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Abstract. The influence of non-monochromaticity on low-frequency, large-scale
zonal-flow nonlinear generation by small-scale magnetized Rossby (MR) waves in
the Earth’s ionospheric E-layer is considered. The modified parametric approach is
used with an arbitrary spectrum of primary modes. It is shown that the broadening
of the wave packet spectrum of pump MR waves leads to a resonant interaction
with a growth rate of the order of the monochromatic case. In the case when zonal-
flow generation by MR modes is prohibited by the Lighthill stability criterion, the
so-called two-stream-like mechanism for the generation of sheared zonal flows by
finite-amplitude MR waves in the ionospheric E-layer is possible. The growth rates
of zonal-flow instabilities and the conditions for driving them are determined. The
present theory can be used for the interpretation of the observations of Rossby-type
waves in the Earth’s ionosphere and in laboratory experiments.

1. Introduction
The existence of anisotropic large-scale structures, such as convective cells, zonal
flows and jets has been intensively investigated both in laboratory plasmas (Shukla
et al. 1981, 1984, 2002; Terry 2000; Diamond et al. 2005) and in geophysical fluid
dynamics (Busse 1994; Rhines 1994). Both ground-based and satellite observations
clearly show that, for different layers of the ionosphere, there are sheared zonal
flows. These are associated with azimuthally symmetric band-like flows propagating
along the parallels with inhomogeneous velocities along the meridians (see, e.g.,
Petviashvili and Pokhotelov 1992). At the same time a large amount of observa-
tional data verify the permanent existence of ultra-low-frequency (ULF) planetary-
scale perturbations in the E- and F-regions of the ionosphere (see, e.g., Lawrence
and Jarvis 2003). Among them, special attention must be paid to Rossby-type
perturbations propagating at a fixed latitude along the parallels around the Earth.
In reality, the Earth’s ionospheres can support both propagating waves and zonal
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flows and they thus constitute dynamical systems which exhibit complex nonlinear
interactions. In this way, the ionospheric medium builds up conditions which are
also favorable to the formation of electromagnetic nonlinear stationary solitary
wave structures (Pokhotelov et al. 1996, 2001; Kaladze et al. 2003).
The idea of generation of zonal flows by tropospheric Rossby waves on the basis

of the kinetic equation for wave packets was put forward by Smolyakov et al. (2000).
Using the formulation of parametric instabilities on the basis of a three-wave res-
onant nonlinear interaction, the theory of zonal-flow generation by Rossby waves
was further developed by Shukla and Stenflo (2003) and Onishchenko et al. (2004).
In these papers it was shown that zonal flows in a non-uniform rotating neutral
atmosphere can be excited by finite-amplitude Rossby waves. Accordingly, these
papers study the interaction of pump waves (Rossby waves), a sheared flow and
two satellites of the pump wave (side-band waves). This approach is an alternative
to the standard weak turbulence approach used by Smolyakov et al. (2000). The
driving mechanism of this instability is due to the Reynolds stresses, which are
inevitably inherent for finite-amplitude small-scale Rossby waves. Owing to this
essential nonlinear mechanism, spectral energy transfers from small-scale Rossby
waves to large-scale enhanced zonal flows (inverse cascade) in the Earth’s neutral
atmosphere. In addition, the zonal-flow generation was considered within a simple
model of Rossby wave turbulence, using the classical nonlinear two-dimensional
Charney equation. It was found that the necessary condition for zonal-flow gen-
eration is similar to the Lighthill criterion for modulation instability in nonlinear
optics (Lighthill 1965).
The question arises: are there other zonal-flow generation mechanisms? To this

end Kaladze et al. (2007a) added a scalar nonlinearity of Korteweg–de Vries type
to the Charney equation. It was shown that in this case zonal-flow generation by
the Rossby waves always exists and needs no criterion fulfilment.
The problem of zonal-flow generation by a monochromatic Rossby wave packet

was considered in Kaladze et al. (2007a), Onishchenko et al. (2004) and Shukla and
Stenflo (2003). The idea of investigating the influence of non-monochromaticity of
wave packet in general was put forward by Smolyakov et al. (2000) and Malkov
et al. (2001). Smolyakov et al. (2000) showed that the broadening of the wave packet
gives the possibility of considering zonal-flow generation in the ‘hydrodynamic’ and
‘kinetic’ regimes, similar to the case of plasma beam instabilities. Note that in the
kinetic regime resonant-type instability takes place, whereas the hydrodynamic
regime refers to a coherent instability.
An essential contribution to the problem of zonal-flow generation by primary

(pump)modes with arbitrary spectrum broadening wasmade byMikhailovskii et al.
(2006b), where the modified parametric approach was suggested. In this approach,
the driving forces of zonal flows are represented by a summation (or integration)
over the spectrum of the primary modes, which gives the possibility of revealing
additional zonal-flow generation mechanisms. The idea of using two Gaussian wave
packets in the problem of zonal-flow generation comes from Malkov et al. (2001).
This was used by Mikhailovskii et al. (2006a) to show a new mechanism of zonal-
flow generation by Rossby waves in a shallow rotating neutral fluid, called the two-
stream-like instability. Unfortunately, no expression for the growth rate concerning
the excitation of zonal flow by ordinary Rossby waves was obtained in Mikhailovskii
et al. (2006a) and there does not appear to be any discussion of this question in
that paper.
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In the present paper we will focus our attention on the Earth’s weakly ionized, in-
compressible ionospheric gas of the E-layer (≈ 90–150 km from the Earth’s surface).
Unlike the neutral atmosphere, such a gas becomes conductive and the influence
of electromagnetic forces should be taken into account. In such an ionospheric gas,
MR waves can propagate (see Sec. 2). The problem of zonal-flow excitation by MR
waves in the ionospheric E-layer by a monochromatic wave packet was initiated by
Kaladze et al. (2007a), where it was shown that the zonal-flow instability by these
monochromatic waves is also prohibited when the Lighthill instability criterion is
not fulfilled. However, no investigations has been carried out so far into the influence
of non-monochromaticity of wave packets on zonal-flow generation by MR waves
or to identify any additional mechanisms of instability.
In the present paper the problem of zonal-flow generation by small-scale (λ <

rR, where rR is modified by the inhomogeneous geomagnetic field Rossby radius)
MR waves in the ionospheric E-layer is further developed taking into account the
broadening of the wave packet spectrum. To this end we examine the problem by
considering primary MR waves having a sufficiently broad-spectrum wave packet
and will show that a two-stream-like instability is also an effective mechanism for
the excitation of a zonal-flow instability.
In Sec. 2 a brief description of the MR waves propagating in the ionospheric

E-layer is presented. Owing to the assumption of a distinct time- and space-scale
separation between the turbulent oscillations and the zonal flow on the basis of
the nonlinear Charney equation, the zonal-flow dispersion equation is derived in
Sec. 3. To this end, by analogy with Kaladze et al. (2007a), the spectral analysis
of the problem is carried out considering the a three-wave resonant parametric
interaction between the zonal flows, the primary (pump) MR modes generating the
flows, and the side-band amplitudes, which depend on both the primary modes and
zonal flows. Then, following Mikhailovskii et al. (2006b), the driving force of zonal
flow is calculated, which is in fact the Reynolds stress, expressed as a summation
over contributions of the primary modes of the wave packet. The results of Kaladze
et al. (2007a) for a small-scale (λ < rR) monochromatic wave packet of primary
MR modes are obtained as a limiting case. The determination of their growth rates
is useful for the generalization of zonal-flow generation by non-monochromatic
wave packets of primary modes. The influence of non-monochromaticity effects on
zonal-flow generation under Lighthill’s instability criterion is investigated in Sec. 4.
The case of zonal-flow generation by ‘single-humped’ Gaussian wave packets is
considered. Limiting cases for a sufficiently small spectrum broadening and a strong
broadening are distinguished. In Sec. 5 ‘two-humped’ spectra of the primary MR
wave are investigated to show the existence of a new, two-stream-like mechanism of
zonal-flow generation under the conditions when the Lighthill instability criterion
is not satisfied. The main results of the paper are discussed in Sec. 6.

2. Magnetized Rossby waves in the E-layer
In contrast to the neutral atmosphere the ionospheric E-layer consists of neut-
ral and charged particles, which makes the ionosphere conductive. Therefore, the
interaction of inductive currents with the geomagnetic field should be taken into
account. It was recently shown (Kaladze and Tsamalashvili 1997; Kaladze 1998,
1999; Kaladze et al. 2003, 2004) that MR waves can propagate in the ionospheric
E-layer.
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The term ‘magnetized Rossby waves’ was introduced by Kaladze (1999) for the
ionospheric generalization of tropospheric Rossby waves in a rotating atmosphere
by the spatially inhomogeneous geomagnetic field. The theory of MR waves for
linear and nonlinear stages was developed by Kaladze et al. (2004). The MR waves
belong to the ULF range (10−5–10−4) s−1 , with wavelength of the order 1000 km
and longer, and the phase velocity is of the order the velocity of the local winds,
i.e. ∼(1–100) m s−1 . MR waves do not significantly perturb the geomagnetic field.
For the typical ionization fraction in the E-layer, the Lorentz force is comparable
to the Coriolis force, both having a spatial inhomogeneity scale of the order of
Earth’s radius. Thus, they are induced by the latitudinal inhomogeneity both of
the Earth’s angular velocity and of the geomagnetic field given later by β and α,
respectively. The Lorentz force opposes the Coriolis force vorticity and therefore
partial or full compensation of the Coriolis deviation by the magnetic deviation is
possible. Correspondingly, the propagation phase velocity of the linear waves also
decreases. The MR waves are excited solely by the ionospheric dynamo electric field
when the Hall effect due to the interaction with the ionized ionospheric component
in the E-layer is included.
In the following analysis the local Cartesian coordinate system (x, y, z) is used

with the x-axis directed to the east (longitudinal direction), the y-axis directed to
the north (latitudinal direction) and the z-axis coinciding with the local vertical
direction.
Short-scale MR waves are propagating in the middle-latitude E-layer of the

ionosphere and their dispersion may be written as follows (Kaladze et al. 2004):

ωk = −kx(α + β)
k2

⊥
. (1)

Here ωk is the wave frequency, k is the wave vector, k⊥ = (k2
x + k2

y )1/2 , and kx,y is
the x, y component of the wave vector. The value of (α + β) in (1) represents the
generalized Rossby parameter, where

α =
∂

∂y

(
enB0z

ρ

)
, β =

∂

∂y
(2Ω0z ). (2)

Here B0z and Ω0z are the z-components of the dipole geomagnetic field and the
angular velocity of the Earth’s rotation, respectively. In (1) the quantities α and β
are related to the latitude λ = λ0 , e is the magnitude of the electron charge, n is
the equilibrium number density for the charged particles, ρ = Nm is the neutral gas
mass density, and N is the equilibrium number density of neutrals. The dynamics
of propagation essentially depend on the generalized Rossby parameter (α+β) and
the modified Rossby radius. The parameters α and β are comparable in magnitude
(β � −α � 10−11 m−1 s−1) for the ionospheric E-layer and α depends on the
ratio n/N of the charged particle number density to the neutral density. This
ionization fraction is distinctly different for the night side and day side of the
Earth and consequently the quantity (α + β) in (1) may change its sign. Thus,
unlike Rossby waves in a neutral atmosphere, the MR waves in the ionospheric E-
layer can propagate westward or eastward at a fixed latitude along parallels. They
are weakly damped.
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3. Nonlinear interaction of magnetized Rossby waves and zonal flow
in the E-layer

The shallow rotating water model needs the existence of a free surface, which is
difficult to justify in the case of the ionospheric E-layer. We prefer, therefore, to use
the momentum equation for the neutral wind (Kaladze and Tsamalashvili 1997;
Kaladze et al. 2007b), and will consider the nonlinear dynamics of zonal flows
and their interactions with small-scale MR wave turbulence in the scope of the
simple but illuminating Charney model. In this case of small-scale turbulence, when
krR � 1, only vectorial nonlinearity is responsible for the parametric instability. The
Charney equation for MR waves in the ionospheric E-layer has the following form
(Kaladze and Tsamalashvili 1997; Kaladze et al. 2007b):

∂Δϕ

∂t
+

∂ϕ

∂x
(α + β) + J(ϕ,Δϕ) = 0, (3)

where the Poisson bracket operator J(a, b) = ∂xa∂y b−∂ya∂xb represents the vector
nonlinearity. Equation (3) describes the dynamics of Δϕ, the vorticity evolution of
a system; here ϕ is the stream function.
Since the zonal flow varies on a much longer time scale than the comparatively

small-scale MR waves, one can use a multiple-scale expansion, assuming that there
is a sufficient spectral gap separating the large- and small-scale motions. Following
the standard procedure to describe the evolution of the coupled system (MR waves
plus zonal flows), we split the perturbation of the stream function in (3) into three
components (Onishchenko et al. 2004; Mikhailovskii et al. 2006a, 2006b; Kaladze
et al. 2007a):

ϕ = ϕ̃ + ϕ̂ + ϕ̄, (4)

where

ϕ̃ =
∑
k

[ϕ̃+(k) exp(ik · r− iωkt) + ϕ̃−(k) exp(−ik · r+ iωkt)] (5)

describes the spectrum of pump magnetized Rossby modes (ϕ̃−(k) = ϕ̃∗
+(k), where

∗ means the complex conjugative),

ϕ̂ =
∑
k

[ϕ̂+(k) exp(ik+ · r− iω+ t) + ϕ̂−(k) exp(ik− · r− iω−t) + c.c.] (6)

describes the spectrum of side-band modes, and

ϕ̄ = ϕ̄0 exp(−iΩt + iqy y) + c.c. (7)

describes the large-scale zonal-flow modes varying only along meridians; c.c. stands
for the complex conjugate. The energy and momentum conservations ω± = Ω ± ωk
and k± = qy ey ± k are fulfilled, and the pairs (ωk,k) and (Ω, qy ey ) represent the
frequency and wave vector of the magnetized Rossby pump and zonal-flow modes,
respectively. Considering the local approximation the amplitude ϕ̄0 of the zonal-
flow mode is assumed to be constant.
We use the standard quasi-linear procedure, and substitute (4)–(7) into (3).

Neglecting the contribution of the small nonlinear terms in the relations for the
high-frequency primary modes we get

∂Δϕ̃

∂t
+

∂ϕ̃

∂x
(α + β) = 0, (8)

from which one may obtain the dispersion relation given by (1) for the MR waves.
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The contribution of small nonlinear terms is essential in the case of the low-
frequency zonal-flow modes. Substituting (4)–(7) into (3) and averaging out over
the fast small-scale fluctuations we obtain the following evolution equation of zonal
flow:

iΩϕ̄0 =
〈

∂ϕ

∂x

∂ϕ

∂y

〉
=

〈
∂ϕ̃

∂x

∂ϕ̂

∂y
+

∂ϕ̃

∂y

∂ϕ̂

∂x

〉

=
∑
k

kx [2ky (ϕ̂+ ϕ̃− + ϕ̂−ϕ̃+) + qy (ϕ̂+ ϕ̃− − ϕ̂−ϕ̃+)], (9)

where the angular brackets denote the averaging over fast oscillations. In (9) the
term on the right-hand side describes the Reynolds stresses induced by the short-
scale MR waves.
In order to calculate the Reynolds stresses in (9), we should find the side-band

amplitudes ϕ̂±. Turning to (3), we find the equation

∂Δϕ̂

∂t
+

∂ϕ̂

∂x
(α + β) + J(ϕ̃,Δϕ̄) + J(ϕ̄,Δϕ̃) = 0, (10)

and for side-band amplitudes we get, respectively,

ϕ̂± = ∓i
k2

⊥
k2

⊥±

kxqy

D±
ϕ̄0 ϕ̃±. (11)

We consider Ω and qy to be small parameters and have neglected q2
y in comparison

with k2
⊥ in (11). This means that the typical scales of the zonal flows are much larger

than the scales of the MR waves. In (11)

D± = ω± ± (α + β)
kx

k2
⊥±

, (12)

and

k2
⊥± = k2

x + (qy ± ky )2 . (13)

Substituting (11) into (9) and making all necessary calculations given in Kaladze
et al. (2007a) and Onishchenko et al. (2004), we arrive at the following zonal-flow
dispersion equation:

1 −
∑
k

F (k)
(Ω − qyVg)2 = 0, (14)

where

F (k) =
q2
y k2

xk2
⊥V ′

g

ωk
|ϕ̃+ |2 =

q2
y k2

xk2
⊥V ′

g

2ωk
Ik, (15)

with

Ik = 2|ϕ̃+ |2 . (16)

Here, Vg(k) is the latitudinal (y-component) pump magnetized Rossby group
velocity defined by

Vg(k) =
∂ωk
∂ky

= 2
kxky (α + β)

k4
⊥

= −2ωk
ky

k2
⊥

, (17)
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and V ′
g ≡ ∂Vg/∂ky is its derivative, so that

V ′
g =

∂2ωk
∂k2

y

= 2kx(α + β)
k2

⊥ − 4k2
y

k6
⊥

= −2ωk
k2

⊥ − 4k2
y

k4
⊥

. (18)

Note that both Vg and V ′
g can change sign owing to ωk (see (1)) or when kx = ±

√
3ky .

Equation (14) is the zonal-flow dispersion relation, which is the generalization
to the case of wave packets of the arbitrary spectrum of the primary MR waves
(Mikhailovskii et al. 2006a,b). Thus it is possible to investigate different types of
zonal-flow excitation mechanisms. It should be noted that dispersion (14) coincides
in structure with (19) given by Mikhailovskii et al. (2006a), but they have mistaken
the sign before summation over k.
In the case of a monochromatic wave packet one has F (k) ∼ δ(k− k0), and (14)

reduces to (Onishchenko et al. 2004; Kaladze et al. 2007a) a hydrodynamic-type
coherent instability

(Ω − qyVg0)2 = −Ω2
0 , (19)

where

Ω2
0 =

q2
y k2

x0k
2
⊥0 |V ′

g0 |
2|ωk0 | Ik0 , (20)

and the subscript ‘0’ means that appropriate values are taken at k0 , the wave vector
of this mode. It is assumed that the necessary instability condition

V ′
g0

ωk0

< 0 (21)

is fulfilled for not too large ky0 (see (18)),

k2
y0 < 1

3 k2
x0 . (22)

Note, that the condition in (21) is the same as the Lighthill criterion for modulation
instability in nonlinear optics (Lighthill 1965).
As found by Kaladze et al. (2007a), the maximum growth rate is achieved at

ky = 0, when (see (20))

Ω2
0 = 2q2

y k2
x0 |ϕ̃+ |2 . (23)

The obtained result is the standard mechanism of zonal-flow generation similar to
plasma beam instability.

4. The case of a single-humped wave packet
Following Mikhailovskii et al. (2006b), we consider now the effects of non-mono-
chromaticity of wave packets on the generation of zonal flows by MR waves. It
should be noted that we will investigate in this section the zonal-flow instability
mechanism, which is provided by the realization of the Lighthill instability criterion
given by (21).
Consider a single non-monochromatic packet of MR waves taking the spectrum

of Ik in the Gaussian form

Ik =
1

π1/2Δky
exp

(
− (ky − ky0)2

(Δky )2

)
Ik0 . (24)
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Here ky0 is the centered latitudinal wave vector of the wave packet, and Δky > 0
is the characteristic wave packet width. The component of the wave vector kx is
assumed to be the same for all modes of the wave packet, kx = kx0 . The summation
over k in (14) is now understood as the integrals over ky , and we consider the
primary mode frequency ω = ωk and the zonal-flow group velocity Vg as functions
of ky , i.e. ω = ω(ky ), Vg = Vg(ky ). Then for finite values ofΔky/ky0 the denominator
in (14) becomes a function of the variable ky and the zonal-flow dispersion relation
(19) obtained in the case of a monochromatic wave packet is not valid.
Thus, instead of (14), we will use for finite Δky/ky0 the following generalized

dispersion equation:

1 − F (k0)
〈

1
(Ω − qyVg)2

〉
ky

= 0, (25)

where the ‘resonant denominator’ (Ω − qyVg)−2 is modified by the non-mono-
chromaticity of wave packets. Here

〈(. . .)〉ky
=

1
π1/2Δky

∫
(. . .) exp

(
− (ky − ky0)2

(Δky )2

)
dky . (26)

4.1. Small wave packet broadening

Here we consider the case when the broadening of the wave packet is sufficiently
small, i.e. Δky/ky0 � 1. Expanding the latitudinal group velocity Vg in series in the
vicinity of ky0 , we obtain (Malkov et al. 2001)

Vg = Vg0 + V ′
g0(ky − ky0). (27)

Here the subscript ‘0’ denotes that the corresponding function is taken for ky = ky0
and the prime is the derivative with respect to ky . Note, that (76) of Mikhailovskii
et al. (2006b) Δky is the same as (ky − ky0) in the expression above. In the case of
the small broadening of the wave packet, integrating over ky , we find〈

1
(Ω − qyVg)2

〉
ky

=
1

Ω̂2

(
1 +

3
2

q2
y V ′2

g0

Ω̂2
(Δky )2

)
, (28)

where

Ω̂ ≡ Ω − qyVg0 . (29)

Then, instead of (19), we arrive at the following zonal-flow dispersion relation:

Ω̂2 = −Ω2
0

(
1 − 3

2
q2
y V ′2

g0

Ω2
0

(Δky )2
)

. (30)

Treating the second term in the large parentheses of (30) as a small correction, one
can see that this correction leads to a decrease in the growth rate of hydrodynamic
instability given by (19). Hence it can be seen that the spectrum broadening can
be neglected only if

Δky � Ω0/qyV ′
g0 . (31)
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4.2. Arbitrary wave packet broadening

In the case where the broadening of the wave packet Δky is arbitrary, zonal-flow
instability has a resonant character. Indeed, instead of (28) we have〈

1
(Ω − qyVg)2

〉
ky

=
1

|qyV ′
g0 |Δky

∂

∂Ω̂
Z

(
Ω̂

|qyV ′
g0 |Δky

)
, (32)

where

Z(z) =
1√
π

∫ +∞

−∞

dt exp(−t2)
t − z

(33)

is the plasma dispersion function defined for Im z > 0.
Then the dispersion relation given by (25) is replaced by

1 = − Ω2
0

|qyV ′
g0 |Δky

∂

∂Ω̂
Z

(
Ω̂

|qyV ′
g0 |Δky

)
. (34)

For Ω̂ � |qyV ′
g0 |Δky we obtain from (32)〈

1
(Ω − qyVg)2

〉
ky

= − 2
(qyV ′

g0Δky )2

(
1 + i

√
π

Ω̂
|qyV ′

g0 |Δky

)
. (35)

As a result, we arrive at the zonal-flow dispersion relation

Ω̂ = i
|qyV ′

g0 |Δky√
π

(
1 −

(qyV ′
g0Δky )2

2Ω2
0

)
. (36)

This equation describes a kinetic zonal-flow instability. We get the instability con-
dition

Ω2
0 > 1

2 (qyV ′
g0Δky )2 , (37)

where Ω0 is defined by (23). Qualitatively, this condition has the same meaning
as (31).
The growth rate obtained from (36) has amaximumwhen the spectral broadening

Δky =
(

2
3

)1/2 |Ω0 |
|qyV ′

g0 | , (38)

and in order of magnitude is equal to

γ � |Ω0 | ∼ |qy kx0 ϕ̃+ |. (39)

Note, that the role of this resonance interaction was not correctly estimated by
Mikhailovskii et al. (2006b), giving the conclusion that strong broadening of the
wave packet suppresses the generation of zonal flow.

5. The case of a two-humped wave packet
In this section we assume that Lighthill’s instability criterion (21) is not fulfilled. It
is then clear that the results obtained in Secs 3 and 4 are not representative and the
system becomes stable. Meanwhile, if, instead of ‘the single beam’ case investigated
in the previous sections, we use the two-humped wave packet distribution

F (k) = F (k1)δkk1 + F (k2)δkk2 , (40)
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suggested by Malkov et al. (2001), one may obtain a two-stream-like mechanism
of zonal-flow instability considered by Mikhailovskii et al. (2006a), for ordinary
Rossby waves in the scope of a shallow water model. Indeed, in this case, instead
of (14), one has the following dispersion relation

1 − Ω2
1

(Ω − qyVg1)2 − Ω2
2

(Ω − qyVg2)2 = 0, (41)

where (Ω2
1 ,Ω

2
2) = [F (k1), F (k2)], Vgi ≡ Vg(ki), and i = 1, 2. It is clear that when

Vg1 = Vg2 (41) has no complex roots. Thus, all growth rates should be proportional
to the difference Vg1 − Vg2 .
Unlike Mikhailovskii et al. (2007) we will consider two ‘strong’ wave packets of

non-equal intensity, which is similar to the system of two beams with non-equal
densities. ConsiderΩ ∼ qyVg1 ∼ qyVg2 , we can neglect 1 in (41) and then the solution
obtained is

Ω =
qy (Ω2

1Vg2 + Ω2
2Vg1) ± i|qyΩ1Ω2(Vg2 − Vg1)|

Ω2
1 + Ω2

2
. (42)

The above root is valid for not too large qy , i.e. when

q2
y <

Ω2
1,2

V 2
g1,2

, (43)

and the corresponding growth rate is given by

ImΩ =
|qyΩ1Ω2(Vg2 − Vg1)|

Ω2
1 + Ω2

2
. (44)

When Vg2 = −Vg1 ≡ Vg, and Ω2
2 = Ω2

1 , one of the four roots of (41) is purely
imaginary with

ImΩ = |qyVg|. (45)

This solution is also valid when the inequality given by (43) is satisfied. Themaximal
growth rate is attained for qy ∼ Ω1/Vg1 , and is

ImΩ ∼ Ω1 ∼ Ω2 . (46)

The roots obtained here describe the two-stream-like generation of zonal flows
by MR waves.

6. Conclusions
In the present study we have investigated the influence of non-monochromaticity on
low-frequency, large-scale zonal-flow nonlinear generation by small-scale (krR � 1)
MR waves in the Earth’s ionospheric E-layer. The modified parametric approach
is used considering the arbitrary spectrum of primary modes. Accordingly, we
study the interaction of a pump waves (Rossby waves), two satellites of the pump
waves (side-band waves) and a sheared zonal flow. Thus the driving forces (the so-
called Reynolds stresses) in the equation governing the evolution of zonal flows
are represented as a summation (or integration) over the spectrum of the primary
modes (see (9)). We have made such a generalization and thereby obtain the zonal-
flow dispersion relation given by (14) for an arbitrary spectrum of the MR waves.
According to our investigation (see (14) and (15)) the possibility of zonal-flow

generation by MR modes in the ionospheric E-layer is rigidly connected with the
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sign of ∂2ω/∂k2
y for these modes (the derivative of the group velocity of the primary

modes). Under the Lighthill instability condition given by (21) we have analyzed the
case of zonal-flow generation by Gaussian wave packets (see (24)). According to this
analysis, it seems reasonable to distinguish the limiting cases of a sufficiently small
spectrum broadening, describing it in terms of an addition to the monochromatic
resonant denominator (see (28)) and strong broadening, when the spectrum spread
is larger than the denominator (see (35)). The maximum growth rate of such a
generation is reached in both cases, i.e. of monochromatic and non-monochromatic
wave packets and is expressed by (39). In the case of a monochromatic wave packet
one may consider the instability to be the hydrodynamic type (see (19)), which
is similar to that studied by Lawrence and Jarvis (2003) for the case of drift
monochromatic wave packet with the growth rate proportional to qy (see (39)). The
broadening of the wave packet can be neglected for the condition given by (31), but
even small broadening causes a decrease in its growth rate (see (30)). By increasing
the broadening the instability transits to the resonant one described by (36). The
wave numbers of unstable modes form a band of width given by (38), which in turn
gives the maximum growth rate of the order of the hydrodynamic one (see (39)).
In the case when the zonal-flow generation by MR modes is prohibited by the

Lighthill stability criterion (inverse inequality of (21)), the investigation should be
continued by the elucidation of different types of zonal-flow instabilities. To this end
we examined the more complicated situation of a two-humped wave packet of MR
waves, which in the simplest case can be realized as two pump waves. Considering
the more general case of two wave packets of non-equal intensity (see (44), (46)) we
have obtained a new class of instability to add to the two-stream-like instability
results of zonal-flow generation by MR waves in the Earth’s ionosphere.
As is seen from our results the maximum growth rate of the zonal-flow generation

is of the order of (see (39))

γ � |Ω0 | ∼ |qy kx0r
3
R(α + β)ϕ̃+ |. (47)

Here the stream function ϕ̃+ of pump modes is normalized by vRrR, where

vR = −(α + β)r2
R (48)

is the modified Rossby velocity and rR is the modified Rossby radius, respect-
ively (Kaladze et al. 2004). For the regime considered here qy rR ∼ 1, kx0rR � 1
and for typical parameters of the ionosphere (α + β) ≈ 10−11 m−1 s−1 , kx0rR �
10, ϕ̃+ ≈ 10−2 , rR ≈ 106 m, we obtain γ ≈ 10−6 s−1 . This estimate is consistent
with existing observations and our investigation provides an essential nonlinear
mechanism for the transfer of spectral energy from short-scale MR waves to long-
scale enhanced zonal flows in the Earth’s ionosphere. The peculiar feature of this
instability is that it appears solely for MR waves that are localized in the cone
bounded by the caustics for which V ′

g/ωk = 0. This can lead to the formation of a
so-called caustic shadow in the spectrum of the MR waves.
By Rasmussen et al. (2006) the generation of zonal flow is illustrated in a simple

fluid experiment performed in a rotating container with a radially symmetric
bottom topography. It seems reasonable to simulate two-stream-like generation
of zonal flows to confirm the theory of Rossby wave excitation provided in the
present paper.
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