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A theoretical model is presented for the excitation of ultralow frequency dust-lower hybrid mode
�DLH� oscillating at frequency �lhd=��Zdndo /nio��ci�cd by employing the decay of a relatively
high frequency dust-modified lower-hybrid �DMLH� wave into a relatively lower frequency DMLH
and DLH based on three-wave resonant interaction. A coupled nonlinear Schrödinger �NLS�
equation for the DMLH wave and Zakharov equation for the DLH wave are derived. The nonlinear
contribution in the NLS equation comes from the DLH density fluctuations. Modulational
instabilities of DMLH waves are investigated and its growth rates are studied. Additionally,
one-dimensional nonlinear localized structures of bright solitons and nonlinear nonlocal structures
like cusp solitons are obtained. It is shown that, when the phase velocity resonates with the dust
sound speed �� /��vo�, the nonlocal nonlinearity leads to the generation of cusp solitons. © 2009
American Institute of Physics. �DOI: 10.1063/1.3072117�

I. INTRODUCTION

Lower hybrid waves �LH� in an electron-ion plasma is
one of the low frequency modes which have been investi-
gated for many years, both theoretically and
experimentally.1–6 This wave has received a great deal of
attention due to its many applications in space and fusion
plasmas.5,6 In laboratory plasmas, lower hybrid �LH� waves
are used for heating purposes, while in space they play an
essential part in collisionless energy and momentum trans-
port. This mode has also been described in two ion species
plasmas.7–12 Lower-hybrid waves are well known to admit
nonlinear structures, such as ordinary solitons as well as en-
velope solitons. Such structures have been observed in the
Earth’s magnetosphere by the FREJA satellite,13–17 and have
been examined with and without an extra charged species in
plasma.12,18,19

For a decade and a half, considerable attention has been
given to dusty plasmas which are now known to exist in
most plasma environments, i.e., astrophysical, space, and
laboratory. Indeed, as is now known, such plasmas are rich in
waves, especially low frequency modes like dust-acoustic
and dust-ion acoustic waves. A great deal of theoretical and
experimental research has been carried out in a wide range of
problems in dusty plasmas.20–25

In laboratory experiments, it is usual to apply an external
uniform magnetic field for the confinement and control of
dusty plasmas, whereas in astrophysical or space environ-
ments, dusty plasmas are generally immersed in the ambient
magnetic field.26,27 An important example of low frequency
waves in magnetized plasmas is the dust-lower hybrid
�DLH� wave, which can also lie in the ultralow frequency
range, i.e., below the ion cyclotron frequency. The dispersion

relation for DLH waves was derived for the first time in Ref.
23, but it did not include the important dispersion effects
which come from the ion terms. This mode can be easily
excited as will be shown in this paper and its various prop-
erties can be explored in laboratory plasmas. DLH waves
have been treated in different ways, for example, in Refs. 24
and 25 this mode has been excited in a plasma with and
without opposite polarity of dust grains. Shukla et al.28

showed that the ponderomotive force of large amplitude
lower-hybrid waves can be used to generate space charge
electric fields which lead to the acceleration of dust grains.
Salimullah et al.29 derived the dispersion relation and an ex-
pression for the damping of electrostatic dust-lower-hybrid
mode using fluid and kinetic models where lighter species,
i.e., electrons and ions were taken to be streaming and dust
was taken to be unmagnetized. Amin et al.30 examined the
instabilities for the excitation of a dust-lower-hybrid wave in
a uniform plasma where the dust grains are streaming. How-
ever, they had assumed k� �k�, and under this assumption
dust mass and density vanish and the contribution of dust
disappears. Surprisingly, a large number of studies devoted
to the consideration of LH waves and DLH waves have
treated this problem by neglecting the spatial dispersion. We
would like to note here that neglecting the spatial dispersion
term can obscure processes which can lead to the excitation
of new phenomenon like the one we shall discuss in this
paper. However, the effect of the spatial term has been taken
into account by Shukla et al. in 2003, where the authors have
considered the effect of nonlinear coupling between large
amplitude upper hybrid electrostatic waves and a low fre-
quency modified Alfvén mode. Modulational and decay in-
stabilities of a constant amplitude upper hybrid pump wave
have been investigated.31 Presently research on dust in toka-
mak plasmas has become a topic of growing interest and
since lower hybrid waves are used as a source of auxiliary
heating for the ions in the tokamak we expect that DLH
waves will have an important role to play in these machines.
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Very recently, Shukla and Tsintsadze32 investigated charge
grain heating in the tokamak edge region, where it was
shown that the normal component of the space charge elec-
tric field accelerates dust particles in the scrape-off layer
close to the tokamak chamber wall. Dust also appears in the
core of the tokamak plasma.33,34 Thus it is reasonable to
expect that dust and dusty plasmas are going to be crucial in
the next generation ITER like fusion devices and may sig-
nificantly effect heating processes in such machines. We may
add here that DLH waves in tokamak plasmas may be used
for diagnostic purposes also.35

In the present paper we consider in a dusty plasma, dust-
modified lower hybrid �DMLH� waves with spatial disper-
sion. In order to show the importance of spatial dispersion, a
three-wave resonant interaction is investigated showing that
a DMLH wave can decay into another DMLH wave and to a
DLH wave. We would like to state here that we have not
calculated the growth rate associated with the three-wave
resonant interaction as this is generally less than the growth
associated with the modulational instability, which we sub-
sequently investigate. We then consider the formation of
DMLH wave solitons by deriving a set of nonlinear
Schrödinger �NLS� and Zakharov equations with the nonlin-
ear contribution coming from the DLH waves. Further, we
investigate the modulational instability of the lower hybrid
wave solitons and arrive at expressions for oscillatory insta-
bilities in different limiting cases. We have also obtained
soliton solutions from the set of coupled Zakharov and NLS
equations in the quasistationary regime deriving ordinary
soliton solution when nonlinearity is local and cusp soliton
solution for nonlocal nonlinearity. We feel that such an ap-
proach to lower hybrid waves is important in dusty plasmas
because cusp solitons may contribute significantly to the
heating problem in tokamaks and to the interpretation of data
from space and astrophysical plasmas. In addition, we would
like to note that such a novel approach to the study of non-
linear lower hybrid waves has not been undertaken previ-
ously.

The paper is organized in the following manner: In Sec.
II, the basic formulation of two types of dust-lower-hybrid
waves is given and the respective dispersion relations are
obtained. Section III deals with the mechanism of three-wave
resonant interaction, and the subsequent derivation of the
Zakharov and NLS equations is given. In Sec. IV, modula-
tional instabilities are examined. Section V demonstrates the
one-dimensional analytical solutions of ordinary and cusp
solitons. Finally, conclusions are given in Sec. VI.

II. DESCRIPTION OF THE MODEL

We consider low frequency electrostatic lower-hybrid
waves in a dusty plasma composed of electrons, ions and
dust grains and have a constant negative charge.26,36 The
quasineutrality condition is given by

ni = Zdnd + ne, �1�

where Zd is the charge of dust grain, and ns=ns0+�ns+�ns
L,

ns0 represents equilibrium density. Superscript L refers to the
ultralow frequency and �ns gives the density perturbation on

the DLH time scale. s denotes the species dust, ions or elec-
trons. While treating this problem, we shall first consider the
fast time scale phenomenon followed by slow time �DLH�
dynamics. In the former regime, dust dynamics is ignored
while in the latter the dust species is activated and the elec-
trons no longer participate in the dynamics.

We begin with the fundamental fluid equations for ions
and electrons in the presence of a dc magnetic field, which
govern the excitation of the plasma modes

ns� �

�t
+ vs · �	vs +

Ts

ms
� ns =

qs

ms
ns�E +

vs

c
� Bo	 , �2�

�ns

�t
+ � · �nsvs� = 0, �3�

Ts is the temperature in energy units for s species. The con-
stant magnetic field is applied in the z-direction �Boz�, the
wave vector k is taken along the x-axis, and c is the velocity
of light, while s denotes ions �qi=e� or electrons �qe=−e�. To
find the dispersion relation for linear DMLH waves, we lin-
earize Eqs. �1�–�3�, and using a plane wave solution we get
the general expressions for the perturbed densities of elec-
trons and ions,

�ne

noe
= −

e�

me
k2

��2 − �ce
2 − k2vte

2 �
�4�

and

�ni

noi
=

e�

mi
k2

��2 − �ci
2 − k2vti

2�
. �5�

Here, vts= �Ts /ms�1/2 is the thermal speed and �cs

= �eBo /msc� is the gyrofrequency of charged particles of spe-
cies s. Using the quasineutrality condition �ne=�ni, we
obtain

�2 = �lh
2 + k2vo

2, �6�

where �lh= ��nio /neo��ce�ci�1/2 is the dust-lower-hybrid fre-
quency and vo is the ion-sound speed given by
��nio /neo�Te /mi�1/2. In the derivation of expression �6�, we
have assumed that only the electrons are magnetized and that
Ti�Te, dust dynamics is ignored and its presence is taken
into account via the quasineutrality condition only. It is em-
phasized that Eq. �6� has a spatial dispersion term the con-
tribution of which comes from the ions and, as we shall see
later, the spatial term can play an effective role in the exci-
tation of new modes. This propagation term also shows how
the Debye length is modified for a magnetized plasma. If we
ignore �2 on the left-hand side of Eq. �6�, we obtain a modi-
fied expression for the Debye length given by 	D=vte /�ce,
which shows that as the strength of magnetic field increases,
the Debye length decreases, and thus the particles in the
Debye cloud remain mostly confined.

Now we derive a linear dispersion relation for the ul-
tralow frequency lower-hybrid �DLH� waves whose excita-
tion will be discussed in the next section. In this case, the
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dynamical effects of dust grains are included, while the elec-
trons dynamics is ignored since the time with which velocity
and density of electrons changes is much shorter than that of
ions and dust, i.e.,

ve� �ve

�t
	−1

, ne� �ne

�t
	−1

� ti �
1

�pi
, td �

1

�pd
, �7�

where �pi and �pd are the Langmuir frequencies for ions and
dust, respectively.

Proceeding along the lines of previous calculations for
dispersion relation �6�, we obtain a dispersion relation for the
DLH wave given by

�2 = �ulh
2 + q2uo

2, �8�

where �ulh
2 = �Zdndo /nio��ci�cd, �cd=ZdeBo /mdc is the dust-

gyro frequency, and uo is the dust sound speed given by
��Zd

2ndo /nio�Ti /md�1/2 which is much less than the sound
speed obtained in the previous dispersion relation given by
Eq. �6�. q and � represent the wave number and frequency
of the DLH wave, respectively. Here we have treated the dust
to be cold and unmagnetized.

III. EXCITATION OF THE DLH MODE

Now, we consider the possible decay of a dust-modified
lower hybrid wave with frequency � and wave vector k into
two waves, a DMLH wave having frequency �� and wave
number k� and a DLH wave with frequency � and wave
number q. This simple physical picture can be obtained from
Eqs. �6� and �8�, provided the energy and momentum are
conserved, i.e.,

� − �� = � ,

k − k� = q ,

where the components of momentum k, k�, and q are directed
along the x-axis. From the above relations, we obtain

� − �� 

2vo

2k�k − k��
�lh

� ��Zdndo

nio
	�ci�cd
1/2

. �9�

We note here that we consider propagation in the x direction
only. Momentum and energy conservation further lead to k
−k��q2 /2k, and �−��= �voq�2 /�lh. Thus using this simple
model, we have shown a possibility of the three-wave inter-
actions, which leads to the generation of the DLH waves. We
do not derive growth rates for this decay process because in
the next section we consider the stronger instability which is
the modulational instability.

On the basis of the aforesaid mechanism, we can excite
the DLH mode and for that we will solve for the low fre-
quency density variations and include in our considerations
the convective derivative term ��vi ·��vi�, which leads to the
ponderomotive force. We thus write down the following
equations for ions:

��vi
L

�t
+ ��vi · ��vi� =

e

mi
�EL +

1

c
�vi

L � Bo	
−

1

minio
� Pi

L, �10�

where the angular brackets denote the averaging over a typi-
cal dust lower-hybrid wave period and wavelength, �vi is the
ion velocity for the DMLH waves. Pi

L is the ion pressure
term and EL is the electric field for the ultralow frequency
field. From the ion continuity equation we get

�

�t
��ni

L

nio
	 + �� · �vi

L� = 0. �11�

Dust dynamics are governed by the following equations of
momentum and continuity:

��vd
L

�t
= −

ZDeEL

md
�12�

and

�

�t
��nd

L

ndo
	 + �� · �vd

L� = 0. �13�

We have assumed that the ponderomotive force is not strong
enough, due to the heavy mass of the dust grains to cause
nonlinearity to appear in the dynamics of the dust grains.
Using the quasineutrality condition �ni

L=Zd�nd
L, and after

performing some straightforward algebraic steps, we obtain
the Zakharov-type equation,37

� �2

�t2 + �ulh
2 − uo

2 �2

�x2	�nd
L

n0d
=

Zd

md

�2

�x2

1

2
mi����vi��2� , �14�

where uo
2= �Zd

2ndo /nio�Ti /md and �ulh are the dust acoustic
velocity and dust-lower-hybrid frequency given by
��Zdndo /nio��ci�cd�1/2, respectively. The right-hand side of
the above equation contains source term which appears due
to the ponderomotive force term coming from ions on a fast
times scale and contributes to excitation of DLH waves on
the slow time scale.

Using the dispersion relation for dust lower-hybrid
waves �Eq. �6�� and treating � and k as operators given
by38,39

� = �o + i
�

�t
, k = ko − i

�

�x
, �15�

we obtain the following evolution equation for ions on the
slow time scale:

i� �

�t
+ vg

�

�x
	�vi +

vg

2ko

�2

�x2�vi − 
��vi −
��

2
�Zd�nd

L

nio
o 	�vi = 0,

�16�

where nio
o and vg=kovo

2 /�� represent the equilibrium density
of ions on fast time scale and group velocity, respectively,
and ��= ��nio

o /neo
o ���ce�ci��1/2. 
� is the nonlinear fre-

quency correction given by �1 /2�o�����
2 +ko

2vo
2�−�o

2�. Equa-
tions �14� and �16� together constitute the NLS and Zakharov
equations.
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IV. MODULATIONAL INSTABILITY OF DMLH WAVES

In this section, we investigate the modulational instabil-
ity of the dust-modified LH waves using Eqs. �14� and �16�.
To analyze the amplitude modulation of a DMLH wave, we
use Madelung’s representation40 in the x direction only

�vi � a�x,t�ei��x,t�, �17�

where the amplitude a and the phase � are real. Substituting
Eq. �17� into Eq. �16�, we obtain from the real and imaginary
parts, respectively,

��

�t
+ �vg

�

�x
	� + 
� −

vg

2ko
�1

a

�2

�x2a − � �

�x
�	2


+ ���Zd�nd
U

2nio
o 	 = 0 �18�

and

�

�t
a2 + �vg

�

�x
	a2 +

vg

ko

�

�x
�a2 �

�x
�	 = 0. �19�

We now linearize the above equations with respect to the
perturbations, in the amplitude a and the phase � as a=a0

+�a, �=�0+��, and where a0, �0 denote the equilibrium val-
ues and �a, �� are small perturbations, and obtain

���

�t
+ �vg

�

�x
	�� −

vg

2aoko

�2

�x2�a + ���Zd�nd
U

2nio
o 	 = 0, �20�

�

�t
�a + ao�vg

�

�x
	�a +

aovg

2ko

�2

�x2�� = 0. �21�

Similarly, from the Zakharov equation �Eq. �16�� we get

� �2

�t2 + �ulh
2 − uo

2 �2

�x2	�nd1

n0d
=

Zdmiao

md

�2

�x2�a . �22�

Seeking a plane wave solution proportional to exp�i�qx
−�t�� �here q and � are the wave number and frequency of
the modulation�, we eventually obtain from Eqs. �20�–�22�
the following dispersion relation for the modulation of a
dust-modified lower-hybrid wave:

��� − qvg�2 −
vo

4q4

4��
2 ���2 − �lhd

2 − q2uo
2�

= � mi

md
	�Zdnod

nio
	vo

2a0
2q4

4
. �23�

For simplicity, we discuss two limiting cases of this disper-
sion relation.

In the first case, we ignore the diffraction effects of the
dust-lower-hybrid waves �second term in the first bracket on
the left-hand side of Eq. �23�� and look for a solution where
roots �=qvg+
 and �= ��lhd

2 +q2uo
2�1/2+
 cross each other.

We then get the following expression for the growth rate of
oscillatory instabilities:

Im 
 =
�3

4
qvo�� mi

md
	Zdnod

nio

qa0
2

vo��lhd
2 + q2uo

2�1/2
1/3

. �24�

In the second case, we assume the conditions �2−q2uo
2

��lhd
2 and �me /mi�vs

2�ao
2 and as a result, obtain from Eq.

�23� the imaginary part of �,

Im � =
voa0q2

2�ci
. �25�

This expresses the growth rate of the oscillatory instabilities
�Re �=qvg� associated with the cusp solitons which we shall
discuss in more detail in the next section.

V. SOLITON SOLUTIONS

Localized structures �solitons� which are usually formed
from nonlinearly propagating waves are ubiquitous in
plasmas.20,41 Here, we shall use the standard approach to
investigate solitons but will restrict ourselves to the consid-
eration of stationary structures. We shall consider two types
of soliton solutions.

In the first case, we assume �2 /�t2+�ulh
2 �uo

2��2 /�x2�
and from the Zakharov equations, i.e., Eq. �14� and we ob-
tain the following expression for the perturbed dust density:

�nd = − �noimi

2Ti
	��vi

2� . �26�

Substituting this relation in Eq. �16� and shifting to a co-
moving frame of reference �=x−vgt, such that the perturba-
tions vanish at �→ ��, and introducing the notations
C= �1 /2���� /
��1/2�vi /vti, and Y =2 /vo���
��1/2�, and
then integrating once, we get

dC

dY
= C�1 − C2 �27�

which has a solution of the form

Y = log� C

1 + �1 − C2
 . �28�

This is a standard bright soliton structure.
In the second case, we look for a stationary wave

solution for which we assume that the phase velocity is al-
most the same as the dust sound speed of DLH waves
�� /k�uo�. In this approximation we obtain from Eq. �14�,

Zd�nd � noi
�2

�x2

��vi
2�

�ci
2 . �29�

Comparing this with Eq. �26�, we notice an interesting fea-
ture that the density perturbation is proportional to the sec-
ond derivative of the amplitude of velocity which in turn
leads to a soliton of a different kind. Substituting relation
�29� in the second Zakharov equation �Eq. �17��, we obtain

�2

��2F − F − � �2

��2F2	F = 0, �30�

where F= �mi /me�1/2�vi /vo, and further by changing the vari-
able from � to z, where z=� /��, and �=2��
� /vo

2, and
integrating Eq. �30� once, we obtain the equation
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dF

dz
�1 − F2 = F . �31�

This equation shows dF /dz→� at maxima, and thus dem-
onstrates the formation of a cusp soliton. Further integration
of Eq. �31� leads to the following solution:

z = �1 − F2 + log�F� − log�1 + �1 − F2� . �32�

The graph �Fig. 1� of this solution exhibits a discontinuous
slope �cusp� at its crest, and thus justifies the term “cusp
soliton,” although all physical quantities remain continuous.

VI. RESULTS AND DISCUSSION

In the present work we have shown some new aspects of
the lower-hybrid wave with spatial dispersion in a dusty
plasma, which is a relatively higher frequency lower-hybrid
�DMLH� wave and its subsequent decay into a lower fre-
quency dust-modified lower hybrid wave and an ultralow
frequency dust lower hybrid �DLH� wave. The linear disper-
sion relations have been obtained for these waves and via a
three-wave interaction the DLH waves are shown to be ex-
cited. Zakharov equations for the DMLH wave and a
Schrödinger equation for DLH waves are obtained with the
nonlinear term coming from the DLH waves. The modula-
tional instability of the DMLH wave is investigated. In two
different approximations ordinary soliton and cusp soliton
solutions have been obtained. Such investigations have not
been undertaken earlier.

The results of our investigations may be used to interpret
data from space, especially from near-Earth plasmas, where
nonlinear structures are observed. Our study may also be
extended to examine the effect of lower hybrid wave heating
in tokamaks where it is known that dust is present not only in
the edge region but also in the core of the tokamak plasma.
We speculate that the excitation of DLH waves as proposed
in our work may be used for diagnostic purposes in labora-
tory plasmas, especially in tokamaks.
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