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Abstract In the present work, we have considered the non-
linear effects due to trapped electrons in an inhomogeneous
degenerate quantum plasma. The formation of drift solitary
structures has been investigated for both fully and partially
degenerate plasmas. The Sagdeev potential approach has
been employed to obtain arbitrary amplitude solitary struc-
tures. Interestingly, for a fixed value of density, not only
compressive but rarefactive solitary structures have been ob-
tained for a certain temperature range. Furthermore, it has
been observed that the drift solitary structures exist only for
the case when the drift velocity is smaller than the velocity
of the nonlinear structure. The theoretical results obtained
have been analyzed numerically for the parameters typically
found in white dwarfs and the relevance of the results with
regard to white dwarf asteroseismology is also pointed out.

Keywords Drift wave · Solitary structure · Trapped
electron

1 Introduction

Degenerate plasmas are of special relevance in the investi-
gation of dense astrophysical plasmas (Shukla and Ali 2004;
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Reach et al. 2004) such as those found in white dwarfs, neu-
tron stars and giant planets. Degenerate plasmas have also
relevance in the laboratory high intensity laser-produced
plasma (Marklund and Shukla 2006) as well as in micro-
electronics (Markowich et al. 1990). In the last few years,
a substantial volume of literature has been produced which
has addressed different issues in degenerate plasmas. Most
of the investigations have made use of the quantum hydro-
dynamic (QHD) model, which is based on the Schrodinger-
Poisson formulation, and is a generalization of the clas-
sical fluid model of plasmas (Manfredi 2004). Although
this model has the expected drawback that it fails to ex-
plain kinetic effects like Landau damping that are driven by
resonant wave-particle interaction, nevertheless it has been
extensively applied to investigate the linear and nonlinear
phenomenon of different wave modes in degenerate quan-
tum plasmas (Haas et al. 2003; Mamun and Shukla 2011;
Ali et al. 2007; Mamun et al. 2011).

Many investigations have also been carried out to study
the linear and nonlinear wave propagation in inhomoge-
neous degenerate quantum plasmas using the QHD model.
Kendl and Shukla (2011) studied drift wave turbulence for
a degenerate inhomogeneous magnetoplasma and investi-
gated the growth rate of the collisional drift wave insta-
bility. It was observed that the quantum effects enhanced
the growth rate of the collisional drift wave instability.
Masood et al. (2009a, 2009b) studied nonlinear drift ion
acoustic waves in inhomogeneous quantum magnetoplasma
and showed the variation of shock strength with quantum
diffraction term and positron concentration. Naeem et al.
(2011) investigated low frequency wave propagation in in-
homogeneous degenerate plasma and derived a modified
dispersion relation for magnetic electron-drift vortex mode.
Investigations on dust acoustic vortices involving quantum
hydrodynamic model showed that the dust drift dissipative
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instability could grow if the parallel velocity shear is neg-
ative in an inhomogeneous quantum magnetoplasma (Ma-
sood et al. 2008).

Gurevich (1967) for the first time used Vlasov’s equa-
tion along with Maxwell’s equations to study adiabatic trap-
ping of electrons at a microscopic level as a nonlinear phe-
nomenon. In this paper, it was shown that 3/2 order nonlin-
earity results due to adiabatic trapping instead of the usual
quadratic nonlinearity. Nonlinear dynamics of ion cyclotron
waves was investigated by Abbasi et al. (1999) and it was
reported that the conditions for the existence of these waves
change in the presence of the trapped particle distribution.
Moreover, it was shown that the characteristic length of the
modulation of the waves also gets modified by the trap-
ping of particles. The effect of trapping in partially and
fully degenerate plasmas was investigated by Shah et al.
(2010) and a new type of nonlinearity was found that caused
the formation of both compressive and rarefactive solitary
structures under certain conditions. Recently, in degenerate
quantum self-gravitating dusty plasmas, Ayub et al. (2011)
used Sagdeev potential approach and investigated the soli-
tary structures in the presence of trapped electrons and found
that the features of the solitary wave structures are affected
by the variation in Mach number and ion temperature. Shah
et al. (2011) employed relativistic Fermi-Dirac distribution
for trapped electrons and studied soliton formation for ar-
bitrary amplitude perturbations in case of relativistic de-
generate quantum plasmas and pointed out the relevance of
their study in strong laser plasma interactions and in under-
standing astrophysical observations of dense objects such as
white dwarfs.

In this paper, for the first time, we investigate the non-
linear drift waves by taking trapping of electrons in inhomo-
geneous degenerate quantum plasmas. In Sect. 2, we present
the basic set of nonlinear equations of the system under con-
sideration. Linear dispersion relation of the quantum drift
wave in inhomogeneous quantum plasma is presented in
Sect. 3. In Sect. 4, Sagdeev potential for arbitrary amplitude
perturbations is derived. In Sect. 5, results are presented and
discussed. Finally in Sect. 6, the main findings of the paper
are recapitulated.

2 Governing equations of our model

We consider electrostatic wave propagation in inhomoge-
neous quantum plasma in the presence of a uniform mag-
netic field taken along the z-direction, i.e. B0 = B0ẑ. The
plasma is supposed to be consisting of electrons and ions.
The background number density is inhomogeneous and is
assumed to be in the negative x-direction. We consider de-
generate electrons which are adiabatically captured (Lan-
dau and Lifshitz 1981) in a potential well that vanishes at

infinity. If potential energy of the well is u = −eϕ, then
the energy of the electrons is given by ε = (p2/2m) + u,
where p and m and are the momentum and mass of elec-
trons respectively. The normalized occupation number for
the Fermi-Dirac distribution after integration over spherical
polar coordinates and change of variables from momentum
p to energy ε is given by (Landau and Lifshitz 1980)

N =
√

2V m3/2

π2�3

∫ ∞

0

√
εdε

e[ε−(μ+eϕ)]/T + 1
(1)

where ϕ(r, t) is the self-consistent potential field which traps
the electrons and μ is the chemical potential. Electrons with
ε < 0 and ε > 0 are the trapped and free electrons respec-
tively in a single potential well which vanishes at infinity.
Trapping occurs when the momentum p = p1 = (2m|u|)1/2,
where the condition ε = 0 is fulfilled and separatrix motion
occurs. Setting U = eϕ+μ and using the trapping condition
ε − U = 0, and making a change of variables z = ε − U/T ,
we obtain the following expression (following Landau and
Lifshitz 1980).

n(r, t) = 8
√

2πm3/2T

(2π�)3

[∫ U/T

0
(U − T z)1/2 dz

+
∫ ∞

0

(U + T z)1/2 − (U − T z)1/2

ez + 1
dz

]
(2)

The first integral in Eq. (2) is evaluated in a straightforward
manner and represents the effect of trapped particles; how-
ever, the second integral is evaluated only approximately by
taking the small temperature limit and expanding the func-
tions in the numerator. We note here that the upper limit
of the second integral is obtained as u/T and following
Landau and Lifshitz (1980) in the small temperature limit
u/T → ∞. Thus upon integration, we obtain for the nor-
malized number density ne(r, t) = ne/ne0.

Following the procedure outlined in Shah et al. (2010),
we arrive at the following expression of the total normalized
number density for the free as well as the trapped particles

ne(r, t) = (1 + Φ)
3
2 + T 2(1 + Φ)−

1
2 (3)

where ne(r, t) is the normalized total density defined as
ne(r, t) = ne/noe(x), Φ is the normalized electrostatic po-
tential, and T is the normalized electron temperature and
normalized as Φ = eφ/εF (x) and T (x) = πT /2

√
3εF (x)

and εF (x) = P 2
F /2m = �

2/2m(3π2)2/3n
2/3
0 (x) is the Fermi

energy, and p,m and e are the momentum, mass, and charge
of electrons respectively. For fully degenerate plasma, the
background number density is noe(x) and if plasma is par-
tially degenerate then the background number density will
be noe(x) = no(x)(1 + T 2). The first term in Eq. (3) with
3/2 order nonlinearity represents the effect of trapping and
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the second term is obtained by taking into account the small
temperature effects for partially degenerate plasma.

In order to develop nonlinear equation for arbitrary am-
plitude perturbations, the normalized perturbed number den-
sity for trapped electrons is given as

ñe

no(x)
= (1 + Φ)

3
2 + T 2(1 + Φ)−

1
2 − (

1 + T 2) (4)

The Poisson’s equation in normalized form is

∇2(1 + Φ) = 1

noλ
2
Fe

(ne − ni) (5)

where λFe(x) =
√

εF

4πnoe2 is the electron Fermi wavelength.

Using Eq. (5), we obtain the following expression for the
perturbed number density

ñi

no(x)
= (1 + Φ)

3
2 + T 2(1 + Φ)−

1
2 − λ2

Fe∇2(1 + Φ)

− (
1 + T 2) (6)

The ions due to the largeness of their mass are treated clas-
sically and their equation of motion is given by

mini(∂t + vi · ∇)vi = eni

(
E + 1

c
vi × Bo

)
(7)

where E = −∇φ is the electrostatic field and ni , mi and
e are the density, mass and charge of the ions respectively.
Equation (7) is valid as long as the wave period is much
larger than the time scale for the ion correlations as well as
the work frequency is much larger than the damping rate
caused by the ion fluid shear viscosity (Shukla and Eliasson
2011; Mithen et al. 2011; Eliasson and Shukla 2011). The
perpendicular component of velocity from Eq. (7) can be
written as (Masood et al. 2009a)

vi⊥ = c2
s

Ωci

(
ẑ × ∇(1 + Φ)

) − ρ2
i ∂t∇⊥(1 + Φ) (8)

where Ωci = eBo/cmi is the ion cyclotron frequency,
cs(x) = √

εF /mi is the quantum ion acoustic speed, and
ρi(x) = cs/Ωci is the ion Larmor radius at electron temper-
ature TF (x) = �

2/2mkB(3π2)2/3n
2/3
o (x) in the degenerate

plasma. Here (⊥) means perpendicular to Bo.
The ion continuity equation reads as

∂t

(
ñi

no

)
+ 1

no

∇ · (nivi) = 0 (9)

Using Eq. (6) and Eq. (8) in Eq. (9), we get

∂t (1 + Φ)
3
2 + T 2∂t (1 + Φ)−

1
2 − λ2

Fe∂t ∂
2
y (1 + Φ)

+ 3

2
v∗∂y(1 + Φ) + 3

5
v∗∂y(1 + Φ)

5
2

− v∗∂y(1 + Φ)
3
2 − T 2v∗∂y(1 + Φ)

1
2

− T 2v∗∂y(1 + Φ)−
1
2 − ρ2

i ∂t ∂
2
y (1 + Φ) = 0 (10)

where v∗ = 2cεF κni/3eBo is the diamagnetic drift velocity
in degenerate quantum plasma and κni = −1/nio(∂nio/∂x)

is the inverse scale length of the density inhomogeneity.

3 Linear analysis

The dispersion relation of partially degenerate quantum drift
waves can be found by linearizing Eq. (10) and assuming
sinusoidal perturbation, we get

ω =
3
2ω∗

3
2 − 1

2T 2 + (λ2
Fe + ρ2

i )k2
y

(11)

where ω∗ = v∗ky is the drift frequency, ω is the wave fre-
quency, and ky is the wave number. Here 3/2 term appears
due to the trapping effect and T 2/2 term due to small tem-
perature effects. The term λ2

Fek
2
y term appears because of

charge separation, and ρ2
i k2

y term arises when finite Larmor
radius effect is taken into account. If we ignore the trapping
and temperature effects then we are left with ordinary dis-
persion relation for drift waves. Here we see that the linear
dispersion relation is modified due to trapping and finite but
small temperature.

4 Nonlinear analysis

In order to find localized solution, we choose a coordinate ξ

in a moving frame of reference such that ξ = y − ut , where
“u” is an arbitrary velocity of the nonlinear structure moving
with the frame. Equation (10) in the transformed frame can
be written as

dξ (1 + Φ) − Adξ (1 + Φ)
3
2 + 2

5
dξ (1 + Φ)

5
2 + Bd3

ξ (1 + Φ)

− AT 2dξ (1 + Φ)−
1
2 − 2

3
T 2dξ (1 + Φ)

1
2 = 0 (12)

where

A = (1 + v∗
u

)

3v∗/2u
, B = (λ2

Fe + ρ2
i )

3v∗/2u

In order to find an expression of Sagdeev potential in
the inhomogeneous quantum magnetoplasma, we integrate
Eq. (11) and apply the boundary conditions that when ξ →
∞, Φ → 0, we get
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Fig. 1 Variation in Sagdeev
potential V (Φ) with increasing
magnetic field and the
corresponding solitary
structures. Dotted lines for
B0 = 1.01 × 109 Gauss and
solid lines for B0 = 1 × 109

Gauss. Other parameters are
n = 2.5 × 1026 cm−3 and
κn = −0.1 cm−1

d2
ξ Φ = A

B
(1 + Φ)

3
2 − 2

5B
(1 + Φ)

5
2 − 1

B
(1 + Φ)

+ AT 2

B
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1
2 − 2T 2

3B
(1 + Φ)

1
2

− 1

B

[
A

(
1 + T 2) − 7

5
+ 2T 2

3

]
(13)

This equation enables us to investigate solitary structures in
a co-moving frame of reference. In order to investigate soli-
tary structure, we express Eq. (13) in the form of an energy
integral in the following manner:

1

2
(dξΦ)2 + V (Φ) = 0 (14)

where V (Φ) is the Sagdeev Potential (Sagdeev 1996) which
in our case is

V (Φ) = 1

2B
(1 + Φ)2 − 2A

5B
(1 + Φ)

5
2 + 4

35B
(1 + Φ)

7
2

− 2AT 2

B
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1
2 − 4T 2

9B
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3
2

+ 1

B

[
A

(
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5
+ 2T 2

3

]
(1 + Φ)

+ 1

B

(
11

14
− 3

5
A + AT 2 − 2

9
T 2

)
(15)

Here the constant of integration is evaluated using boundary
condition given earlier. Equation (15) is the expression of
the Sagdeev potential for arbitrary amplitude solitons in a
partially degenerate quantum magnetoplasma. It is evident
from Eq. (15) that V (Φ) = dV (Φ)

dΦ
= 0, when Φ = 0.
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Fig. 2 Variation of Sagdeev
potential V (Φ) for fully and
partially degenerate quantum
plasma and the corresponding
solitary structures. Dotted lines
are for T = 0.2 and solid lines
are for T = 0. Other parameters
are B0 = 1 × 109 Gauss,
n = 2.15 × 1026 cm−3 and
κn = −0.1 cm−1

5 Results and discussion

In this section, we numerically investigate the dependence
of Sagdeev potential of the quantum drift wave on the am-
bient magnetic field, temperature and ratio of drift to soli-
ton velocity in co-moving frame. In highly dense plasmas
like in dense astrophysical objects such as neutron stars
and white dwarfs, the plasma densities are much higher
and quantum effects can be ignored. It is pertinent to men-
tion here that so far there are about two hundred obser-
vations of pulsating white dwarf stars. The pulsation pe-
riod typically falls in the range from 2 to 35 minutes and
can be attributed to non-radial gravity (g-mode) oscilla-
tion modes. The observations and theory of these pulsa-
tions is now well established, and the discipline of white-

dwarf asteroseismology is used to study their rotation pe-
riod, mass, equation of state, etc. (Winget and Kepler 2008;
Fontaine and Brassard 2008). Moreover, the theory predicts
the existence of acoustic modes (p-modes) where the ions
provide the inertia and mainly the electron degeneracy pres-
sure provides the restoring force. Typical oscillation peri-
ods of globally propagating p-modes are set by the time
for the wave to travel across the star and lies in the range
of a few seconds, two orders of magnitude shorter than
g-mode oscillations. These modes were early predicted (Os-
triker 1971), but are yet to be observed (Silvotti et al. 2011).
However, the lack of observation does not imply that these
modes are not excited. Recently, it has been suggested that
large amplitude electrostatic structures could be excited in
extreme events, such as supernova explosions at the outer
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Fig. 3 Variation in Sagdeev
potential V (Φ) with increasing
temperature and the
corresponding solitary
structures. Dotted lines are for
T = 0.4 and solid lines are for
T = 0.3. Other parameters are
B0 = 1 × 109 Gauss,
n = 2.15 × 1026 cm−3 and
κn = −0.1 cm−1

shells of the star or during collisions of the white dwarf
with other astrophysical bodies (Eliasson and Shukla 2012).
We, therefore, choose here the parameters that are typi-
cally found in the white dwarfs, i.e. n0 ∼ 1026–1028 cm−3

and B0 ∼ 109–1011 G (Koester and Chanmugam 1990;
Masood et al. 2011; Shah et al. 2012). Graphical analysis
of frequency of drift wave given by Eq. (10) is presented
by plotting the wave number ky and frequency ω. Figure 1
shows the effect of increasing magnetic field on the fre-
quency of the drift wave. It is found that an increase in the
magnetic field increases the frequency of drift wave. It is due

to the fact that by increasing magnetic field the ion Larmor
radius ρi in the denominator of dispersion relation decreases
more rapidly than the drift velocity v∗ in the numerator.

In Figs. 1–4, we plot the Sagdeev potential V (Φ) against
the normalized electrostatic potential Φ . The depth of
Sagdeev potential found to increase with the increasing
magnetic field. This is due to the reason that an increase
in magnetic field increases the coefficient of nonlinearity
and decreases the coefficient of dispersion as shown Fig. 1.

In our investigation on partially degenerate quantum
plasma, we find that (within the range of quantum regime
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Fig. 4 Variation in Sagdeev potential V (Φ) with decreasing the ra-
tio v∗/u and the corresponding solitary structures. Dotted lines are for
v∗/u = 0.86 and solid lines are for v∗/u = 0.88. Other parameters are
B0 = 1 × 109 Gauss, n = 2 × 1026 cm−3 and κn = −0.1 cm−1

i.e. T < 1) by increasing the temperature T , for a fixed num-
ber density, the depth of Sagdeev potential decreases. This
is due to the fact that the nonlinear terms appearing due to
the small temperature effects becomes more significant. In-
terestingly in our results, for a fixed number density, we get
a compressive solitary structure when T < 0.3 and therefore
for fully degenerate quantum plasma we get only compres-
sive solitary structure (Fig. 2). However we get a rarefac-
tive solitary wave along with a compressive solitary wave
(Witt and Lotko 1983; Mamun 1997) for 0.3 < T < 0.6.
For T > 0.6, no solitary structure is obtained. Note that a
compressive solitary structure is obtained for Φ > 0 and for
negative values of Φ , we get a rarefactive one.

In Fig. 3, it is found that compressive and rarefactive soli-
tary waves are not symmetrical. The depth of rarefactive part
is greater in comparison to the depth of compressive part. Fi-
nally, Fig. 4 explores how the ratio of drift to soliton velocity
in co-moving frame, i.e. v∗/u affects the solitary structure.
It is found that in our case the solitary structure doesn’t exist
for v∗/u > 1 but in the limit when v∗/u < 1, the depth of
Sagdeev potential increases with the increase in the velocity
of the nonlinear structure in the co-moving frame.

6 Conclusion

To summarize, we have investigated the formation of drift
solitary structures by using the trapped electrons in inhomo-
geneous degenerate quantum plasma. Such investigations, to
the best of our knowledge, have been carried out for the first
time, and the results of our work should help in understand-
ing astrophysical observations of dense objects like white
dwarfs. Linear and nonlinear propagation characteristics of
drift solitary structures have been investigated by consider-
ing degenerate electrons and classical ions. In this regard,
we have numerically investigated our theoretical results for
different parameter values such as magnetic field, tempera-
ture and inhomogeneity scale length. The results have been
presented graphically illustrating the formation of solitary
wave structures and their dependence on the different pa-
rameters mentioned above. One of the important findings
of the paper has been that, for a fixed density, the partially
degenerate quantum plasma with trapped electrons admits
both rarefactive and solitary wave structures for a range of
temperature T . Finally, it has been observed that the solitary
structure can only exist for the case when the diamagnetic
drift velocity is smaller than the velocity of the nonlinear
structure. The relevance of the present results with regard to
the pulsating white dwarfs has also been pointed out.

References

Abbasi, H., Tsintsadze, N.L., Tskhakaya, D.D.: Phys. Plasmas 6, 2373
(1999)

Ali, S., Moslem, W.M., Shukla, P.K., Kourakis, I.: Phys. Lett. A 366,
606 (2007)

Ayub, M., Shah, H.A., Qureshi, M.N.S.: Phys. Scr. 84, 045505 (2011)
Eliasson, B., Shukla, P.K.: Europhys. Lett. 97, 15001 (2011)
Eliasson, B., Shukla, P.K.: Europhys. Lett. 97, 15001 (2012)
Fontaine, G., Brassard, P.: Publ. Astron. Soc. Pac. 120, 1043 (2008)
Gurevich, A.V.: Sov. Phys. JETP 53, 953 (1967)
Haas, F., Garcia, L.G., Goedert, J., Manfredi, G.: Phys. Plasmas 10,

3858 (2003)
Kendl, A., Shukla, P.K.: Phys. Lett. A 375, 3138 (2011)
Koester, D., Chanmugam, G.: Rep. Prog. Phys. 53, 837 (1990)
Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I. Butterworth-

Heinemann, Oxford (1980)
Landau, L.D., Lifshitz, E.M.: Physical Kinetics. Pergamon Press, New

York (1981)
Mamun, A.A.: Phys. Rev. E 55, 1852 (1997)
Mamun, A.A., Shukla, P.K.: Europhys. Lett. 94, 65002 (2011)
Mamun, A.A., Shukla, P.K., Mendis, D.A.: J. Plasma Phys. 78, 143

(2011)
Manfredi, G.: Fields Inst. Commun. 36, 162 (2004)
Marklund, M., Shukla, P.K.: Rev. Mod. Phys. 78, 491 (2006)
Markowich, A., Ringhofer, C., Schmeiser, C.: Semiconductor Equa-

tions. Springer, Vienna (1990)
Masood, W., Mirza, A.M., Nargis, S.: Phys. Plasmas 15, 103703

(2008)
Masood, W., Karim, S., Shah, H.A., Siddiq, M.: Phys. Plasmas 16,

112302 (2009a)
Masood, W., Karim, S., Shah, H.A., Siddiq, M.: Phys. Plasmas 16,

042108 (2009b)



622 Astrophys Space Sci (2014) 350:615–622

Masood, W., Eliasson, B., Shukla, P.K.: Phys. Rev. E 83, 105401
(2011)

Mithen, J.P., Daligault, J., Gregori, G.: Phys. Rev. E 83, 105401 (2011)
Naeem, I., Mirza, A.M., Masood, W., Farid, T.: J. Plasma Phys. 77, 375

(2011)
Ostriker, J.P.: Annu. Rev. Astron. Astrophys. 9, 535 (1971)
Reach, W.T., Kuchner, M.J., Hippel, T.V., Burrow, A., Mullally, F.,

Kilic, M., Winget, D.E.: Astrophys. J 624, L161 (2004)
Sagdeev, R.Z.: Review of Plasma Physics, vol. 4. Consultants Bureau,

New York (1996)
Shah, H.A., Qureshi, M.N.S., Tsintsadze, N.L.: Phys. Plasmas 17,

032312 (2010)

Shah, H.A., Masood, W., Qureshi, M.N.S., Tsintsadze, N.L.: Phys.
Plasmas 18, 102306 (2011)

Shah, H.A., Iqbal, M.J., Tsintsadze, N.L., Masood, W., Qureshi,
M.N.S.: Phys. Plasmas 19, 092304 (2012)

Shukla, P.K., Ali, S.: Phys. Plasmas 11, 113401 (2004)
Shukla, P.K., Eliasson, B.: Rev. Mod. Phys. 83, 885 (2011)
Silvotti, R., Fontaine, G., Pavlov, M., et al.: Astron. Astrophys. 525,

A64 (2011)
Winget, D.E., Kepler, S.O.: Annu. Rev. Astron. Astrophys. 46, 157

(2008)
Witt, E., Lotko, W.: Phys. Fluids 26, 2176 (1983)


	Drift solitary structures in inhomogeneous degenerate quantum plasmas with trapped electrons
	Abstract
	Introduction
	Governing equations of our model
	Linear analysis
	Nonlinear analysis
	Results and discussion
	Conclusion
	References


