase in
the collision frequency enhances the shock strength. This is
due to the fact that shock is formed due to dissipation and
enhancing collision frequency is tantamount to increasing the
dissipation in the system. Note that the second term that
involves the tanh term in Eq. �22� is responsible for the
shocklike structure as it destroys the balance between disper-
sion and nonlinearity unlike the ordinary KP which has a
sech2-type solution and admits solitary wave solution.

Figure 5 explores how the ratio of drift to shock velocity
in the comoving frame, v� /u, affects the shock structure. In
this regard, two cases are considered, i.e., v� /u�0. It is
found that for v� /u�0 �fast drift shock�, the shock strength
increases whereas it decreases for the slow drift shock
�which corresponds to the case when v� /u�0�. This is due
to change of the sign of the coefficient appearing in Eq. �21�.

VII. CONCLUSION

Linear and nonlinear propagation characteristics of drift
ion acoustic shock waves in a two-dimensional �2D� inho-
mogeneous quantum magnetoplasma are investigated here
using the QHD model. In this regard, a quantum KPB equa-
tion for an inhomogeneous plasma is derived, for the first
time to the best of authors’ knowledge, using the drift ap-
proximation. It is found that the ion acoustic mode couples
with the drift wave if the parallel motion of ions is taken into
account. Interestingly, it is noted that unlike the homoge-
neous plasmas, the KPB equation for inhomogeneous plas-
mas is derived by assuming weak parallel perturbations. Dis-
crepancies in the earlier works have also been pointed out
and a correct theoretical framework is presented to study the
one-dimensional as well as the 2D propagation of shock
waves in an inhomogeneous quantum plasma. Furthermore,

the solution of KPB equation is presented using the tangent
hyperbolic �tanh� method. The effects of quantum Bohm po-
tential, collision frequency, and ratio of drift to shock veloc-
ity in the comoving frame on the shock profiles are numeri-
cally illustrated in Figs. 3–5. It is found that increasing the
number density and collision frequency enhances the shock
strength. Finally, it is found that the fast drift shock increases
whereas the slow drift shock decreases the drift ion acoustic
shock strength. The present study may be relevant to the
study of dense astrophysical environments such as neutron
stars and white dwarfs where the quantum effects are ex-
pected to play a significant role.
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