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Using the quantum hydrodynamic model of plasmas, the stability analysis of self-gravitational

electrostatic drift waves for a streaming non-uniform quantum dusty magnetoplasma is presented. For

two different frequency domains, i.e., X0d � x < X0i (unmagnetized dust) and x� X0d < X0i

(magnetized dust), we simplify the general dispersion relation for self-gravitational electrostatic drift

waves, which incorporates the effects of density inhomogeneity $n0a, streaming velocity v0a due to

magnetic field inhomogeneity $B0, Bohm potential, and the Fermi degenerate pressure. For both

frequency domains, the effect of density inhomogeneity gives rise to real oscillations while the ions

streaming velocity v0i as well as the effective electron quantum velocity v
0
Fe make these oscillations

propagate perpendicular to the ambient magnetic field. This oscillatory behavior of self-gravitational

drift waves increases with increase in inhomogeneities and quantum effects while it decreases with

increase in the gravitational potential. However, only for the unmagnetized case, the drift waves may

become unstable under appropriate conditions giving rise to Jeans instability. The modified threshold

condition is also determined for instability by using the intersection method for solving the cubic

equation. We note that the inhomogeneity in magnetic field (equilibrium density) through streaming

velocity (diamagnetic drift velocity) suppress the Jeans instability depending upon the characteristic

scale length of these inhomogeneities. On the other hand, the dust-lower-hybrid wave and the quantum

mechanical effects of electrons tend to reduce the growth rate as expected. A number of special cases

are also discussed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698165]

I. INTRODUCTION

The problem of gravitational collapse of astrophysical

nebulae for the formation of stars and galaxies has been a

great challenge in astrophysics and cosmology. Jeans1 first

showed how a neutral fluid in a nebula containing micron-

sized dust grains may become unstable due to its own

self-gravity. This is the main mechanism for the large scale

nebulae in the Universe to collapse to stars, galaxies, etc. or

other structures and their evolution. It is also known that the

Jeans instability is a relatively faster process, whereas the

formation of heavenly objects takes place in billions of

years.2–7 Obviously, there should be a number of hindering

effects on Jeans instability, which may explain the real phe-

nomena behind the gravitational collapse.

It is believed that due to the presence of all-pervading

ultra-violet photons, plasma currents or for some heavenly

occurrences, the micron-sized dust grains of the collapsing sys-

tems can acquire electric charges, and thus, a self-gravitating

dusty plasma under extreme conditions may be formed.8–10

These plasmas may contain static and inhomogeneous ambient

magnetic field, nonuniform densities, or even quantum effects

under extreme conditions.

In recent years, there has been a growing interest in quan-

tum plasmas because of their importance in microelectronics

and electronic devices with nano-electronic components,11,12

dense astrophysical systems,13–15 and in laser-produced

plasmas.16–19 When a plasma is cooled to an extremely low

temperature, the de Broglie wavelengths of the plasma par-

ticles could be comparable to the scale lengths, such as Debye

length or Larmor radius, etc. in the system. In such plasmas,

the ultracold dense plasma would behave as a Fermi gas and

the quantum mechanical effects might play a vital role in the

behavior of the charge carriers of these plasmas under the

extreme conditions.

Extensive studies have been done over the years by tak-

ing into account a wide variety of effects so as to study Jeans

instability. Shukla and Stenflo20 examined the influence and

the range of validity of quantum effects on Jeans instabilities

of homogeneous and unmagnetized self-gravitating astro-

physical quantum dusty plasma systems where the electro-

magnetic and gravitational forces on plasma charge carriers

become comparable. Ren et al.30,31 investigated the Jeans

instability in a dense quantum plasma in the presence of two

dimensional magnetic fields and the resistive effects with or

without Hall current effects. Recently, Prajapati and

Chhajlani32 discussed the contributions of Hall current and

viscosity of the medium to Jeans instability and its impor-

tance to astrophysical plasmas. The inhomogeneous ambient

magnetic field, the nonuniform plasma density, and the quan-

tum effect might play an important role in reducing the

growth rate of the Jeans instability of the real physical plas-

mas. In an earlier paper,21 we also examined Jeans instability

in a homogeneous dusty plasma in the presence of an ambi-

ent magnetic field with quantum effect arising through the

Bohm potential only.
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In this paper, we present a detailed investigation show-

ing how the inhomogeneous ambient magnetic field, the non-

uniform density, and quantum effects influence the Jeans

instability in a self-gravitational quantum dusty magneto-

plasma. We also use the intersection method developed by

Omar Khayyam22 to solve the cubic equation and obtain

minimum threshold condition for Jeans instability.

The plan of the paper is as follows. In Sec. II, we solve

the quantum hydrodynamic fluid equations and the Poisson’s

equations for electrostatic and gravitational fields to obtain a

general dielectric response function for the nonuniform quan-

tum dusty magnetoplasma. In this section, we also derive the

dispersion relation for Jeans instability and its limiting cases

and retrieve the previously derived results of Jeans instability

in homogeneous quantum dusty magnetoplasma21 and of drift

wave instability in a non-uniform dusty magnetoplasma.23

Finally, a brief discussion of the results is given in Sec. III.

II. DIELECTRIC RESPONSE FUNCTION

We consider an infinitely extended inhomogeneous high

density dusty magnetoplasma containing electrons, ions, and

charged dust grains in the presence of an inhomogeneous am-

bient magnetic field B0: We choose the Cartesian coordinate

system in such a way that B0ðxÞ is in the z-direction with the

inhomogeneity along x-direction and the wave propagation

vector k is in yz-plane. In order to satisfy the equilibrium con-

ditions, given in Appendix A, we assume that the streaming

velocity v0a is along y-axis and the density inhomogeneity

along x-axis. Further, the charge quasi-neutrality condition is

n0eðxÞ ¼ n0iðxÞ þ Zdn0dðxÞ, where n0aðxÞ is the equilibrium

inhomogeneous number density of a-species (a ¼ e; i; d), Zd

is the dust charge state. The density inhomogeneity produces

diamagnetic drifts, and the magnetic field inhomogeneity

causes uniform streaming of ions and electrons (not for heavy

dust particles, i.e., v0d ¼ 0) with v0e;i ¼ � c@B0ðxÞ=@x
4pqdnod

ŷ: Such

plasmas may exist in the interiors and environments of astro-

physical compact objects, e.g., white dwarfs and neutron stars/

magnetars, supernovae, etc.33,34 The governing linearized

equations for electrostatic wave propagation in the quantum

hydrodynamic (QHD) model24–29 for the electrons, ions, and

charged dust grains in the presence of the inhomogeneous am-

bient magnetic field B0ðxÞ are

man0a
@v1a

@t
þ ðv0a:$Þv1a

� �
¼n0aqa E1 þ

1

c
va � B0

� �

� kBTFa$n1a � man0a$w1

þ �h

4ma
$ð,2n1aÞ (1)

and

@n1a

@t
þ v0a:$n1a þ v1a:$n0a þ n0a$ � v1a ¼ 0: (2)

Poisson’s equations for the perturbed electrostatic potential

/1 and gravitational potential w1 are

,2/1 ¼ �4p
X

qan1a (3)

and

,2w1 ¼ 4pGman1a; (4)

where subscript 0 indicates equilibrium quantities while 1 is

used for the perturbed quantities., summation over a is for

the three species, i.e., (a ¼ e; i; dÞ; �h is Planck’s constant

divided by 2p and qa;ma; c, and G are the charge, mass, the

velocity of light in vacuum, and gravitational constant,

respectively. Here, we may take into account the quantum

effects of all the species when they are considered extremely

cold. In Eq. (1), we assume that the plasma particles in a

zero-temperature Fermi gas satisfying the pressure

pFa ¼ mav2
Fan1a, where vFa ¼ ð2kBTFa=maÞ

1
2 is the Fermi

speed; kB and TFa are the Boltzmann constant and Fermi

temperature, respectively.

By assuming that perturbations have sinusoidal charac-

ter, i.e.,

ðE1;B1;n1a;v1aÞ � e� i x tþi k�r; (5)

we may rewrite the Eqs. (1)–(4) as

v1a ¼
qak/1

x�ma
þ i

x�
v1a � X0a þ

kv
02
Fa

x�
n1a

n0a

� �
þ k

x�
w1; (6)

n1a

n0a
¼ k � v1a

x�

� �
þ ivx

1a

Lax�
; (7)

k2/1 ¼ 4p
X

q0an1a; (8)

k2w1 ¼ �4pGman1a: (9)

Here, x and k are the angular frequency and wavenumber

vector, respectively. We have also defined

v
02
Fa ¼ v2

Fa þ
�h2k2

4m2
a
; X0a ¼

qaB0

mac
ẑ and x� ¼ x� kyv0a:

Using Eqs. (6)–(9) and after some straightforward calcula-

tions, we obtain the general dielectric susceptibility for a

dusty magnetoplasma with magnetic field and density inho-

mogeneities as

va

¼�
x2

pa

(
k2

z

ðx�Þ2
þ

k2
y

ðx�Þ2�X2
0a

1� X0a

x�kyLa

� �)

k2�
(

k2
z

ðx�Þ2
þ

k2
y

ðx�Þ2�X2
0a

1� X0a

x�kyLa

� �)
ðk2v

02
Fa�x2

JaÞ
;

(10)

where

x2
pa¼

4pn0aq2
a

ma
; x2

Ja¼ 4pGman0a and La¼�
n0a

@n0a=@x
:

Using Eq. (10), the electrostatic dielectric response function

is given by
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�ðx; kÞ ¼ 1þ
X

a

va ¼ 1�
X

a

x2
pa

(
k2

z

ðx�Þ2
þ

k2
y

ðx�Þ2 � X2
0a

1� X0a

x�kyLa

� �)

k2 �
(

k2
z

ðx�Þ2
þ

k2
y

ðx�Þ2 � X2
0a

1� X0a

x�kyLa

� �)
ðk2v

02
Fa � x2

JaÞ
: (11)

Eq. (11) is the electrostatic dielectric response function,

which incorporates the effects of inhomogeneities, quantum

effects through both the Fermi potential and the Bohm poten-

tial and the effect of gravitational potential. On ignoring the

inhomogeneities, this function immediately reduces to the

previously derived response function.21

In the following section, we shall derive the dispersion

relation for the self-gravitational electrostatic drift waves

including the quantum effects for the electron dynamics,

density inhomogeneity only for electrons and ions and the

gravitational effects for dust grains. The quantum effects on

ions and dust grains are neglected due to their heavier

masses. Also, being insignificantly small, we can neglect

the gravitational effects on electrons and ions. However,

for dust grain, the self-gravitational effect is taken into

account. Thus, for such plasmas satisfying the above

conditions and assuming that the wave frequency and

Doppler shifted frequency is much less than the gyro

frequency of electron, i.e., x;x� � jX0ej and the phase

velocity of the wave is less than the effective electron

(quantum) velocity but greater than the ion one, i.e.,

v
0
Fi � x=kz � v

0
Fe, we can write the dispersion relation

of electrostatic waves, i.e., �ðx; kÞ ¼ 0 by simplifying

Eq. (11) as

1þ
x2

pe

k2v
02
Fe

�
x2

pi

k2

k2
z

ðx�Þ2
þ

k2
y

ðx�Þ2 � X2
0i

1� X0i

kyx�Li

� �" #

�
x2

pd

k2
z

x2
þ

k2
y

x2 � X2
0d

" #

k2 þ k2
z

x2
þ

k2
y

x2 � X2
0d

" #
x2

jd

¼ 0:

(12)

The condition for the phase velocity (i.e., v
0
Fi � x=kz � v

0
FeÞ

defines that electrons which run along magnetic lines will

reach thermal equilibrium condition quickly whereas ions can-

not reach thermal equilibrium and should be described by the

drift equation.

In the following section, we will discuss two frequency

domains, i.e., X0d � x < X0i for unmagnetized dust and

x� X0d < X0i for magnetized dust grains.

A. For unmagnetized dust grains

For this case, we shall assume the intermediate frequency

domain, i.e., the wave frequency lies between the gyro fre-

quencies of dust and ions (X0d � x < X0iÞ. Thus, the disper-

sion relation reduces to

1þ
x2

pe

k2v
02
Fe

�
x2

pi

k2

k2
z

ðx�Þ2
�

k2
y

X2
0i

1� X0i

kyx�Li

� �" #

�
x2

pd

x2 þ x2
jd

¼ 0: (13)

If we assume that the propagation is predominantly perpen-

dicular, i.e., k2
z � k2

y ; the above equation takes a simpler

form

1þ
x2

pe

k2
yv
02
Fe

þ fi �
x
0
i

x�
�

x2
pd

x2 þ x2
Jd

¼ 0; (14)

where

x
0

i ¼
x2

pi

X0iLiky
and fi ¼

x2
pi

X2
0i

:

From Eq. (14), we notice that the drift wave may become

unstable due to the presence of dust particles satisfying the

certain threshold conditions for both the inhomogeneous

plasma (i.e., x
0
i 6¼ 0) and the homogeneous (i.e., x

0
i ¼ 0). In

the absence of dust particles, we only obtain the real oscilla-

tions in the former case while in the latter no wave would

exist. We also note that for the plasma system satisfying

above assumptions (see Appendix A and Eq. (14)), the effect

of streaming will appear only if the inhomogeneities in both

the ambient magnetic and the equilibrium density are

present.

We may rewrite the above Eq. (14) as

0 ¼ x3 � ðkyv0 þ x
0

i=fiFÞx2 þ xðx2
Jd � x2

dlh=FÞ

�
�
ðkyv0 þ x

0

i=fiFÞðx2
Jd � x2

dlh=FÞ

þ ðx2
dlh=FÞðx0

i=fiFÞ
�
;

(15)

where

F ¼ 1þ 1

fi
þ

x2
pe

fik2
yv
02
Fe

; xdlh ¼
xpdX0i

xpi
:

The above equation becomes cubic in x due to inhomogene-

ities and gives three roots. We observe that one root remains

always real whereas the other two roots can become complex

if the discriminant of the cubic equation becomes negative.

One of them would give the instability called Jeans instabil-

ity for inhomogeneous streaming dusty magnetoplasma satis-

fying the threshold condition. Then, the other root would
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give damping along with the negative real frequency, which

is unphysical and is thus ignored.

In order to get the exact threshold condition for Jeans

instability, we use intersection method.22 We split this cubic

equation into a cubic and a parabolic function and then find

out the intersection points for roots. The mathematical for-

mulation of this intersection method is given in Appendix B.

We note that the instability would occur only if the

y-component of the vertex point of parabola (i.e., minima) is

greater than zero. Thus, the resultant threshold condition in

Eq. (B6) is given by

ðx2
Jd � x2

dlh=FÞ > 2ðkyv0i þ x
0

i=fiFÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx

2
dlh=FÞðx0

i=fiFÞ
ðkyv0i þ x0

i=fiFÞ3

s
� 1

 !
:

(16)

The above threshold condition contains modification due to

the inhomogeneities in the equilibrium density and in the am-

bient magnetic field. It is evident that both the density inho-

mogeneity and the streaming velocity not only reduce the

growth rate of Jeans instability but also give rise to real oscil-

lations. Similarly, the quantum effects through both the Fermi

and the Bohm potentials also tend to stabilize the instability.

Further, we observe that the gravitational potential reduces the

real oscillations and that the ion streaming velocity v0i and the

effective quantum velocity v
0
Fe causes the drift waves to prop-

agate perpendicular to the ambient magnetic field.

We solve Eq. (15) numerically and present it graphically

in Fig. 1 for typical parameters34 (cgs system of units) for the

interiors of the neutron stars, magnet stars, and white dwarfs,

me ¼ 9:0� 10�28 g, mi ¼ 12mpðmp ¼ 1:672� 10�24gÞ; md

� 1015mi; noe ’ noi � 1027cm�3; nod ¼ 10�6noi; Z ¼ 103; Le

¼ Li � 1000 cm, and Bo ¼ 109G: We note that for these pa-

rameters, the last term in curly brackets of cubic Eq. (15)

becomes negligibly small and thus the equation reduces to

0 ¼ x3 � ðkyv0i þ x
0

i=fiFÞx2 þ xðx2
Jd � x2

dlh=FÞ

� fðkyv0i þ x
0

i=fiFÞðx2
Jd � x2

dlh=FÞg; (17)

which may be factorized as

fx2 þ ðx2
Jd � x2

dlh=FÞgfx� ðkyv0i þ x
0

i=fiFÞg ¼ 0: (18)

The first root gives the growth rate of Jeans instability as

c ¼ ðx2
Jd � x2

dlh=FÞ
1
2 (19)

with the threshold condition

x2
Jd�x2

dlh=F> 0 or

xpe

xpd

� �
xdlh

x2
dlh

x2
Jd

� 1þX2
0i

x2
pi

 !" #1

2

	 kyv
0

Fe:
(20)

The second root gives real oscillations propagating with the

streaming and the Fermi velocities as

xr ¼ kyv0i þ x
0

i=fiF: (21)

Eqs. (19) and (21) show that due to the presence of inhomo-

geneities, the real propagating oscillatory behavior is also

observed with the Jeans instability. We observe that the dust-

lower-hybrid wave and the quantum mechanical effects of

electrons tend to reduce the growth rate. We also note that

real frequency of self-gravitational drift waves increases

with the increase in both the inhomogeneities and the quan-

tum effects through the Fermi and the Bohm potentials.

The expression for the growth rate in Eq. (19) is differ-

ent from the previously derived result21 as it contains the

contribution of quantum effects of electrons instead of dust

grains. Thus, as a result, we obtain a new threshold condition

on wavenumber for the instability to occur. For the chosen

parameters, the general threshold condition given in Eq. (16)

also immediately reduces to the above condition given in

Eq. (20) because the second term in the square root becomes

negligibly small.

Eq. (15) is plotted in Fig. 1 for the above set of parame-

ters. We observe that the real frequency increases with the

increase of streaming velocity. We also note that for these

parameters, the values of the real frequency fulfill the condi-

tion of X0d � x < X0i:
For homogeneous plasma for which x

0
i ! 0, Eq. (14)

becomes

x2 ¼ �x2
Jd þ x2

dlh=F;

giving purely growing Jeans instability as

c ¼ ðx2
Jd � x2

dlh=FÞ
1
2:

If the gravitational potential is absent, Eq. (14)

1þ
x2

pe

k2
yv
02
Fe

þ fi �
x
0
i

x�
�

x2
pd

x2
¼ 0

or

FIG. 1. The graph of f ðxÞ=xpi vs x=xpi for Eq. (15). Solid curve is for Eq. (2)

and dotted curves are for Eq. (3) for set of parameters given after Eq. (16) with

variation of streaming velocity as (i) dotted for v0i ¼ 10�7c; (ii) small dashed

for v0i ¼ 3� 10�7c, (iii) large dashed for v0i ¼ 5� 10�7c:
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1� ðx
0
i=fiFÞ
x�

� x2
dlh=F

x2
¼ 0:

This is the same dispersion relation as derived by Salimullah

et al.23 and by letting x ¼ kyv0i þ d, where d� kyv0i, the

above equation becomes

1� ðx
0
i=fiFÞ
d

� x2
dlh=F

k2
yv

2
0i

1� 2d
kyv0i

� �
¼ 0:

The growth rate of drift wave is given by (x ¼ xr þ ic)

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�i jk3

yv
3
0

q
ffiffiffi
2
p

xpd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2
pd

8jx�i jkyv0

k2
yv

2
0i

x2
pd=F0

� 1

 !2
vuut ; (22)

where

F
0 ¼ 1þ

x2
pe

k2v02Fe

þ fi:

This growth rate of drift wave is more general with the

threshold condition

jx�i j >
xpd

2
ffiffiffi
2
p

kyv0

k2
yv

2
0i

x2
pd=F0

� 1

 !
: (23)

If we assume kyv0i � xpd=
ffiffiffiffiffi
F0
p

; it immediately reduces to the

result of Salimullah et al.,23 i.e.,

c ¼ xpiðkyv0iÞ
3
2ffiffiffi

2
p

xpd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyX0ijLij

p : (24)

B. For magnetized dust grains

If the dust is also magnetized, the dispersion relation Eq. (12)

takes the form

1þ
x2

pe

k2v
02
Fe

�
x2

pi

k2

k2
z

ðx�Þ2
�

k2
y

X2
0i

1� X0i

kyx�Li

� �" #

�
x2

pd

k2
z

x2
�

k2
y

X2
0d

" #

k2 þ k2
z

x2
�

k2
y

X2
0d

" #
x2

jd

¼ 0: (25)

For perpendicular propagation (i.e., kz ¼ 0), the above equa-

tion reduces to

1� ðx
0
i=fiFÞ
x�

þ x2
dlh=F

X2
0d � x2

jd

¼ 0

or

x ¼ kyv0i þ
ðx0

i=fiFÞ

1þ x2
dlh=F

X2
0d � x2

jd

 ! : (26)

From the above equation, it is evident that for the magne-

tized dust grains, we only obtain stable oscillations and that

these oscillations reduce with the increase in the gravita-

tional potential.

III. SUMMARY OF RESULTS AND DISCUSSION

We present the stability analysis of self-gravitational

electrostatic drift waves for a streaming non-uniform quantum

dusty magnetoplasma by using the quantum hydrodynamic

model of plasmas. Incorporating the effects of density inho-

mogeneity $n0a, streaming velocity v0a due to magnetic field

inhomogeneity $B0, Bohm potential, and the Fermi degener-

ate pressure, we first derive the general dispersion relation for

self-gravitational electrostatic drift waves and then simplify it

for two different frequency domains, i.e., Xd � x < Xi

(unmagnetized dust) and x� Xd < Xi (magnetized dust).

For both frequency domains, the effects of density inhomo-

geneity give rise to real oscillations and the ion streaming veloc-

ity v0i and the effective quantum velocity provide the source to

propagate these oscillations perpendicular to the ambient mag-

netic field. This oscillatory behavior of self-gravitational electro-

static waves increases with increase in inhomogeneities and

decreases with increase in quantum effects through both the

Bohm potential and Fermi potential and in gravitational potential.

We also note that for the magnetized case, the available

free energy through density inhomogeneity and the streaming

velocity is not sufficient to make the drift waves unstable.

However, only for the unmagnetized case, the electrostatic

drift waves may become unstable under appropriate condi-

tions. These unstable self-gravitational drift waves give rise to

Jeans instability, and by using the intersection method for

solving cubic equation, we also determine the minimum

threshold condition for Jeans instability. We also note that the

inhomogeneity in the ambient magnetic field (equilibrium

density) through streaming velocity (diamagnetic drift veloc-

ity) suppresses the Jeans instability depending upon the char-

acteristic scale length of these inhomogeneities. On the other

hand, the dust-lower-hybrid wave and the quantum mechani-

cal effects of electrons tend to reduce the growth rate.

For the unmagnetized case, we further simplify the dis-

persion relation for growth rate in some limiting cases, e.g.,

in the absence of gravitational potential, we obtain a new dis-

persion relation for the growth rate of drift wave instability

in non-uniform quantum dusty magnetoplasma, which incor-

porates the quantum effects through electrons. We also

retrieve the growth rates of Jeans instability in a homogene-

ous dusty magnetoplasma.

Our results in this paper may be useful for the study of

Jeans instability and the possible drift waves for the nonuniform

streaming dusty quantum plasmas, which may occur, e.g., in

dense astrophysical systems, i.e., the interiors of white dwarfs

and neutron stars,13–15 laser-produced plasmas,16–19 and in the

laboratory plasmas.11,12
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APPENDIX A: ZEROTH ORDER EQUATIONS

Assuming that there is no external electric field E0; con-

stant streaming velocity v0, and equilibrium density is space

dependent only, we may write the momentum equation as

0 ¼ qa

c
ðv0a � B0Þ �

ckBTFa

n0a
� �h,2

4n0ama

� �
$n0a: (A1)

The equation of continuity as

v0a � $n0a ¼ 0 (A2)

and the Maxwell curl equation as

c$� B0 ¼ 4p
X

n0aqoav0a: (A3)

Taking cross product of Eq. (A1) with B0; we obtain

v0a ¼
c½ckBTFa


qan0a

B0 � $n0a

B2
0

� �
: (A4)

Using Eq. (4) in Eq. (A3), we get

$� B0 ¼ 4p
X

ckBTFa
B0 � $n0a

B2
0

� �
: (A5)

Comparing Eqs. (A4), v0a takes the form

v0a ¼
cckBTFa

qan0a

B0 � $n0a

B2
0

� �
¼ c

4pqan0a
$� B0: (A6)

APPENDIX B: INTERSECTION METHOD FOR CUBIC
EQUATION

Eq. (15) may be rewritten as

x3 � Bx2 þ xC� G ¼ 0; (B1)

where

B ¼ ðkyv0 þ x
0

i=fiFÞ; C ¼ ðx2
Jd � x2

dlh=FÞ;
D ¼ ðx2

dlh=FÞðx0
i=fiFÞ

and

G ¼ BCþ D:

The coefficients B and D are always positive for our consid-

ered plasma system. For Jeans instability, the coefficient C is

also positive. Therefore, all coefficients are kept positive in

the above equation.

Now we use the intersection method for a cubic function

f ðxÞ ¼ x3 (B2)

and the parabolic function

f ðxÞ ¼ Bx2 � xCþ G: (B3)

The above equation may be written as a standard equation of

parabola

x� C

2B

� �2

¼ 4
1

4B

� �
y� G� C2

4B

� �� �
(B4)

with the vertex point

ðh; kÞ ¼ C

2B
;G� C2

4B

� �
:

We note that the instability will occur when the y-intercept

of vertex point will be greater than zero, which is

G� C2

4B
> 0 (B5)

or

ðx2
Jd � x2

dlh=FÞ2 � 4ðkyv0i þ x
0

i=fiFÞ2ðx2
Jd � x2

dlh=FÞ
� 4ðkyv0i þ x

0

i=fiFÞðx2
dlh=FÞðx0

i=fiFÞ < 0:

By solving the above quadratic equation, one root gives the

threshold condition

ðx2
Jd � x2

dlh=FÞ > 2ðkyv0i þ x
0

i=fiFÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx

2
dlh=FÞðx0

i=fiFÞ
ðkyv0i þ x0

i=fiFÞ3

s
� 1

 !
:

(B6)

Here, we have selected one root which gives the Jeans insta-

bility and neglected the other because that gives the negative

real frequency, which is unphysical.
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