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Nonlinear circularly polarized Alfv�en waves are studied in magnetized nonrelativistic, relativistic,

and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov

equations are derived and the Sagdeev potential approach is used to investigate the properties of

the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of

electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic

case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and

super- and sub-Alfv�enic solitary structures are obtained for different polarizations and under

different relativistic regimes. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932072]

I. INTRODUCTION

The nonlinear dynamics of plasma waves in isotropic as

well as magnetoactive plasmas has been fairly well studied

in the past forty years or so.1–13 More recently, a large body

of literature devoted to collective behavior in degenerate or

quantum plasmas has been produced14 (for a detailed review,

see Ref. 14 and the references therein). The applications of

the quantum systems include microelectronics,14 plasmas

produced by laser matter interactions, and very dense astro-

physical objects15–17 (e.g., white dwarfs, neutron stars, etc.),

and thin metal films.18–25 In degenerate electron plasma,

quantum effects play a significant role26–29 since with an

increase in electron number density the electron Fermi

energy cannot be ignored in comparison to the electron rest

mass energy, and the electron speed on the Fermi surface

can become relativistic for highly dense plasmas. It is well

known that the equation of state for the degenerate elec-

trons30 for the nonrelativistic degenerate electrons has the

form P / ne
5=3, which changes to P / ne

4=3 for a strongly

relativistic case.31 The relativistic effects are prominent in

super-dense astrophysical objects (white dwarfs and magnet-

ars), with electron number density 1032m�3 and beyond.32–34

Since the electron degeneracy pressure depends on the num-

ber density of electrons and not on the temperature,35 is what

supports a white dwarf against gravitational collapse.36 It is

thought that the most common constituents of the interior

of white dwarf stars are fully ionized helium, carbon, and

oxygen.37,38 It was predicted by Blacket39 and Ginzburg40

that strong magnetic field (of the order of 1 MG) is present

in white dwarfs stars.

The quantum hydrodynamic (QHD) model in plasma is

the modified form of classical fluid model to investigate the

quantum effects.41 In this model, the equations of state are

modified by transport of momentum and energy of charged

particles with quantum statistical pressure through Fermi

pressure and quantum tunneling effect through Bohm poten-

tial.42 Electromagnetic solitons in degenerate relativistic

electron-positron plasma were studied,43 and the existence of

soliton solution in non-relativistic as well as in relativistic

degenerate plasma was shown by Marklund and Brodin.44

The aforementioned authors studied spin solitons in

electron-positron magnetized plasma and obtained the modi-

fied Korteweg-de Vries (KdV) equation for Alfv�en solitary

structures with spin effects. Ion-acoustic solitons in a fully

relativistic plasma were studied,44 and it was found that the

features of ion-acoustic solitons are considerably modified in

a relativistically degenerate plasma.

In the present work, we will use the full set of nonlinear

QHD equations for a relativistically degenerate electron ion

plasma to investigate circularly polarized Alfv�en waves via

the Zakharov equations. The organization of paper is as

follows. In Section II, mathematical formulation is given and

the linear dispersion relation for Alfv�en waves is derived. In

Section III, the derivation of nonlinear relativistic electro-

magnetic Sagdeev potential is performed, which is necessary

for the discussion of soliton solution for relativistic degener-

ate circularly polarized Alfv�en waves. In Section IV, the

main results of the paper are discussed, and the summary of

the work is given in Section V.

II. MATHEMATICAL FORMULATION

As stated in the Introduction, we consider a two compo-

nent electron-ion magnetoplasma. The background magnetic

field is taken in the z direction B0 ¼ B0ẑ, and propagation is

considered only in the parallel direction. The electrons are

considered inertialess as we look at low frequency Alfv�en

waves only. The electrons are taken to be degenerate and

fully relativistic whereas the ions are taken be cold and are

treated classically owing to their large mass. The equations

of motion and continuity for both components of charged

particles along with Maxwell’s equations are used to

construct an effective one fluid model to study the Alfv�en

waves in the plasma. The fundamental set of equations is as

follows.
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The electrons are considered to be inertialess, which

is valid approximation in the case of low frequency,

and, therefore, no subsequent relativistic mass correc-

tions are needed here. Thus, the equation of motion for

electron is

0 ¼ �neeE� eneðve � BÞ � $peR: (1)

Here, ne is the electron number density, e is the magnitude of

the electron charge, ve is electron fluid velocity, E and B are

the electric and magnetic field vectors, and peR is the relativ-

istic electron degenerate pressure, which will be introduced

later.

The momentum equation for inertial cold ions is

mini
dvi

dt
¼ ZeniEþ Zeni vi � Bð Þ; (2)

where mi is the mass of ions, ni is the number density of

ions, Z is the charge number of ion, and vi is the ions fluid

velocity.

The ion continuity equation is

@ni

@t
þ $ � nivið Þ ¼ 0: (3)

By ignoring the displacement current (as we consider low

frequency waves only), the Maxwell’s equations are

$� E ¼ � @B

@t
; (4)

$� B ¼ l0jP: (5)

Here, l0 is the magnetic permeability. The current density is

given by

jP ¼ eðZnivi � neveÞ: (6)

By following a standard procedure,45 we obtain the normal-

ized magnetic induction equation

@B

@t
¼ $� vi � Bð Þ � v2

A

X
$� $� Bð Þ � Bð Þ: (7)

And the one fluid momentum equation is given by

dvi

dt
¼ v2

A $� Bð Þ � B� $peR

mini
: (8)

Here, vA ¼
ffiffiffiffiffiffiffiffiffiffi

B0
2

l0 ni0mi

q
is the Alfv�en velocity and X ¼ ZeB0

mi
is

the ion gyro-frequency and PeR is the electron relativistic

pressure, the expression for which will be given later.

Now for circularly polarized waves, we take B6 ¼ Bx

6iBy and v6 ¼ vx6ivy. The upper and lower signs are used

for right and left circularly polarized forward propagating

Alfv�en waves. Also, expressing the convective fluid deriva-

tive as d
dt ¼ @

@tþ vi:$, the perpendicular and parallel compo-

nents of Eq. (8) are

@

@t
þ viz

@

@z

� �
v6i ¼ v2

A
@

@z
B6; (9)

@viz

@t
þ 1

2

@

@z
jvizj2 ¼ �

1

2
v2

A
@

@z
jBj2 �

@

@z
PeR

mini
: (10)

Eq. (7) can be written as

@B6

@t
¼ 7i

v2
A

X
@2

@z2
B6 þ

@

@z
v6i �

@

@z
vizB6ð Þ: (11)

Operating Eq. (11) by @
@tþ viz

@
@z

� �
and using Eq. (9) we

obtain

@2B6

@t2
þ viz

@2B6

@z@t

¼ 7i
v2

A

X
@3B6

@z2@t
þ viz

@3

@z3
B6

� �
þ v2

A
@2

@z2
B6

þ @2

@z@t
vizB6ð Þ � viz

@2

@z2
vizB6ð Þ: (12)

The quantities viz and ni are related via the continuity

equation

@ni

@t
þ $: nivizð Þ ¼ 0: (13)

Equations (10), (12), and (13) form a complete set of nonlin-

ear equations which relate B6, ni, and the parallel ion fluid

velocity viz.

We now briefly consider the linear dispersion relation

for circularly polarized Alfv�en waves by linearizing Eq.

(12). We note that ni and viz are taken to be constant within

the linear approximation and so we obtain

@2

@t2
� v2

A
@2

@z2
6i

v2
A

X
@3

@z2@t

� �
B6 ¼ 0 : (14)

By using a plane wave solution, we obtain from Eq. (14)

x27
xx2

A

X
� x2

A ¼ 0 : (15)

Here, xA ¼ kAvA, and kA, x are the wave number and fre-

quency. As xA

X � 1 for low frequency waves, Eq. (15) yields

x6 ¼ xA 17
xA

2X

� �
: (16)

This is the linear dispersion relation for finite amplitude

Alfv�en waves. We note here that this is the same expression

as obtained45 for classical plasma since quantum effects will

appear through the relativistic pressure, which plays an im-

portant role when nonlinear effects are accounted for in the

ensuing section.

III. NONLINEAR EVOLUTION EQUATION

In this section, we will derive the nonlinear evolution

equation and look for the possibility of formation of solitary

structures. We will derive the modified set of Zakharov

equations by using the full set of nonlinear equations given

by (10), (12), and (13).

We begin by incorporating a slowly varying amplitude

for fluctuating quantities in the following manner:
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B6 ¼ bðz; tÞ exp ½iðkAz� x6tÞ�; (17)

using the assumption xA

X � 1 and considering the scaling
@b
@t ’ b

s ;
@b
@z ’ b

vAs ; dviz ’ vAb2 , and dni ’ b2.45 Here, dni

and dviz are perturbed ion number density and parallel per-

turbed ion velocity.

We now use the full expression in Eq. (10) for the rela-

tivistic pressure given by30

PeR ¼
pm4

ec5

h3
ce 2c2

e � 3
	 


c2
e þ 1

	 
1
2 þ 3sinh�1 ceð Þ

h i
: (18)

By Taylor expansion Eq. (18) around ne ¼ ne0 in the expres-

sion for pressure and retaining the terms up to dne, Eq. (18)

takes the form

PeR ’ Pe0 þ
@PeR

@ne

� �
ne¼ne0

; ne ¼ Pe0 þ
2

3ce0

�Fedne (19)

and ne ¼ Zni

Here, ce0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2

eÞ
p

is the relativistic gamma factor

of an electron with ce ¼ pFe

mec and pFe ¼ 3h3ne

8p

� �1
3

is the mo-

mentum of the electrons on the Fermi surface.

Using expression (17) in Eq. (12) and combining the

equation of continuity and the parallel equation of motion

(i.e., Eqs. (10) and (13)) along with Eqs. (18) and (19), we

obtain

i
@b

@t
þ ivg

@b

@z
þ xA

2
bdni � kAdvizb7

v2
A

2X
@2b

@z2
¼ 0 ; (20)

@2

@t2
� 2

3
c2

sr
@2

@z2

� �
dni ¼

v2
A

2

@2jbj2

@z2
; (21)

and

@dni

@t
þ @dviz

@z
¼ 0; (22)

where vg ¼ vA 17 xA

X

	 

is the group velocity of Alfv�en

waves. The above set of expressions constitute Zakharov’s

equations1 and it is further noted that these equations are

fully relativistic and all relativistic effects are incorporated

in csr ¼
ffiffiffiffiffiffiffiffiffiffi
2 ZeFe

3 mice0

q
and eFe ¼ p2

Fe

2 me
.

In order to solve Eqs. (20) and (21) to obtain the

Sagdeev potential, we shift to a comoving frame of reference

through the following transformation:

n ¼ z� vt; (23)

where v is the arbitrary velocity of propagation of the nonlin-

ear structure. Now using Eq. (23) in Eq. (21), we get

dni ¼
v2

A

2 v2 � c2
srð Þ jbj

2: (24)

Eq. (22) gives us

dviz ¼ vdni: (25)

After substituting the values of dviz and dni; Eq. (20) can be

written as

�i v� vgð Þ
@b

@n
7

v2
A

2X
@2b

@n2
þ kAvA

2 v2 � c2
srð Þ

vA

2
� v

� �
bjbj2 ¼ 0 :

(26)

Further by expressing the complex perturbed magnetic field

as

b ¼ AðnÞei/ðnÞ; (27)

where A and u are real quantities. Eq. (26) can be separated

into real and imaginary parts and we obtain

v� vgð ÞA
@/
@n

7
v2

A

2X
@2A

@n2
� A

@/
@n

� �2
 !

þ kAvA

2 v2 � c2
srð Þ

vA

2
� v

� �
A3 ¼ 0; (28)

� v� vgð Þ
@A

@n
7

v2
A

2X
2
@A

@n
@/
@n
þ A

@2/

@n2

 !
¼ 0: (29)

Eq. (29) can be integrated46 to yield

/ ¼ 6
X

v2
A

v� vgð Þn : (30)

Further by inserting Eq. (30) in Eq. (28), we can write

Eq. (28) as

d2A

dn2
þ d

dA
V Að Þ ¼ 0 ; (31)

where

V Að Þ ¼ 7
kAX vA

2
� v

	 

4 v2 � c2

srð Þ A4 �
3X2 v� vgð Þ2

v4
A

A2 (32)

is the Sagdeev or pseudopotential.

This potential can be manipulated in the usual manner.

For example, the roots of VðAÞ ¼ 0 gives A ¼ 0 and

A ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

12X v� vgð Þ2 v2 � c2
srð Þ

kAv4
A

vA

2
� v

	 

s

: (33)

The upper and lower signs in the square root denote the right

and left-handed circularly polarized Alfv�en waves. We can

further analyze where the real minima and maxima occurs

for the right and left hand polarized waves.

IV. DISCUSSION OF THE RESULTS

In this section, we analyze main results of Section III,

i.e., the general expression obtained for the Sagdeev poten-

tial Eq. (32). The conditions for the formation of solitary

structures through Sagdeev potential are well established,47

and by using them, we obtain conditions for the formation of

solitary structures for different polarizations and relativistic

regimes.

As we know that the amplitude A of the Sagdeev poten-

tial VðAÞ; given by Eq. (32), must always be real; therefore,
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for amplitude to remain real for the right-handed circularly

polarized Alfv�en waves, the following conditions must be

fulfilled simultaneously in the different velocity regimes:

(1) v2 < c2
sr (subacoustic) and vA

2
> v (sub-Alfv�enic)

(2) v2 > c2
sr (super acoustic) and vA

2
< v (super-Alfv�enic)

Thus, for the formation of solitary waves for the right

handed circularly polarized waves, the wave must either be

subacoustic and sub-Alfv�enic or super acoustic and super-

Alfv�enic.

Similarly for the real value of A, the left-handed circu-

larly polarized Alfv�en wave must fulfill the following

relations:

(3) v2 < c2
sr (subacoustic) and vA

2
< v (super-Alfv�enic)

(4) v2 > c2
sr (super acoustic) and vA

2
> v (sub-Alfv�enic)

Thus, a different set of conditions for solitary wave

propagation is obtained in this case by comparison with the

right hand circularly polarized waves. It is observed that soli-

tary structures are formed when the Alfv�en wave is subsonic

and super-Alfv�enic or when the wave is super acoustic and

sub-Alfv�enic.

A. Limiting cases

There exists a strong magnetic field up to 109 � 1014 G

in white dwarfs and neutron stars.48–51 In dense astrophysical

plasmas like atmosphere of neutron stars, magnetars, and the

interior and outer shell of massive white dwarfs, the variation

in the electron plasma density ranges from 1032 � 1038/m3,

and so, this wide range of variation can be discussed in the

context of nonrelativistic degenerate, relativistic degenerate,

and ultra-relativistic degenerate Fermi plasmas ce � 1 or

ce0 ¼ 1, ce > 1 and ce � 1.

We will discuss these cases for heavy carbon ions,

which exist in the dense astrophysical plasmas. The parame-

ters chosen here are B0 ¼ 107 T, me ¼ 9:1� 10�31 kg;
Z ¼ 6, mi ¼ 2� 10�26kg (carbon) ne ¼ 1033m�3 (nonrela-

tivistic) ne ¼ 1034m�3 (relativistic) ne ¼ 1038m�3 (ultrarela-

tivistic), which matches the neutron stars and interior of

white dwarfs.

1. Nonrelativistic case

The Sagdeev potential represented by Eq. (32) for right

handed circularly polarized wave and for nonrelativistic

degenerate plasma is plotted in Figure 1. It is observed that

as the value of b ¼ c2
sr

v2
A

(i.e., electron number density)

increases, the amplitude of the Sadgeev potential and solitary

structure decreases, i.e., the solitary structure becomes less

super acoustic and more super-Alfv�enic. The amplitude A
versus space coordinate n is plotted in Figure 2. For left

handed circularly polarized waves, solitons are also

obtained, and the Sagdeev potential can be plotted. These

plots show a similar trend to the one obtained in Fig. 1 for

the right hand circularly polarized waves.

2. Relativistic case

For right handed circularly polarized waves, the relativ-

istic regime in a degenerate plasma is obtained with increas-

ing b (i.e., the electron number density in relativistic limit)

and the Sagdeev potential is plotted in Figure 3. It is

observed that the amplitude of the Sagdeev potential and sol-

itary structure enhances with the increase in number density

making the solitary structure less super acoustic and more

super-Alfv�enic. The amplitude A versus space coordinate n
for relativistic case is shown in Figure 4. Similar trends are

observed for left handed circularly polarized wave in this

regime.

3. Ultrarelativistic case

It is observed that in the ultrarelativistic regime, the soli-

tons exist only for left handed circularly polarized wave. For

the right handed circularly polarized, no solitary structures

are obtained. The Sagdeev potential for ultrarelativistic

degenerate plasma is plotted in Figure 5 with increasing b
(i.e., the electron number density in ultrarelativistic limit). It

is observed that as the wave becomes more subrelativistic

acoustic, the Sagdeev potential becomes deeper and have

larger amplitude, which is a nonlinear phenomenon. The

FIG. 1. Variation of Sagdeev potential V(A) (normalized by ion gyro radius

qi ¼ vA

X

	 

) versus amplitude A for the right circularly polarized wave for

vg ¼ 0:5 vA and xA ¼ 0:5 X, v ¼ 0:57 vA, b ¼ 0:04 (bold line), and b ¼ 0:1
(normal line).

FIG. 2. Variation of soliton amplitude A versus coordinate n for right circu-

larly polarized wave with same numerical values as in Figure 1.
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amplitude A versus space coordinate n ultrarelativistic case

is shown in Figure 6.

The rapid development of laser technology since the

invention of chirped pulse amplification52 has sprung forth

unprecedented intensities on target to be realized. Lasers are

now routinely focused to an irradiance on target of I
k2¼ 1021 Wcm�2 lm2 (where I is the intensity and k is the

wavelength of the laser radiation).53,54 A number of new

lasers promise many more order of magnitude increases in

intensity in the near55,56 and medium-term future.57 This

field has engendered a lot of interest and attention owing to

the fact that it that has allowed the investigation of many

novel relativistic plasma physics issues, ranging from com-

pact particle accelerators58–60 to high energy density labora-

tory astrophysics61–63 and fast ignition inertial fusion.64

It is in the fitness of the situation to mention here that

the in situ observations of waves in dense plasmas in extreme

environments are very difficult. However, the rapid develop-

ment of laser technology as mentioned above would hope-

fully make it possible for us to compare the theory with

experiments. Nevertheless, it is imperative that we develop

the theory of dense plasmas owing to its applications to

laser-solid and compressed plasmas in the laboratory in addi-

tion to the astrophysical applications.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the propagation of non-

linear Alfv�en waves in a magnetized quantum plasma with rel-

ativistically degenerate electrons. We have assumed parallel

propagation ( @@x ¼ 0 ¼ @
@y) and background magnetic field in

the z-direction (B0 ¼ B0ẑ). The set of quantum hydrodynamic

equations in the presence of relativistic degenerate electron

Fermi pressure has been derived from the Chandrasekhar’s

equation of state and subsequently used in this paper.

Nonlinear coupling of Alfv�en and acoustic waves in the pres-

ence of relativistic and ultra-relativistic degenerate Fermi pres-

sure has also been investigated. In this regard, Zakharov

equations for relativistic degenerate Fermi plasma have been

derived. The soliton solutions for non-relativistic, relativistic,

and ultrarelativistic degenerate Fermi plasma have also been

discussed. It has been found that the amplitude of the soliton

mitigates with the increase in number density for nonrelativis-

tic regime whereas the amplitude has been observed to

enhance in relativistic and ultrarelativistic regimes.
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FIG. 4. Variation of soliton amplitude A versus coordinate n for right circu-

larly polarized wave with same numerical values as in Figure 3.

FIG. 5. Variation of Sagdeev potential V(A) (normalized by ion gyro radius

qi ¼ vA

X

	 

) versus amplitude A for the left circularly polarized wave for

vg ¼ 1:5995 vA , xA ¼ 0:5995 X and v ¼ 1:6vA, b ¼ 94231:5 (bold line),

and b ¼ 187390:0 (normal line).

FIG. 6. Variation of soliton amplitude A versus coordinate n for the left cir-

cularly polarized wave with same numerical values as in Figure 5.

FIG. 3. Variation of Sagdeev potential V(A) (normalized by ion gyro radius

qi ¼ vA

X

	 

) versus amplitude A for the right circularly polarized wave for

vg ¼ 0:5 vA, xA ¼ 0:5 X and v ¼ 0:57vA, b ¼ 0:14 (bold line), and b ¼ 0:20

(normal line).
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