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Effect of trapping as a microscopic phenomenon in a degenerate plasma is investigated in the

presence of a quantizing magnetic field. The plasma comprises degenerate electrons and non-

degenerate ions. The presence of the quantizing magnetic field is discussed briefly and the effect of

trapping is investigated by using the Fermi-Dirac distribution function. The linear dispersion

relation for ion acoustic wave is derived in the presence of the quantizing magnetic field and its

influence on the propagation characteristics of the linear ion acoustic wave is discussed.

Subsequently, fully nonlinear equations for ion acoustic waves are used to obtain the Sagdeev

potential and the investigation of solitary structures. The formation of solitary structures is studied

both for fully and partially degenerate plasmas in the presence of a quantizing magnetic field. Both

compressive and rarefactive solitons are obtained for different conditions of temperature and

magnetic field. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752416]

I. INTRODUCTION

Quantum or degenerate plasmas are of great interest due

to their important applications in modern technology and

astrophysics. Such plasmas have generated a lot of interest in

the last decade owing to their importance in many areas of

physics such as semiconductors, metals, microelectronics,1

carbon nanotubes, quantum dots, and quantum wells.2–4

Degenerate plasmas also play an important role in dense

astrophysical objects like white dwarfs and neutron stars.5

A very substantial volume of literature has been pro-

duced looking at various aspects of degenerate or quantum

plasmas. Special attention has been received by linear and

nonlinear propagation characteristics of different electrostatic

and electromagnetic modes. Most of the work on wave propa-

gation properties is based on the quantum hydrodynamic

model.6 The role of quantum diffraction has been incorpo-

rated in this model and it becomes a valuable and sufficiently

simple tool for the examination of linear, weakly nonlinear

and fully nonlinear waves. Nonlinear ion acoustic modes

have received special attention in many papers for, e.g., the

effect of the Bohm potential (quantum diffraction) has been

investigated in Ref. 7 and a nonlinear Schrodinger formalism

has been developed in Ref. 8, for describing collective phe-

nomena in dense quantum plasmas with degenerate electrons.

Much of the literature produced in the last decade or so in the

area of linear and nonlinear wave propagation in quantum

plasmas has been effectively summarized and reviewed by

Shukla and Eliasson.9 As pointed out in Ref. 9 and other

works, plasmas in general and quantum plasmas in particular

need a differentiation between being weakly coupled or

strongly coupled. Electrons in degenerate plasmas in general

tend to be weakly coupled but ions which may often be

treated classically can be strongly coupled which in turn

needs the incorporation of viscous effects. In Ref. 9, the

effect of ion viscosity has been included to account for wave

propagation characteristics in strongly coupled plasmas and

the subsequent evolution of shock like structures via the Bur-

gers equation (see Ref. 9 and references therein) is consid-

ered. We would however like to point out here, since in this

work, we will be considering the collisionless non viscous re-

gime, a collisionless quantum plasma regime is relevant for

phenomena appearing on the time scale of the order of femto-

second.9 In the present work, we limit ourselves to consider-

ing only weakly coupled degenerate plasmas, where effects

of ion viscosity are not considered because as pointed out in

Ref. 10 ion viscosities can normally be neglected as long as

the wave period is much larger than the time scale of the ion

correlations and the damping rate due to the viscosities is

much smaller than the work frequency of the wave. It has

also been shown in Ref. 11 that there is a large range of valid-

ities for the hydrodynamic model in dense plasmas.

The effect of strong magnetic fields has not been much

the focus of attention in degenerate plasmas. The presence of

a strong ambient magnetic field qualitatively changes the

properties of atoms, molecules, and condensed matter when

the electron cyclotron energy �hxce is larger than the typical

Coulomb energy.12 The usual perturbative treatment of mag-

netic effects like Zeeman splitting of atomic energy levels in a

strong field regime does not apply in such a situation but

instead, the Coulomb forces act as a perturbation to the mag-

netic forces. Owing to the extreme confinement of electrons in

the transverse direction, the Coulomb force becomes much

more effective in binding the electrons along the magnetic

field direction.13 As is well known, electron gas magnetization

in a weak magnetic field has two independent parts; (i) para-

magnetic, and (ii) the diamagnetic part. The intrinsic or spin

magnetic moment of electrons gives rise to Pauli paramagnet-

ism. The diamagnetic part is due to the fact that the orbital

motion of electrons becomes quantized in a magnetic field.
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This is also called Landau diamagnetism or Landau quantiza-

tion.14 The gas is degenerate if the temperature T � eF (eF is

the Fermi energy). If the Landau quantization of electron

motion in a magnetic field is taken into account, then the field

is called quantizing15 and the condition kBT� �hxce must be

fulfilled. However, the ground state and the Fermi energies

remain the same because when summed, the pairs of energy

levels of the Landau levels cancel out each other.

In a magnetic field, the spin energy of electrons (which

is the additional energy) is 6bH, where b is the Bohr magne-

ton and equal to jej�h/2mec and the two signs are due to the

two values of the spin components, i.e., 61/2 along the mag-

netic field. The energy levels in a magnetic field of electron’s

orbital motion are14

e‘e ¼ ð2‘þ 1ÞbH þ p2
z

2me
;

where ‘ ¼ 0; 1; 2;…; are the Landau levels, and the momen-

tum pz is along the magnetic field and has a continuous range

of values from �1 to þ1. The total energy including the

spin energy is14

e‘e ¼
p2

z

2me
þ 2‘bH:

The effects of Landau quantization on the equations of state

in degenerate plasmas in the presence of an ambient magnetic

field have been discussed in detail by Eliezer et al.16 for both

the fully degenerate case and for a partially degenerate case

when a small (T< TFe) but finite electron temperature is

taken into account. The relationship of thermodynamic quan-

tities such as number density, pressure, entropy, etc., on the

Landau quantization level is also derived using the standard

Fermi-Dirac integrals (see Eqs. (40) and (53) of Ref. 16). The

significance of Landau quantization for better understanding

of degenerate plasmas has been pointed out in Ref. 16. The

electron density is modified by the presence of a finite elec-

tron temperature in the sense that the occupation number

increases. This is a standard result.14 The Landau quantiza-

tion causes an analogous modification. We note here that in

the absence of the quantizing magnetic field, the finite tem-

perature T, and in the absence of the trapping potential u the

total number density becomes the same as that defined by the

Fermi pressure pF. These results cannot be derived from the

inertialess equation of motion of the electrons and the proper

treatment in the case of trapping can only be done kinetically

by the use of Fermi integrals and Fermi Dirac distribution.

Much earlier, the pioneering work of Bernstein, Greene,

and Kruskal,17 showed that trapped particles have a prominent

effect on the nonlinear dynamics of plasma, while trapping was

considered by the wave itself. An alternative approach, devel-

oped a decade later, considered the effect of adiabatic trapping

at the microscopic level was introduced by Gurevich,18 and it

was observed that the adiabatic trapping produced a 3/2 power

nonlinearity instead of the usual quadratic one when trapping

was absent. Experimental investigations19 and computer simu-

lations20 confirmed the presence of trapping as a microscopic

phenomenon. Maxwellian and non-Maxwellian distribution

functions have been used to investigate the effect of trapping on

the propagation characteristics of ion acoustic solitons.21 In

both the cases, it was seen that solitary dynamics changed con-

siderably, in the latter case especially where spiky solitons were

obtained. In classical plasmas, the trapping effect on the forma-

tion of vortices was considered, and the Hasegawa-Mima equa-

tion in modified form was derived and analyzed by considering

shallow and deep potential wells, respectively.22 The effect on

the Sagdeev potential was also investigated. Luque et al.23 car-

ried out one of the first investigations in quantum plasmas, who

took quantum corrected electron holes by perturbatively solving

the Wigner-Poisson system.

Demeio24 considered the trapping effects on Bernstein,

Greene, and Kruskal equilibria and solved the Wigner-

Poisson system using the perturbative technique in order to

study the effect of trapping in quantum phase space. How-

ever, the statistical nature of trapping in Refs. 23 and 24 was

not investigated as the Wigner-Poisson equation was used,

which showed only the quantum diffraction effects.

Trapping in quantum plasma has been considered by us

recently using the Gurevich approach25 where the formation

of one dimensional ion acoustic solitary structures both for

fully degenerate plasma and for small temperature effects

were investigated. This work was later extended to the case

of fully relativistic degenerate plasma including both trap-

ping and finite temperature effects.26

In the present work, we consider once again the propa-

gation of one dimensional solitary ion acoustic waves in a

quantum degenerate plasma taken into account the effect of

trapped particles and finite temperature but this time in the

presence of a quantizing magnetic field via Landau quantiza-

tion. The Fermi-Dirac distribution function is as usual used

to describe the massless electrons.

The layout of the present work is as follows: In Sec. II,

we give a formulation of our basic equations and derive the

linear dispersion relation for Ion acoustic waves in the pres-

ence of a quantizing magnetic field. In Sec. III, the Sagdeev

potential is derived and investigated. In Sec. IV, we give an

analysis of our results which are discussed graphically as well.

II. BASIC SET OF EQUATIONS

In order to derive the expressions for parallel propagating

nonlinear ion acoustic waves in the presence of adiabatic trap-

ping, we begin by considering the evaluation of the expression

of number density of the electrons which are Landau quantized,

degenerate, and trapped. We follow Landau and Lifshitz14 to

obtain the expression for the number densities of the trapped

and free electrons, where the trapping of the electrons occurs in

the potential of the ions. The motion of a particle in a plane per-

pendicular to the strong magnetic field is quantized.27 The

quantized electron energy levels e‘e in the non-relativistic limit

in the presence of a potential field u are then given by27

e‘e ¼ ‘�hxce þ
p2

z

2me
� eu; (1)

where xce ¼ eB0=mec is the electron cyclotron frequency

and �eu is the potential energy of the well in which the elec-

trons are trapped and pz is the parallel momentum associated

with the electron. Here B0 ¼ ẑB0 is the orientation of the
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external magnetic field in the Cartesian coordinate system.

Electrons with energy e‘e < 0 and e‘e > 0 are trapped and free

electrons, respectively. Trapping occurs when the condition

e‘e ¼ 0 is fulfilled.

The total occupation number for the Fermi-Dirac distri-

bution after integration over the polar coordinates and change

of variables from momentum p to energy e is given by

ne ¼
p2

Feg

2p2�h3

ffiffiffiffiffiffi
me

2

r X1
‘¼0

ð1
0

e�1=2

exp
e� U

T

� �
þ 1

de; (2)

where U ¼ euþ l� ‘�hxce, here l is the chemical potential.

The summation above is over the Landau levels and we note

here ‘ ¼ 0 refers to the case without a quantizing magnetic

field. In the energy eigenvalue spectrum of a macroscopic

system, there is an extremely high density of energy levels.

The number of levels in a finite range of energy spectrum

increases exponentially with N (number of particles) in the

system, and the separation between the levels is proportional

to 10�N.27 Therefore, we can conclude that it is reasonable to

take a continuous energy spectrum instead of a discrete one.

Thus, to obtain an expression of the density ne after integra-

tion, we can separate the ‘ ¼ 0 case from the summation and

replace the summation in Eq. (2) by integration ð
P‘max

1 !Ð ‘max

1
d‘Þ; where ‘max ¼ ð1þ eu

eFe
Þ=g which is obtained from

the condition that the integrand must remain a real quantity.

We note here that as pointed in Ref. 28 anisotropy in a

degenerate plasma may appear through the Fermi tempera-

ture TFe and is not due to the system (physical) temperature

T where T� TFe. However, for propagation in one dimen-

sion along the magnetic field anisotropy in TFe (or the num-

ber density) will not play any role hence the distribution

function considered by us is taken to be isotropic. Following

the general treatment for Fermi integrals and the method elu-

cidated in Refs. 25 and 26, we arrive at the following expres-

sion for the total number density

ne ¼ N0

3

2
gð1þ UÞ

1
2 þ ð1þ U� gÞ3=2

�

� gT2

2
ð1þ UÞ�

3
2 þ T2ð1þ U� gÞ�1=2

�
: (3)

Here the effect of the quantizing magnetic field appears

through g ¼ �hxce=eFe; and eFe ¼ ð�h2=2meÞð3p2N0Þ2=3
is the

electron Fermi energy, N0 ¼ p3
Fe=3p2�h3 is the equilibrium

number density for fully degenerate plasma and me is the

mass of the electrons. For partially degenerate plasma the

electron background number density is given by

ne0 ¼ N0fð3� T2Þg=2þ ð1� gÞ3=2 þ T2ð1� gÞ�1=2g, which

follows from Eq. (3) in the absence of the trapping potential.

We further note that in the limit g ¼ 0, we retrieve our previ-

ous results as Ref. 25. The Landau quantization parameter

plays role similar to that of the small finite temperature T in

modifying the electron occupation number density ne given

by Eq. (3). The chemical potential is not truly equal to the

Fermi energy when T 6¼ 0, however, in the case when

T=eFe � 1, it is reasonable to take l¼ eFe. The potential u
and temperature T have been normalized in the following

manner: T ¼ pT=2
ffiffiffi
2
p

eFe and U ¼ eu=eFe.

We now draw our attention to the ions; the ions are

taken to be cold and non-degenerate due to their heavy mass

as compared to the electrons. The ion equation of motion

and the continuity equation are given by

@~vi

@t
þ ð~vi � ~rÞ~vi

� �
¼ � e

mi

~ruþ e

mi
ð~vi � ~BÞ (4)

@ni

@t
þ ~r � ðni~viÞ ¼ 0: (5)

Since we consider propagation along B0, therefore, parallel

propagating ion acoustic waves are not affected by the ambi-

ent magnetic field. For the case of propagation along the

external magnetic field, the ion Lorentz force does not con-

tribute. Finally, in order to have a closed set of equations, we

include the Poisson’s equation

~r � ~E ¼ 4peðni � neÞ: (6)

After linearizing and applying a plane wave solution to the

above set of equations, we obtain the following linear disper-

sion relation for parallel propagating ion acoustic wave in

the presence of quantizing field with electrons having small

but finite temperature

x
k
¼ CsF

2 ð3� T2Þ g
2
þ ð1� gÞ3=2 þ T2ð1� gÞ�1=2

n o
ð1þ T2Þ 3g

2
þ 3ð1� gÞ1=2 � T2ð1� gÞ�3=2 þ 2k2k2

TF

2
4

3
5

1=2

: (7)

where CsF is the Fermi ion sound velocity and kTF is the

Thomas Fermi length and are given as

CsF ¼
ffiffiffiffiffiffi
eFe

mi

r
and kTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eFe

4pe2N0

r
;

respectively. Furthermore, the wave phase speed is much

larger than the ion thermal speed. In order to find the nonlin-

ear ion number density, we again use the ions equation of

motion and continuity equation. As we consider the propaga-

tion of quantum ion acoustic wave in the z direction only and

shift to a comoving frame of reference by taking n ¼ z� ut,
where u is the velocity of propagation of the perturbation.

We integrate Eqs. (4) and (5) and apply the boundary condi-

tions that all perturbations die out at infinity, i.e., when
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n!1; u; vi ! 0; and ni ! n0i

where n0i is the ions background number density. Taking the

unperturbed electron and ion number densities to be equal,

we get the following expression for ion number density

ni ¼N0 ð3�T2Þg
2
þð1� gÞ

3
2þT2ð1� gÞ�

1
2

h i
1� 2U

M2a

� ��1=2

:

(8)

Here the Mach number is defined as M ¼ u
x=k, and a is a con-

stant given by

a ¼
2 ð3� T2Þ g

2
þ ð1� gÞ3=2 þ T2ð1� gÞ�1=2

n o
ð1þ T2Þ 3g

2
þ 3ð1� gÞ1=2 � T2ð1� gÞ�3=2

:

III. SAGDEEV POTENTIAL

Now we derive an expression for the Sagdeev potential

to investigate the presence of solitary waves. Putting the val-

ues of ne and ni from Eqs. (3) and (8) in the Poisson equation

given by Eq. (6), we obtain

d2U

dn2
¼

3

2
gð1þ UÞ

1
2 þ ð1þ U� gÞ

3
2 � gT2

2
ð1þ UÞ�

3
2

þT2ð1þ U� gÞ�1=2

8<
:

9=
; � ð3� T2Þ g

2
þ ð1� gÞ

3
2 þ T2ð1� gÞ�

1
2

n o
1� 2U

M2a

� ��1=2
2
4

3
5;

(9)

where n is normalized as n ¼ n=kTF. Equation (9) can be

expressed in the form of an energy integral as

1

2

dU
dn

� �2

þ VðUÞ ¼ 0: (10)

By integrating Eq. (9) and making the use of boundary

conditions

n!1; U ¼ VðUÞ ¼ 0;

the final expression for the Sagdeev potential is

VðUÞ ¼ ð1þ T2Þgþ 2

5
ð1� gÞ5=2 � gð1þUÞ3=2

�

�2

5
ð1þU� gÞ5=2 þM2ab�M2ab

�
1� 2U

M2a

�1=2

�gT2ð1þUÞ�1=2 � 2T2ð1þU� gÞ1=2

þ2T2ð1� gÞ1=2

�
: (11)

Here

b ¼ ð3� T2Þ g
2
þ ð1� gÞ3=2 þ T2ð1� gÞ�1=2:

Solitary waves are obtained when appropriate conditions are

fulfilled25,29 and compressive and rarefactive solitary waves

are obtained when V(U)< 0 for 0 < U < Umax for the com-

pressive condition and V(U)< 0, for 0 > U > Umin for the

rarefactive condition.

In order to find the lower limit of the Mach number, Eq.

(11) is Taylor expanded and the coefficients of quadratic

terms in U are set equal to zero which yields

M � 1:

The upper limit of the Mach number is obtained from the ion

term in Eq. (11) such that it does not produce an imaginary

result. Thus, the upper limit is given by

M <
ð1þ T2Þ 3g

2
þ 3ð1� gÞ1=2 � T2ð1� gÞ�3=2

ð3� T2Þ g
2
þ ð1� gÞ3=2 þ T2ð1� gÞ�1=2

( )1=2

:

Thus, the range of the Mach number is given by

1�M <
ð1þ T2Þ 3g

2
þ 3ð1� gÞ1=2� T2ð1� gÞ�3=2

ð3� T2Þ g
2
þ ð1� gÞ3=2þ T2ð1� gÞ�1=2

( )1=2

:

(12)

We take the different cases to discuss for fully and partially

degenerate plasma, also with and without the presence of

quantizing magnetic field. We discuss certain limiting cases

given here as under

Case 1, when g ¼ 0, i.e., in the absence of the magnetic

field, the Sagdeev potential becomes

VðUÞ ¼ 2

5
� 2

5
ð1þ UÞ5=2 þM2ab�M2ab 1� 2U

M2a

� �1=2
"

þ2T2 � 2T2ð1þ UÞ1=2

#
: (13)

Here a and b reduce to

a ¼ 2ð1þ T2Þ
3� T2

and b ¼ 1þ T2;

and the range of Mach number is given by

1 � M <
3� T2

1þ T2

� �1=2

:

This is the same as our earlier result obtained in Ref. 25.

Case 2, when T ¼ 0, i.e., for fully degenerate plasma,

the Sagdeev potential is
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VðUÞ ¼ gþ 2

5
ð1� gÞ5=2 � gð1þ UÞ3=2 � 2

5
ð1þ U� gÞ5=2

�

þM2ab�M2ab 1� 2U
M2a

� �1=2�
: (14)

Here a; b and range of the Mach number reduce to

a ¼
2 ð3� T2Þ g

2
þ ð1� gÞ3=2

n o
3g
2
þ 3ð1� gÞ1=2

;

b ¼ ð3� T2Þ g
2
þ ð1� gÞ3=2;

1 � M <
gþ 2ð1� gÞ1=2

gþ 2
3
ð1� gÞ3=2

( )1=2

:

Case 3, when both T ¼ 0, and g ¼ 0, the Sagdeev potential

is

VðUÞ ¼ 2

5
� 2

5
ð1þ UÞ5=2 þ 2

3
M2 � 2

3
M2 1� 3U

M2

� �1=2
" #

:

(15)

This result is the same as in Ref. 25. For this range of the

Mach number is given by

1 � M <
ffiffiffi
3
p

:

IV. RESULTS AND DISCUSSION

In this section, the theoretical results obtained in Secs. II

and III have been presented graphically. The parameters that

we have used in our graphs are the ones typically found for

the white dwarfs.30,31 The number density and the magnetic

field have the values of the order of 1026 cm�3 and 1010 G,

respectively.26,30 Using this number density, we have calcu-

lated the Fermi energy and the Fermi temperature given by

TFe ¼ 9:14108� 106 K and have taken the electron tempera-

ture T � TFe.25

We begin by considering the linear dispersion relation

Eq. (7) and investigate the effect of the finite electron tem-

perature and the effect of the quantizing magnetic field

expressed through g. Fig. 1 shows dependence of the wave

frequency x on the wave number k for different values of g
keeping the temperature constant. It is seen that higher fre-

quencies are observed with an increase in the magnetic field.

Fig. 2 shows the wave frequency x versus the wave number

k plot for different values of temperature T keeping g fixed.

It is observed that an increase in temperature enhances the

frequency of the ion acoustic wave.

We now investigate the nonlinear properties of the ion

acoustic wave via the Sagdeev potential and its dependence

on the temperature T, the magnetic field through the parame-

ter g; and the Mach number M. Fig. 3 depicts the plot

between normalized potential U and Sagdeev potential V(U).

We have used Eq. (11) to plot these graphs. These curves are

plotted for fully degenerate plasma, i.e., T ¼ 0 and Mach

number is kept constant M ¼ 1:3 but magnetic field is varied

by changing g. From Fig. 3, we can see that with variation of

magnetic field the depth and width of the Sagdeev potential

increase, but the minimum of the Sagdeev potential

decreases. Fig. 4 shows the corresponding soliton profiles

obtained for the similar parameters used in Fig. 3. The am-

plitude of the soliton increases with the increasing magnetic

field with the values of g ranging from 0.1 to 0.6 as shown in

the Fig. 4. With these parameters we have only compressive

solitons as shown in Figs. 3 and 4.

Again, using the Eq. (11), we have plotted the graphs

between V(U) and U, by keeping the magnetic field effect

fixed at g ¼ 0; and also by keeping the Mach number fixed

FIG. 2. Dispesrion relation for x versus k for different values of T.

FIG. 1. Dispersion relation for x versus k for different values of g.

FIG. 3. Sagdeev potential V(U) versus U for different values of g when

M¼ 1.3 and T¼ 0.
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at M ¼ 1:3. Here, the normalized electron temperature has

been varied as shown in Fig. 5. In this figure, we observe

that increasing the temperature enhances the width as well

as the depth of Sagdeev potential. We have also two min-

ima of V(U) for the temperature T ¼ 0:7. The solitary struc-

tures of this Sagdeev potential are shown in Fig. 6. We

have compressive solitons for certain range of electron tem-

perature and above this range, i.e., for T > 0:5 rarefactive

solitons are obtained as shown in Fig. 6. Such coupled soli-

tary structures are observed in space plasmas.31 The same

effect has observed in Refs. 26 and 29. The amplitude of

the soliton is found to increase with the increase in the

temperature.

Fig. 7 shows the variation of V(U) and potential U for

different values of Mach number. Here, the parameters like

the temperature and the magnetic field are fixed as T ¼ 0:2
and g ¼ 0:2. It is observed that for greater value of Mach

number, the potential U is larger and the Sagdeev potential is

deeper. It is found that the width of the soliton decreases but

amplitude increases with the increase of Mach number as

shown in Fig. 8.

Fig. 9 is the graph of V(U) vs U for fixed values of

Mach number and temperature, i.e., M ¼ 1:3 and T ¼ 0:4;
but g is varied that includes the variation of magnetic field.

We observe two minimum values of Sagdeev potential for

each curve at large magnetic field. Also compressive and rar-

efactive solitary structures begin to form at higher magnetic

fields (B0 � 3:5� 1010 G and 4� 1010 G) for which g ¼ 0:5
and g ¼ 0:6, respectively. The related solitary structures are

shown in Fig. 10. Similarly, Fig. 11 shows the graphs plotted

between Sagdeev potential and potential U for varying elec-

tron normalized temperature T but Mach number M and g

FIG. 7. Sagdeev potential V(U) versus U for different values of Mach num-

ber M when T¼ 0.2 and g¼ 0.2.

FIG. 4. Solitary wave amplitude U versus n corresponding to the Sagdeev

potential V(U) shown in Fig. 3.

FIG. 5. Sagdeev potential V(U) versus U for different values of T when

M¼ 1.3 and g¼ 0.

FIG. 6. Solitary wave amplitude U versus n corresponding to the Sagdeev

potential V(U) shown in Fig. 5.

FIG. 8. Solitary wave amplitude U versus n corresponding to the Sagdeev

potential V(U) shown in Fig. 7.
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are fixed at the values M ¼ 1:3 and g ¼ 0:2. Due to increase

in temperature, the Sagdeev potential becomes deeper and

corresponding potential U becomes wider. But we have only

one minima for each curve of V(U) as T is increased as com-

pared to the previous result shown in Fig. 5, where we have

two minimum at T ¼ 0:7 and g ¼ 0. The reason for this is

that the values of T and g are so adjusted in Eq. (11) that as T
is increased the Sagdeev potential V(U) has only negative

values, i.e., VðUÞ < 0 as shown in Fig. 11. The correspond-

ing solitons of these Sagdeev potentials of Fig. 11 are plotted

in Fig. 12 between potential U and n. Here, we have only

compressive solitons and only increase in amplitude of the

solitons can be seen in Fig. 12.

Fig. 13 shows the variation of soliton’s amplitude by

varying the Mach number. It is clear from the curves that the

amplitude increases linearly with the increase of Mach num-

ber. Also the amplitude of soliton enhances with the increase

in the magnetic field. It is also seen the amplitude of com-

pressive and rarefactive solitons are different. Compressive

solitons have higher amplitude by comparison with the rare-

factive solitons. Such solitons are observed in the literature.

Fig. 14 shows the amplitude of the soliton with the increas-

ing Mach number curves for different values of temperature.

Fig. 15 shows the dependence of Mach number M on g. It is

seen that when we increase the value of g the corresponding

Mach number decreases.

FIG. 9. Sagdeev potentials V(U) versus U for different values of g when

M¼ 1.3 and T¼ 0.4.

FIG. 10. Soliton wave amplitude U versus n corresponding to the Sagdeev

potential V(U) shown in Fig. 9.
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V. CONCLUSION

In conclusion, we have investigated the effect of trapping

as a microscopic phenomenon on the formation of solitary

structures in degenerate and partially degenerate plasmas in the

presence of a quantizing magnetic field. We have derived the

modified linear dispersion relation for the ion acoustic wave.

We have observed that in our case, the wave propagating along

the magnetic field depends on the magnetic field as opposed to

the classical case. We have investigated our theoretical results

numerically for different parameter values like Mach number,

magnetic field, and electron temperature. The results have been

presented graphically showing the formation of solitary struc-

tures and their dependence on different plasma parameters. We

have shown that only compressive solitons are formed for fully

degenerate plasma in the presence of a magnetic field. For the

case of partially degenerate plasma, we have both compressive

and rarefactive solitons. These investigations may play an im-

portant role in the ultra strong laser plasma interactions as well

as the description of complex phenomena that appear in the

dense astrophysical objects like White dwarfs.
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