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Abstract Cups and regular smooth solitons are studied using
the fluid model in cylindrical geometry for parallel propagat-
ing ion-acoustic waves in a low β plasma. It is found that
smooth solitons only occur in the supersonic regime,
whereas cusp solitons occur both in supersonic and subsonic
regimes. In the supersonic regime, the amplitude and the
width of cusp solitons increase when the Mach number M
increases and initial electric field E0 decreases. However, the
amplitude of smooth regular solitons increases and their
width decreases when E0 increases and M decreases. For the
subsonic case, both the amplitude as well as the width of a
cusp solitons increase when M increases and E0 decreases.
Corresponding to these cusp and regular solitons, bipolar
electric field structures are also studied. These results may be
helpful in understanding the properties of ion-acoustic
regular and cusp solitons in space plasmas.
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1 Introduction

Using the ideal fluid equations, ion-acoustic and ion-cyclotron
waves in collisionless plasmas have been studied extensively
[1–8]. Results have shown that ion-acoustic and ion-
cyclotron waves can evolve into nonlinear density periodic

waves and density solitons under different plasma condi-
tions. In addition to the normal smooth solitons, solitons with
cusp profiles have also been found in plasmas. Observations
on ion-acoustic density fluctuations [9–12] and density spiky
pulses [13] have been reported by Freja satellite in the
auroral upper ionospheric region. These nonlinear electro-
static waves are responsible for the acceleration of upflowing
ions [14, 15] and electron acceleration [16] in the auroral
region. Theoretical studies on cusp solitons have also been
carried out by a number of researchers, e.g., Porkolab and
Goldman [17] reported cusp solitons while studying the
upper hybrid waves and two stream instabilities with warm
two fluid equations; Shapiro [18] studied the modulational
interaction of the lower hybrid waves with a kinetic Alfven
mode and found cusp solitons. Yinhua et al. [19] studied the
nonlinear dust kinetic Alfven waves perpendicular to the
external magnetic field by employing the pseudopotential
formulism and reported smooth regular solitons as well as
cusp solitons in the electron density corresponding to the
singularities in the Sagdeev potential profiles in the subsonic
regimes. Wei and Chen [20] also investigated the presence of
cusp solitons along with the regular smooth solitons
perpendicular to the external magnetic field with pseudopo-
tential technique during their study of nonlinear lower hybrid
waves in two-ion-species plasma.

In almost all the theoretical studies on cusp solitons [1–7,
17–20], solitary solutions have been found for either oblique
or perpendicular (with respect to the background magnetic
field) propagation only. So far to the best of our knowledge,
no theoretical study has been reported on ion-acoustic cusp
solitons propagating parallel to the magnetic field. In this
paper, we present an ion fluid model in a low plasma β [ratio
of gas pressure to magnetic pressure (8π p/B2)], magnetized
plasma with cylindrical symmetry and derive the “Sagdeev
potential” for propagation parallel to the external magnetic
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field. We note here that the Sagdeev potential technique has
been the most successful approach in the study of nonlinear
structures, such as solitons since the last century. In his
pioneering work, Sagdeev [21] used an analogy to an
oscillator, i.e., motion of a point mass trapped in a potential
well. Sagdeev [21] noted that the nonlinear differential
equation describing the evolution of waves could be cast in
the same form as the equation describing the motion of a
particle in a potential well, thus this approach has come to be
known as the as the Sagdeev potential method, and as
pointed out above, this has been used extensively in the
investigation of solitary waves and other nonlinear struc-
tures. Linear analysis of the model fluid equations shows that
the ion-acoustic wave could develop into a nonlinear wave.
It is found that not only cusp solitons but also smooth
solitons, both in subsonic and supersonic regimes, can exist
in low β plasmas.

2 Physical Formulation

The fluid consists of electrons and ions, in a β<<1 plasma.
The magnetic field is directed along the z-axis; we are
merely looking for electrostatic solutions and the magnetic
field will be passively taken into account in the gyro-
frequency. Using a cylindrical coordinate system and
neglecting the electron inertia, the fluid equations for the
ions in cylindrical coordinates can be written as
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with

p ¼ nTi ð5Þ
n ¼ ni � ne � n0 exp e8 Te=ð Þ ð6Þ
where p is the thermal pressure, e is the elementary charge,
φ is the electric potential, v is the ion velocity, and n0 is

constant number density. First, we linearize the set of
Eqs. 1–4 and obtain the linear dispersion relation as
w2 w2 � aC2

s k
2
z

� �
w2 �Ω2

i

� � ¼ 0. Here, ω is the wave
frequency, the coefficient a ¼ Ti=Te þ 1, Cs ¼ Te=mið Þ1=2is
the ion-acoustic velocity, kz is wave vector in the z-direction,
and Ωi ¼ eB0= micð Þis the ion-cyclotron frequency. From
dispersion relation, we obtain the following solutions, w2 ¼
a C2

s k
2
z and w2 ¼ Ω2

i , which show an ion-acoustic wave can
be excited in a plasma and consequently may develop into
nonlinear waves.

3 Nonlinear Analysis

We rewrite Eqs. 1–4 by shifting to co-moving frame using the
variable x ¼ kr r þ kz z� wtð Þ �Ωi=w ¼ a Rþ g Z �M tð Þ=M
and the following dimensionless quantities are introduced:
N ¼ n=n0; t ¼ Ωit;R ¼ r=ri; Z ¼ z=ri;V ¼ v=Cs; Φ ¼ e8=
Te;M ¼ vp=Cs; vp ¼ w=k; to obtain
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where N=exp(Φ), α=sinθ, γ=cosθ, and kr and kz are the
components of K in the directions of r and z, respectively.
Now, we consider the wave propagation along the magnetic
field, i.e., K||B so that, α=0 and γ=1 and following
standard algebraic techniques using the boundary condi-
tions when V jx¼0 ¼ 0, N jx¼0 ¼ 1, we obtain [22]
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Here, E0 is the initial value of E. Equation 11 is the
energy integral of a classical particle in a 1-D “potential
well” and Ψ(N) in Eq. 12 is so-called the Sagdeev potential.
The nonlinear solution from Eq. 12 can be obtained
numerically when the “Sagdeev potential” Ψ(N) <0.
Equation 12 has solutions when the plasma parameters
satisfy either of the conditions below
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where Gm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
a=M2

p
exp 1� a=M 2ð Þ= 2a=M2ð Þ½ � and Ψ(N)

has properties: Ψ(0)→0, @ Ψð0Þ=@ N ¼ 0.

3.1 Nonlinear Solution When a/M2 <1

Figure 1 is plotted for the different values of a/M2 and E0

for the condition 13. Here, the ion-to-electron temperature
ration is taken as 10−1, so the parameter a=1.1 throughout
this paper. We note that there exists infinite depth Sagdeev
potential with Ψ N1ð Þ ! �1 at N1 where 1 < N1 < Nmax.
Ideally, a particle would start slowly from N=1, attains
infinite speed at N=N1, and will pass the infinite well with
infinite speed and then slow down until it reaches the
opposite wall. The particle then returns to the point N=1 in
a symmetrical way. The corresponding solitary wave would
then be a cusp like solitons but with a smooth top [23]. At
two points on its shoulders, the Sagdeev potential has
infinite derivatives but all the physical quantities remain
continuous. On the other hand, in the infinite well, the
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Fig. 1 Profile of Sagdeev
potentials “Ψ(N)” for different
values of E0 and M when
a/M2 <1
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Fig. 2 Cusp soliton structures
for the same values of E0 and M
corresponding to the Sagdeev
potential “Ψ(N)” in Fig. 1
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particle motion is extremely sensitive to any deviation from
the ideal condition. If we assume that it is reflected at point
(N1), we will get a corresponding cusped density hump
solitons [17, 20]. This type of solitons is quite different
from the regular smooth solitons corresponding to the
Sagdeev potential in Fig. 3 and shall be investigated here.
Figure 2 depicts the cusped density hump solitons
corresponding to the Sagdeev potential in Fig. 1 for the
same parameters. We can see that the amplitude of the
cusped solitons increases while the width decreases when
E0 decreases and Mach number M increases.

Figure 3 is plotted for the different values of a/M2 and E0 for
the condition 13. It is to be noted that regular Sagdeev potential
profile can also exist under the same condition 13 when Ψ(N)
has properties: Ψ(0)→0, @ Ψð0Þ=@ N ¼ 0, Ψ N2ð Þ ¼ 0, and
@ Ψ N2ð Þ=@N > 0 where N2 ¼ exp M 2=2að Þ > 1. The anal-
ogous particle in such a well will pass through the well and

reaches the opposite wall and get reflected there. The
corresponding density hump soliton would then be a regular
smooth soliton. Such smooth solitons are shown in Fig. 4 for
the same parameters given in Fig. 3. We can see that the width
decreases slightly and amplitude increases for the smooth
solitons when E0 increases and Mach number M decreases.

3.2 Nonlinear Solution When a/M2 >1

Figure 5 is plotted for the different values of a/M2 and
E0 when the condition 14 is satisfied. Again, we can
note that there exist an infinite depth Sagdeev potential
with Ψ N1ð Þ ! �1 atN1 and at two points on its shoulders
the Sagdeev potential has infinite derivatives. On the basis of
the same analysis done in the last subsection, we will get a
corresponding cusped hump solitons. Cusped density hump
solitons corresponding to the Sagdeev potential shown in
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Fig. 3 Profile of usual smooth
Sagdeev potentials “Ψ(N)” for
the different values of E0 and M
when a/M2 <1
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Fig. 4 Regular smooth solitons
for the same values of E0 and M
corresponding to the Sagdeev
potential “Ψ(N)” in Fig. 3
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Fig. 5 are depicted in Fig. 6 for the same parameters. We can
note that both width and amplitude of the cusped solitons
increase when E0 decreases and Mach number M increases
similar to the case when a/M2 <1.

3.3 Bipolar Electric Field Solitary Structures

By definition, we can obtain the electric field as
E ¼ �@xΦ ¼ � 1=Nð Þ @xN

� �
. Therefore, corresponding to

the regular smooth solitons, we can obtain the bipolar
electric field solitary structures as shown in Fig. 7. We can
see that the amplitude of bipolar EFSs increases when E0

increases and Mach number M decreases. We can also
obtain the electric field profiles corresponding to the cusp
solitons, which are consisting of two adjacent spikes, one
positive and one negative. Such an electric field wave form
is shown in a schematic way in Fig. 8.

4 Discussion and Conclusion

Solitons with cusp profiles occur because of a balance of
the dispersive and nonlinear effects close to the wave
breaking point and have been found in both fluids and
plasmas [17–19]. In our theoretical model, we have
assumed that the phase velocity lies between ion and
electron thermal velocities so that the Landau damping can
be neglected. However, in real situations, Landau damping
always exists and prevent the Sagdeev potential from
becoming infinitely deep. Moreover, the cusps where
the gradients are very large are expected to be smoothed
out somewhat by high-order nonlinearities or dissipative
process such as those arising from shear or turbulent
viscosity [19, 20].

In this paper, we consider an ion fluid model for the
solitary waves propagating along the magnetic field lines,
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Fig. 5 Profile of Sagdeev
potentials “Ψ(N)” for the differ-
ent values of E0 and M when a/
M2 >1
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Fig. 6 Cusp solitons for the
same values of E0 and a/M2

corresponding to the Sagdeev
potential “Ψ(N)” in Fig. 5
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applicable to space plasmas in particular the regions where
plasma β is much smaller than unity. Data from Fast and
Polar satellites [24, 25] from the auroral zone at altitudes
between 5,000 and 10,000 km show that plasma has a small
beta. We further note that in most space plasmas, as well as
in the plasma of the auroral region, collisions are negligible
(i.e., the collision frequency is much smaller than the
characteristic plasma frequency). If the electrons are hot,
then thermal effects dominate over the magnetic effects and
electrons can be considered to be Boltzmannian to a very
good approximation. This is in accord with the observations
mentioned above [9–12, 24, 25].

The results from our model show that the cusp solitons and
smooth solitons coexist in the supersonic regime (a/M2 <1),
whereas in the subsonic regime (a/M2 >1), only cusp solitons
exist. Figures 2 and 6 show the profiles of these solitons in

the supersonic regime under condition 13 and in the subsonic
regimes under condition 14, respectively. For the supersonic
solitary waves, the amplitude and width of a cusp soliton
increase when the Mach number M increases and E0

decreases. However, the amplitude of smooth solitons
increases and their width decreases when E0 increases and
M decreases. For the case of subsonic solitary waves, both
the amplitude and the width of a hump soliton increase when
M increases and E0 decreases. Comparison of Figs. 2 and 6
shows that the amplitudes of supersonic cusp solitons are
larger but the widths are smaller than that of subsonic cusp
solitons. These density cusp solitons are similar to features
found in observations: events of spiky density pulses have
been reported by Freja spacecraft in the auroral region of
Earth’s ionosphere [9–12]. Corresponding to these cusp and
regular solitons, bipolar electric field structures are also
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Fig. 7 Electric field structures
corresponding to regular smooth
solitons
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Fig. 8 Electric field structure
corresponding to the cusp
solitons
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studied. Therefore, the above results may be helpful in
understanding the properties of ion-cyclotron and ion-
acoustic solitons in the space plasmas.
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