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Abstract
The effects of trapping on the nonlinear properties of dust-acoustic waves in an unmagnitized
collisionless self-gravitating plasma were studied by treating the ions to be Maxwellian, the
dust to be cold and the electrons to be degenerate. The effect of trapping and the gravitational
potential on the nonlinear structures was investigated by employing the Sagdeev potential
approach, which shows that the features of solitary wave structures are affected by changes in
Mach number as well as ion temperature and other physical parameters of the system.
Modulational stability analysis is also presented, and the regions of stability and instability are
discussed.

PACS numbers: 52.27.Lw, 52.35.Mw, 52.35.Sb

1. Introduction

Over the last decade, interest in the study of degenerate
plasmas has increased considerably, unanimously accepting
the importance of the quantum nature of electrons in highly
dense plasmas or extremely cold plasmas [1–7]. In both
situations, the thermal wavelength λB = (2π2 h̄2/makBT )1/2

is of the same order as the interparticle distance (d = n−1/3)

or the Fermi–Debye length λDF (= (λ2
DFeλ

2
Di/λ

2
DFe + λ2

Di)
1/2)

and consequently naλ
3
B ≈ 1, then we have an overlap

of the probability clouds. In these circumstances, plasma
particles are supposed to be indistinguishable. The quantum
mechanical interaction appears among the neighboring
particles due to which the collective behaviour changes.
Over the last few years, quantum study of plasma has
gained impetus because of its versatile applications in
microelectronics [8], laser-produced plasma and dense
astrophysical objects [9–11]. In these papers, quantum
statistical effects have been incorporated by including the
Fermi pressure term, and the quantum diffraction or scattering
effects are governed by a double differential term called
the Bohm potential term in the fluid model [12–15]. The
fluid model has been used for both linear [16–17] and
nonlinear analyses of different wave modes [18–21]. Many
theoretical researchers have developed the Korteveg–de Vries
(KdV) equation, the modified KdV equation, the nonlinear
Schrödinger equation and the Burgers equation [1–3, 20–22]

to study the nonlinearities in degenerate quantum plasmas.
Recently [23], the Sagdeev potential approach was used to
investigate solitary wave solutions in electron–ion quantum
plasma.

Dusty degenerate plasmas can be found both in
astrophysical bodies and in the laboratory. It is now evident
that dust clouds can be present around white dwarfs [24],
which can contaminate their surfaces. Dust may also be added
to white dwarfs when a star swells into a red giant and the
planets moving around it are engulfed by it. These objects
are turned into dust grains due to the frictional forces and,
after the supernova phase, a white dwarf may appear with
dust grains. In microelectro-mechanical systems, ultra-small
electronic devices and laser-produced plasmas, impurities
play the role of dust particles [25–27]. Thus, once dust
is present, it plays an important role in the modification
of plasma species dynamics. In the examples given above,
densities are high enough to make the plasma degenerate.
We point out here that in most situations, only electrons are
considered to be quantum or degenerate owing to their small
mass, and heavier particles such as ions or charged dust are
treated classically.

Many papers have been published in relation to the
inclusion of quantum effects in the study of dusty plasmas,
e.g. Shukla and Ali [28] studied the modification of
dust-acoustic waves in unmagnetized dusty quantum plasma.
Salimullah et al [29] discussed quantum effects using the
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quantum hydrodynamic model on the linear dispersion
relation of dust lower-hybrid waves. Quantum effects cannot
be ignored in dense astrophysical environments such as white
dwarfs and neutron stars. In such systems the thermal pressure
is balanced by the inward gravitation force. Therefore, we
cannot ignore the effects of gravity which are included via the
Jean term. Many authors have addressed the Jean instability
in quantum plasmas [5, 30–33].

Nonlinear dynamics is affected by the trapping of
particles. It has been verified that the trapping, as considered
by us, is a microscopic phenomenon through computer
simulations [34] and experimental investigations [35].
Gurevich [36] showed, using Vlasov’s equation along with
Maxwell’s equations, that the adiabatic trapping produces 3/2
power nonlinearity (for Maxwellian plasma) rather than the
usual quadratic type of nonlinearity in the absence of trapping.
In classical plasmas, the effects of trapping on the nonlinear
characteristics of plasma waves and on vortex formation are
well investigated [37]. To date, only a small amount of work
has been done on trapping effects in quantum plasmas. Luque
et al [38] considered first time quantum trapping corrections
by solving the Wigner–Poisson system in an electron–hole
plasma. The effect of trapping in degenerate plasmas was
recently investigated [39], where the Fermi–Dirac distribution
function was used to determine the number density of free
and trapped particles. The effect of trapped particles led
to a new type of nonlinearity, and further investigation
showed that under certain conditions it is possible to
obtain both compressive and rarefactive solitary structures.
Misra and Chowdhury [40] studied dust-acoustic waves in a
self-gravitating complex plasma with trapped electrons and
also performed linear stability analysis. As dust grains are
strongly expected to be present in extremely dense plasmas,
so trapping with quantum effects on nonlinear structures
becomes important in the investigation of self-gravitating
plasmas in dense astrophysical plasmas. To the best of our
knowledge, trapping with both quantum and gravitational
effects has not yet been studied.

In this paper, we study the dust-acoustic waves in
a self-gravitating dusty plasma with trapping of electrons
that are taken to be degenerate. In section 2, mathematical
formulation is presented and the linear dispersion relation
is derived for dust-acoustic waves taking into account the
quantum effects. In section 3, electrostatic and gravitational
Sagdeev potentials are developed to study the nonlinear
behaviour of these waves. The solitary waves and respective
soliton structures are discussed in section 4. Modulational
stability analysis is discussed in section 5, and our conclusions
are presented in the final section.

2. Mathematical formulation

We consider a three-component plasma consisting of
degenerate electrons, classical ions and negatively charged
dust grains that, due to their mass, are treated as cold. In the
presence of charged dust particles, both electrons and ions are
taken to be massless. The fluid equation of motion for dust
grains can be written as

mdnd

{
∂Evd

∂t
+ (Evd E·∇)Evd

}
= Zdend E∇ϕ − mdnd E∇φ, (1)

and the equation of continuity is as usual given by

∂Evd

∂t
+ E∇ · ndEvd = 0, (2)

where md, nd, Zd and ϕ and φ are the dust mass, dust number
density, dust charge number and electrostatic and gravitational
potentials, respectively.

The electrostatic and gravitational Poisson equations are,
respectively,

∇
2ϕ = 4π e(Zdnd + ne − ni), (3)

∇
2φ = 4π Gmdnd. (4)

Here, ni and ne are the number densities of the ions and
electrons, respectively, and G is the gravitational constant.
We can incorporate the dust charge fluctuations as has been
done in many previous classical works [41], but this will
not change the behaviour of the system qualitatively and
will only cause unnecessary mathematical detail. If the dust
dynamics is slower than the dust charging time, then we can
safely ignore the dust charge fluctuations. We would also
like to point out that it has been shown by Tsintsadze and
Tsintsadze [42] that a dust grain may only be taken as a point
particle with constant charge, as is dictated by the available
electrodynamics theory. We consider one-dimensional (1D)
perturbations in the x-direction only and shift to a comoving
frame of reference with velocity u; by defining a new
variable ζ = x − ut , this then makes it possible to integrate
equations (1) and (2) and thus we obtain

nd = nd0

{
1 +

2

u2

(
Zd eϕ

md
− φ

)}−1/2

. (5)

We have employed ‘Jean’s swindle’ here (ignoring the
zeroth-order gravitational field) [43] and have used
the following boundary conditions: when ζ → ∞, all
perturbations vanish, i.e. vd, ϕ, φ → 0 and nd → nd0. We
further note that for nd to be real, the condition

φ 6
u2

2
+

Zdeϕ

md

must be fulfilled.
In order to compute the number density of the degenerate

electrons, we use the Fermi–Dirac distribution [44] and,
through integration with respect to energy ε, we obtain an
expression for the number density of electrons,

ne(ε) =
8
√

2πm3/2
e

(2π h̄)3

∫
∞

0

ε1/2

exp [ε − (µ/Te)] + 1
dε,

where µ is the chemical potential. However, in the case when
the electrons are trapped due to an electrostatic potential ϕ,
we follow the work of Shah et al [39] to obtain

ne(r, t) =
8
√

2π m3/2
e

(2π h̄)3

[
2

3
U 3/2 +

π2T 2
e

12
U−1/2

]
, (6)

where temperature Te is considered to be small and
higher-order terms in Te are neglected, and we substitute
U = eϕ + µ.

2
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For a completely degenerate plasma, Te = 0, and the
chemical potential is

µ = εF =
h̄2

2me
(3π2ne0)

2/3,

where εF is the Fermi energy. In the fully degenerate case,
equation (6) reduces to

ne = ne0

(
1 +

eϕ

εF

)3/2

. (7)

The ions are considered as classical particles since their mass
is much larger than that of electrons; however, on the other
hand, the ion mass is much smaller than the dust mass; thus
it is reasonable to assume that the ions follow the Boltzmann
distribution, which is given by

ni = ni0 e−eϕ/Ti , (8)

where ni0 and Ti are, respectively, the equilibrium ion number
density and ion temperature.

Linearizing equations (1)–(5), (7) and (8) gives the linear
dispersion relation of dust-acoustic waves in quantum dusty
plasma in which fermionic electrons assist the thermal ions in
propagating the wave. The linear dispersion relation takes the
form

ω2 + ω2
jd =

c2
sFk2

1 + k2λ2
DF

. (9)

Here, ωjd =
√

4π G mdnd0 is the Jean frequency; csF =

ωpdλDF is the speed of sound; ωpd =

√
4π nd0 Z2

d e2

md
is the dust

plasma frequency; and λDF is the Debye length with quantum
effects, which can be written as

1

λ2
DF

=
1

λ2
DFe

+
1

λ2
Di

,

where

λ2
DFe =

εF

6πne0e2
and λ2

Di =
Ti

4πni0 e2
.

In the long wavelength limit, k2λ2
DF � 1, the dispersion

relation simplifies to

ω2 + ω2
jd = c2

sFk2. (10)

If we suppose that the electrons predominantly define the
Debye length, then the speed of sound is

c2
sF =

2εF

3md

(
nd0 Z2

d

ne0

)
.

From equation (10), using some typical quantum dusty plasma
parameters such as [45, 46] md = 10−12 g, ne0 = 1026 cm3 and
nd0 = 1019 cm3, we obtain the condition for the real solution
of the dust-acoustic frequency ω, i.e. λ(= 2π/k) < 13.6 cm;
the thermal length (de Broglie length) is evaluated to be
4.5 × 10−9 cm, which is longer than the Fermi–Debye length
(λDF) in our system that turns out to be 2.88 × 10−9 cm.
Observations [47] made with the Spitzer Space Telescope
for a white dwarf show that most of the dust grains have a
diameter less than 0.2 µm. As we are mainly considering the
dusty plasma surrounding a white dwarf, we have a wide range
of wavelengths for dust-acoustic waves (DAWs) in which the
quantum effects can be considered and the size of the dust
grains can be neglected, making it possible to treat the charged
dust particles as point particles.

3. Nonlinear treatment

In this section, we investigate solitary wave structures by
using the Sagdeev potential approach. Using equations (5), (7)
and (8) in equation (3), and equation (5) in equation (4),
and following the procedure developed in [39], we obtain,
respectively, for the electrostatic and gravitational potentials

d2ϕ

dζ 2
= 4πe

[
Zdnd0

{
1 +

2

u2

(
Zdeϕ

md
− φ

)}−1/2

+ne0

(
1 +

eϕ

εF

)3/2

− ni0 e−eϕ/Ti

]
, (11)

d2φ

dζ 2
= 4π Gmdnd0

{
1 +

2

u2

(
Zd eϕ

md
− φ

)}−1/2

. (12)

After some algebraic manipulation, equations (11) and (12)
can be rewritten, respectively, as

1

2

(
dϕ

dζ

)2

+ VE(ϕ, φ) = 0, (13)

1

2

(
dφ

dζ

)2

+ VG(ϕ, φ) = 0. (14)

Here, equations (13) and (14) are analogous to the energy
integral of a classical particle in a 1D potential well and VE(ϕ)

and VG(φ) are the electrostatic and gravitational Sagdeev
potentials, respectively, which are given by

VE = 4π ni0εF

×

[
2 γ 2

1 Z2
d M2

3γ2

{
1 −

(
1 +

3γ2

γ1 Z2
d M2

(Zd8 − 9)

)1/2
}

+
2

5
γ2
{
1 − (1 + 8)5/2

}
+ Ti

(
1 − e−8/Ti

) ]
, (15)

VG=
8π G nd0εFγ1 Z2

d M2

3γ2

[{
1+

3γ2

γ1 Z2
d M2

(Zd8−9)

}1/2

−1

]
,

(16)

where γ1 =
nd0
ni0

and γ2 =
ne0

ni0
are the normalized dust and

electron number densities, respectively; M =
u

csF
is the

Mach number; 8 =
eϕ
εF

and 9 =
mdφ

εF
are, respectively, the

normalized electrostatic and gravitational potential energies;
and Ti =

Ti
εF

is the normalized ion temperature.

4. Solitary waves in the absence of the Jean term

In this section, we consider the formation of solitary structures
when the Jean term is absent. In this case the electrostatic
Sagdeev potential given by equation (15) reduces to

V (8) = 4π ni0εF

[
2 γ 2

1 Z2
d M2

3γ2

{
1 −

(
1 +

3γ2

γ1 Zd M2
8

)1/2
}

+
2

5
γ2
{
1 − (1 + 8)5/2

}
+ Ti

(
1 − e−8/Ti

) ]
. (17)

3
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M  0.47

Ti  0.1

Ti  0.15

0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 0.0001

1. 1010

5. 109

0

5. 109

V

Figure 1. Profile of the Sagdeev potential V (8) for different values
of Ti, the other parameters being M = 0.47, γ1 = 10−5 and
ni0 = 1026 cm−3.

M  0.47 Ti 0.1

Ti 0.15

2. 10 7 1. 10 7 0 1. 10 7 2. 10 7

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

Figure 2. Soliton structures for different values of Ti corresponding
to V (8) in figure 1.

From equation (17), the nonlinear solution can be obtained
if V (8) < 0. Following Witt and Lotko [48], we see that a
solitary wave solution is possible when the Mach number

M > Zd

√
γ1Ti

/
2 + 3γ2T ; the Sagdeev potential satisfies the

conditions dV (8)

d8
= 0 and d2V (8)

d82 < 0 at 8 = 0 and dV (8)

d8
< 0

at 8 = −80 and −80 < 8 < 0, where −80 is the minimum
value of the electrostatic potential. Hence, equation (17)
admits a corresponding solitary wave solution. The solitary
wave solution of equation (16) cannot be obtained, as the
above-mentioned conditions are not satisfied for the case of a
gravitational Sagdeev potential. Thus in this section we have
taken into account only the electrostatic potential.

In figures 1–8, we numerically analyze the electrostatic
potential (equation (17)) considering the electron trapping
with quantum effects. In the numerical calculations, we
have taken the plasma species number density to be fixed
and investigated the effects on the Sagdeev potential and
the corresponding soliton structures by varying the ion
temperature and Mach number. Figure 1 depicts the profiles
of the electrostatic Sagdeev potential for different values of
Ti when the Mach number is fixed at M = 0.47. Rarefactive
soliton structures corresponding to the Sagdeev potentials
given in figure 1 are shown in figure 2 for the same plasma
parameters. We see that for smaller values of Ti the soliton
amplitude increases and the width decreases. We plot figure 3
for higher values of M and Ti as compared with figure 1.
Figures 3 shows the profiles of the Sagdeev potential for
different values of Ti at the fixed value of Mach number

M  0.77
Ti 0.6

Ti 0.7

0.0008 0.0006 0.0004 0.0002 0.0000 0.0002

2. 109

1.5 109

1. 109

5. 108

0

5. 108

V

Figure 3. Profile of V (8) for different values of Ti, the other
parameters being M = 0.77, γ1 = 10−5 and ni0 = 1026 cm−3.

M  0.77 Ti 0.6

Ti 0.7

4. 10 7 2. 10 7 0 2. 10 7 4. 10 7

0.0008

0.0006

0.0004

0.0002

0.0000

Figure 4. Soliton structures for different values of Ti corresponding
to V (8) in figure 3.

M = 0.77. Rarefactive soliton structures corresponding to the
Sagdeev potentials given in figure 3 are shown in figure 4 for
the same plasma parameters. We can see that the variation in
Ti affects the soliton amplitude less strongly at larger values
of Mach number as compared to figure 2. At smaller value of
Ti, the soliton amplitude increases and the width decreases
as compared to larger values. Moreover, a comparison of
figures 2 and 4 shows that the soliton amplitude increases with
increasing Mach number.

Sagdeev potential profiles for different values of Mach
number M=0.44 and 0.5 and the fixed value of Ti =

0.1 are shown in figure 5. Rarefactive soliton structures
corresponding to the Sagdeev potentials given in figure 5
are shown in figure 6 for the same plasma parameters. We
note that with an increase in Mach number M , the soliton
amplitude increases and the width decreases when Ti is
kept constant. The profiles of the Sagdeev potential for the
soliton structure for higher values of Mach number in the
subsonic regime at a fixed value of Ti are shown in figure 7.
Rarefactive soliton structures corresponding to the Sagdeev
potentials given in figure 7 are shown in figure 8 for the
same plasma parameters. Again we can note that the variation
in Mach number M affects the soliton structure when Ti is
kept constant. But the increase in soliton amplitude is more
sensitive to the value of M when Ti is set at higher value.
On the other hand, comparing figures 6 and 8 we note that
the soliton amplitude increases for smaller values of Ti in the
subsonic regime.
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Ti 0.1M  0.5

M  0.44

0.0006 0.0004 0.0002 0.0000 0.0002

2. 1010

1.5 1010

1. 1010

5. 109

0

5. 109

V

Figure 5. Profile of V (8) for different values of Mach number M ,
the other parameters being Ti = 0.1, γ1 = 10−5 and ni0 = 1026 cm−3.

Ti 0.1
M  0.5

M  0.44

1. 10 7 5. 10 8 0 5. 10 8 1. 10 7
0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

Figure 6. Soliton structures for different values of M
corresponding to V (8) in figure 5.

Ti 0.6

M  0.74

M  0.71

0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 0.0001
6. 108

4. 108

2. 108

0

2. 108

V

Figure 7. Profile of V (8) for different values of M when the other
parameters are Ti = 0.6, γ1 = 10−5 and ni0 = 1026 cm−3.

Further, we investigate the effects of changes in dust
charge number, ion number density and the ratio of the dust
number density to the ion number density on the Sagdeev
potential and the structure of the solitons. These are the
parameters that specify the quantum behavior of the system.
Figure 9 presents the behavior of the Sagdeev potential
for different values of the dust charge number Zd and the
corresponding soliton structures are presented in figure 12.
We note that the amplitude of the soliton increases with
a decrease in Zd, whereas the width shows the opposite
behavior. Soliton structures of the solitary waves shown in
figure 10 are depicted in figure 13, which shows that the
amplitude is not affected by changes in ni0 provided that γ1

Ti 0.6 M  0.74

M  0.71

4. 10 7 2. 10 7 0 2. 10 7 4. 10 7
0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

Figure 8. Soliton structures for different values of M
corresponding to V (8) in figure 7.

Zd 8 103

Zd 9 103

Zd 1 104

0.00005 0.00004 0.00003 0.00002 0.00001 0 0.00001

1. 108

5. 107

0

5. 107

V

Figure 9. Profile of V (8) for different values of dust charge
number Zd when the other parameters are M = 0.38, Ti = 0.1,
γ1 = 10−7 and ni0 = 1026 cm−3.

ni0 1026cm 3

ni0 7.5 1025cm 3

ni0 5 1025cm 3

0.00006 0.00004 0.00002 0 0.00002

1. 108

5. 107

0

5. 107

V

Figure 10. Profile of V (8) for different values of ni0 when the
other parameters are M = 0.47, Ti = 0.1, Zd = 104, γ1 = 10−3 and
ni0 = 1026 cm−3.

is kept constant. On the other hand, the width of the soliton
increases with a decrease in ion number density. The Sagdeev
potential profile in figure 11 shows that the solitary wave
structures are strongly affected by changes in the ratio γ1.
The corresponding change in the amplitude of solitons is
shown in figure 14. It is clear that the amplitude increases
with a decrease in the value of γ1, which is evidence again
that the dust density effectively changes the soliton structure.
We note that in obtaining the above graphical analysis
the quasi-neutrality condition was consistently taken into
account.

5
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γ1 4 10 8

γ1 6 10 8

γ1 8 10 8

0.00005 0.00004 0.00003 0.00002 0.00001 0 0.00001 0.00002
2.5 108

2. 108

1.5 108

1. 108

5. 107

0

5. 107

V

Figure 11. Profile of V (8) for different values of γ1 when the other
parameters are M = 0.7, Zd = 104, Ti = 0.1 and ni0 = 1026 cm−3.

Zd 8 103

Zd 1 104

Zd 9 103

1.5 10 7 1. 10 7 5. 10 8 0 5. 10 8 1. 10 7 1.5 10 7
0.00005

0.00004

0.00003

0.00002

0.00001

0

Figure 12. Soliton structures for different values of dust charge
number Zd corresponding to V (8)in figure 9.

5. Modulational stability analysis with the Jean term

As noted earlier, when the gravitational Sagdeev potential
given by equation (16) is taken into account, the formation
of solitary structures is not possible. However, as it
is obvious that equations (15) and (16) are coupled,
the gravitational potential significantly contributes to the
amplitude modulation. In this section, we shall address the
question of modulational stability/instability (MI) of the wave
and investigate the dependence of MI on the gravitational
potential and other parameters of the system. We expand
equations (11) and (12), assuming the potentials 8 and 9

to be small, and restricting the terms up to the square order,
we obtain

d28

dξ 2
≈

2

3γ2

[
Zdγ1

{
1 −

3γ2

2γ1 Z2
d M2

(Zd8 − 9)

+
27γ 2

2

8γ 2
1 Z4

d M4

(
Z2

d8
2
− 2Zd89 + 92

)}
+γ2

(
1 +

3

2
8 +

3

8
82

)
−

(
1 −

1

Ti
8 +

1

2T 2
i

82

)]
,

(18)

d29

dξ 2
≈

2γ1 Z2
dω

2
jd

3γ2ω
2
pd

[
1 −

3γ2

2γ1 Z2
d M2

(Zd8 − 9)

+
27γ 2

2

8γ 2
1 Z4

d M4

(
Z2

d8
2
− 2Zd89 + 92

)]
. (19)

ni0 5 1025 cm 3

ni0 1026 cm 3

ni0 7.5 1025 cm 3

2. 10 7 1. 10 7 0 1. 10 7 2. 10 7

0.00005

0.00004

0.00003

0.00002

0.00001

0

Figure 13. Soliton structures for different values of ni0

corresponding to V (8) in figure 10.

γ1 4 10 8

γ1 8 10 8

γ1 6 10 8

1.5 10 7 1. 10 7 5. 10 8 0 5. 10 8 1. 10 7 1.5 10 7
0.00005

0.00004

0.00003

0.00002

0.00001

0

Figure 14. Soliton structures for different values of γ1

corresponding to V (8) in figure 11.

For modulational stability analysis, we adopt a standard
technique in which amplitude is perturbed around some fixed
values of 80 and 90. Thus, by considering 8 = 80 + δ 8

and 9 = 90 + δ 9, with δ 8, δ 9 ∼ ekcξ , where kc is the wave
number of modulation when the electrostatic and gravitational
potentials are coupled.

The linear stability is checked by supposing solutions of
the form 8 = 80 + α0 exp(kcξ) and 9 = 90 + β0 exp(kcξ) for
the electrostatic and gravitational potentials, respectively. By
substituting these solutions into equations (18) and (19), we
obtain, to the zeroth order,

80=

−

(
b−

9γ290

4M2

)
±

√(
b−

9γ290

4M2

)2
−

3aγ290

Zd M2

(
1+ 27γ290

4γ 2
1 Z4

d M2

)
2a

,

(20)

90 = −

(
Zd80 +

2γ1 Z2
d M2

3γ2

)

±
2

3
√

3
Zd M

√
γ1

γ2

(
6Zd80 −

5γ1 Z2
d M2

3γ2

)
, (21)

where

a =
27γ 2

2

4γ1 Z2
d M4

+
3γ2

4
−

1

T 2
i

, (22)

b =
1

Ti
+

3γ2

2
−

3γ2

2M2
. (23)
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Figure 15. Variation of k2
c with M at different values of Ti, the

other parameters being Zd = 103, γ1 = 10−5, ni0 = 1024 cm−3 and
nd0 = 1019 cm−3.

Now we collect the first-order terms from equations (18)
and (19) and obtain the eigenvalue equation for kc given by

k2
c ≈

C

2

[((
1−

ω2
pd

ω2
jd

)
AB+D+E

)

±

√√√√((1−
ω2

pd

ω2
jd

)
AB+D+E

)2

− 4AB (D+E)

 ,

(24)
where

A =
3γ2ω

2
jd

2M2ω2
pd

, (25)

B = 1 −
9γ2

2γ1 Z2
d M2

(Zd80 − 90) , (26)

C =
2

γ1 Z2
d

, (27)

D =
1

Ti
+

3γ2

2
, (28)

E =

(
3γ2

4
−

1

T 2
i

)
80. (29)

We shall note that plasma is marginally stable if k2
c = 0, which

is satisfied under two independent conditions: either

Zd80 − 90 =
2γ1 Z2

d M2

9γ2
or 80 =

(1/Ti ) + (3γ2/2)

(1/T 2
i ) − (3γ2/4)

.

It is clear from the first condition that the marginal stability is
affected not only by the inclusion of gravitational potential but
also by the ion temperature and electron to ion concentration
shown in the second condition. The wave is unstable if k2

c > 0,

which demands two coupled conditions

Zd80 − 90 <
2γ1 Z2

d M2

9γ2
, 80 <

(1/Ti ) + (3γ2/2)

(1/T 2
i ) − (3γ2/4)

and

Zd80 − 90 >
2γ1 Z2

d M2

9γ2
, 80 >

(1/Ti ) + (3γ2/2)

(1/T 2
i ) − (3γ2/4)

.

M  0.44

M  0.38

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80
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kc
2

Figure 16. Variation of k2
c with Ti at different values of M , the

other parameters being Zd = 103, γ1 = 10−5, ni0 = 1024 cm−3 and
nd0 = 1019 cm−3.

Here, again the gravitational potential plays a role in setting
the Mach number in the instability conditions. Now instability
occurs at lower value of Mach number in the presence of
gravitational effects of dust particulates.

We have analyzed numerically the variation of k2
c with

M at different values of ion temperature, i.e. Ti = 0.2, 0.4,

as shown in figure 15. At T = 0.2 the wave faces a narrow
cutoff region approximately from M = 0.41 to M = 0.44 and
then with an increase in M the wave changes from being
modulationally less unstable. Further, the variation in k2

c
with Ti at two different values of Mach number, i.e. M =

0.38 and 0.44, shown in figure 16 indicates that the wave
is modulationally more unstable at lower value of M . The
wave is marginally stable (k2

c = 0) at low ion temperature
for comparatively lower values of Mach number. The wave
goes from marginal stability to instability, an increase in ion
temperature and then faces a narrow cutoff region before again
showing marginal stability. The range of the cutoff region
changes for different values of Mach number. As is obvious
from figures 15 and 16, k2

c is always positive; therefore,
the wave undergoes a critical instability, not oscillating
instability.

6. Conclusions

We have analyzed the DAWs in unmagnetized collisionless
self-gravitating plasma by treating the ions to be Maxwellian
and considering the electrons to be degenerate and have taken
their trapping into account. We employed the Fermi–Dirac
distribution for the electrons and expressed electron density in
equation (6) that takes into account the effect of temperature.
This equation has been used for fully degenerate plasma,
namely Te = 0. The nonlinear analysis has been carried out
through the Sagdeev potential approach where gravitational
effects are neglected. The modification in the soliton profile
due to changes in Mach number, density ratio, ion temperature
and dust charge number has been investigated numerically,
and the results are presented graphically. We also discussed
the condition for MI when gravitational effects are taken into
account by including the Jean term in our considerations. The
effects of the gravitational potential and various other physical
parameters on MI have been investigated numerically and the

7
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results are presented graphically. We believe that trapping
is a fundamental nonlinear effect that has so far not been
investigated in degenerate plasmas with a dust component,
and our study presents these results for situations where
gravitational effects are not taken into account initially, but
then gravitational effects are included to investigate MI.
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