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Abstract
The effect of adiabatic trapping as a microscopic phenomenon in an inhomogeneous degenerate
plasma is investigated in the presence of a quantizing magnetic field, and a modified Hasegawa
Mima equation for the drift ion-acoustic wave is obtained. The linear dispersion relation in the
presence of the quantizing magnetic field is investigated. The modified Hasegawa Mima
equation is investigated to obtain bounce frequencies of the trapped particles. The Korteweg–de
Vries equation is derived for the two-dimensional case and finally the Sagdeev potential
approach is used to obtain solitary structures. The theoretically obtained results have been
analyzed numerically for different astrophysical plasma and quantizing magnetic field values.
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1. Introduction

Quantum or degenerate plasmas have become an active area
of plasma research for scientists working in both theoretical
and experimental fields [1]. Several investigations have been
carried out for dense plasmas in astrophysical environments
[2, 3], where electrons are dense enough to exhibit quantum
behavior [4, 5]. Such behavior is also expected to be present
in microelectronic devices [6]; thus it is important to under-
stand the quantum effects on the behavior of linear and
nonlinear wave properties of these systems. Linear theory
using the quantum fluid model has been extensively used to
study different wave modes in degenerate plasmas [7]. Based
on the hydrodynamic version of quantum mechanics, Man-
fredi and Haas [8, 9] formulated the quantum multi-stream
model and fluid model for plasmas. Later, this fluid model of
plasma was extended to quantum magnetohydrodynamics by
Haas [10]. An excellent survey was also presented by Man-
fredi [11] on the modeling of quantum plasmas. Haque and
Mahmood [12] investigated the linear and nonlinear drift
waves in inhomogeneous quantum plasmas with neutrals in
the background. They found that the properties of drift

solitons and shocks are modified by quantum corrections in
dense magnetoplasmas. Shukla and Eliasson [13] presented
the numerical study of the dark solitons and vortices in
quantum electron plasmas.

As an important nonlinear phenomenon, Bernstein,
Greene and Kruskal [14] showed that trapped particles have a
considerable effect on the nonlinear dynamics of plasmas,
where trapping was considered through the wave itself.
Adiabatic trapping at the microscopic level was introduced by
Gurevich [15], and it was observed that adiabatic trapping
introduced a 3/2 power nonlinearity instead of the typical
quadratic one when trapping was not present. The presence of
trapping as a microscopic phenomenon has been confirmed
by computer simulations and theory [16, 17] as well as by
experimental work [18]. More recently, propagation char-
acteristics of ion-acoustic solitary waves have been investi-
gated with the trapping effect using non-Maxwellian
distribution functions [19] and it was found that the solitary
dynamics were modified and that spiky solitons are obtained
instead of the usual solitons. The trapping effect on the for-
mation of vortices has also been studied in classical plasma,
and a modified Hasegawa Mima (HM) equation was derived
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by considering shallow and deep potential wells, respectively
[20]. Characteristics of solitary structures have been investi-
gated for both fully and partially degenerate plasmas [21] and
in a subsequent work fully relativistic effects were included in
the investigations [22].

It is well known that in the presence of a magnetic field,
electron gas magnetization has two independent parts; (i) the
paramagnetic, and (ii) the diamagnetic part. Paramagnetism is
caused by the intrinsic or spin magnetic moment of electrons;
however, the diamagnetic part is due to the fact that the
orbital motion of electrons becomes quantized. This is also
known as Landau diamagnetism or Landau quantization [23].
Landau quantization is a quantum mechanical effect as the
cyclotron orbits of the electrons are quantized in the magnetic
field and it affects the motion of electrons in the direction
parallel to the magnetic field itself. Therefore discrete energy
levels called Landau levels are occupied by the charged
particles. The Landau levels are degenerate and the strength
of the magnetic field determines the number of electrons per
level. When the energy level separation is greater than the
mean thermal energy the Landau level effect is observable for
strong magnetic field and low temperature. The field is called
quantizing if the Landau quantization of electron motion in a
magnetic field is taken into account [24]. By considering
Zeeman splitting, each Landau level splits into a pair of
levels; one for spin up and one for spin down for electrons.
The Zeeman splitting will affect the Landau levels due to
them having the same energy scales μ ω= ℏB2

B ce0 , where μ
B

is the Bohr’s magneton, B0 is the magnetic field, ℏ is the
Plank’s constant normalized by π2 and ω = eB mece 0 is the
electron cyclotron frequency. On the other hand, the ground
state energy and the Fermi energies remain similar because
when summed, the pairs of energy levels cancel each other
out. Adiabatic trapping in the presence of a quantizing mag-
netic field has recently been investigated and the effect of this
field was studied both theoretically and numerically [25].
Electron holes and their coupling with Langmuir waves have
also been investigated in a quantum regime by considering
the Wigner–Poisson model [26, 27].

In the present paper, we continue with our investigations
of the influence of trapping for ion-acoustic waves in the
presence of Landau quantization for degenerate plasmas when
inhomogeneities are present in the number density. Thus in
the present work we shall consider the formation of ion-
acoustic vortices under the conditions mentioned above. We
derive a modified HM equation and present its investigations.
In particular situations, we obtain a Korteweg–de Vries
(KdV) equation from our modified HM equation and later use
the Sagdeev potential approach to study the formation of
solitary vortices. The layout of the present work is as follows:
In section 1, we give a general overview of the problem. In
section 2, we discuss some mathematical preliminaries and
give the formulation using the Fermi–Dirac distribution
function and finally derive a modified HM equation. In sec-
tion 3, the linear dispersion relation is derived and the bounce
frequency of the electrons trapped in the potential well is
calculated. In section 4, the KdV equation is derived and in

section 5, solitary structures are investigated by deriving the
Sagdeev potential. Finally, numerical results are discussed in
section 6.

2. Basic set of equations

In this section we set up the fundamental equations needed for
the investigation of ion-acoustic waves in quantum plasma.
Our aim is to investigate the formation of solitary vortices
associated with these waves, and for this the background
number density n (x)0 of the charged particles is taken to be
inhomogeneous, which is considered to be weak; i.e.,

κ− = <  ( ) ( ) 11

n

dn

dx0

0 (which means that higher derivatives of

n (x)0 and κ 2 type of terms are not taken into account), and
the x-direction is chosen perpendicular to the ambient mag-
netic field. Furthermore, for ion-acoustic waves, electrons are
taken to be massless and we need only to consider the total
electron density through the distribution function and not the
electron dynamics. We note here that a similar treatment was
used for the derivation of the HM equation in a classical
plasma [28].

Thus, following the method elucidated by Landau and
Lifshitz [23], we can obtain the distribution of electrons,
which includes the effects of adiabatic trapping. The occu-
pation number for the Fermi–Dirac distribution, which takes
into account the effect of the magnetic field via Landau
splitting [25], is

∫∑η
π

ε
ε

ε=
ℏ − +

ℓ=

∞

∞

−

{ }
n

p

2

m

2 exp
U

T
1

d , (1)e
Fe
2

2 3
e

0

0 1 2

where U= φ μ ω+ − ℓℏe ce, μ is the chemical potential, φ is
the trapping potential from the ions, ℓ represents the Landau

levels and ε= mp 2 e FeFe
is the electron Fermi momentum.

Following the method of integration used in [25], the
expression for the number density of trapped electrons for
fully degenerate plasma is given by

⎡
⎣⎢

⎤
⎦⎥Φ Φ η= η + + + −( ) ( )xn n ( )

3

2
1 1 . (2)e 0

1 2 3 2

Here, the effect of the quantizing magnetic field appears
through the normalized parameter η ω ε= ℏ ce Fe, Φ = φ

ε
e

Fe
is the

normalized electrostatic potential and ε π= ℏ ( )3 nFe 2m
2

0

3 22

e
is

the electron Fermi energy. In equation (2), the terms con-

taining T2 are not taken into account as the cold plasma limit
is assumed, which is valid for fully degenerate plasma.

The ions on the other hand are considered to be cold and
non-degenerate due to their heavy mass. The magnetic field is
taken in the z-direction and the density gradient in the x
-direction. The ion equations of continuity and motion are
respectively:

  
∂
∂

+ ⋅ =   v
n

t
(n ) 0 (3)i

i i
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 ⎜ ⎟⎛
⎝

⎞
⎠    ∂

∂
+ ⋅ = + × −( )v v E v B

t

e

m

1

m n
p . (4)i i

i
i

i i
i

Here, ni, vi, mi and p
i
are the ion density, velocity, mass and

pressure, respectively. Plasma is assumed to be quasineutral
and only ions are magnetized by the ambient magnetic field.
The ion pressure will be neglected in the following sections
for simplicity.

By following the method used by Weiland [28], we
obtain from equations (3) and (4) the following equation in
the absence of baroclinic pressure:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

Ω Ω+
=d

dt
ln

n
0. (5)i ci

i

Here, Ωi is the vorticity, which is defined as Ω = × vi i,

Ω = B
ci

e

mi
is the ion gyrofrequency and = + ⋅∂

∂ vd

dt t i is the

total derivative, where vi in the drift approximation [28] is
taken as = +v v vi e g, ve and vg are the ×E B and gravitational

drifts, respectively. We consider propagation in the x and y
directions and the vorticity only in the z-direction, which is
given by

Ω = × · ˆ( )v z. (6)i i

By considering Ω Ω≪i ci, we can write equation (5) as

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

Ω Ω
Ω

δ δ+ − + =d

dt
ln

n

n

n

1

2

n

n
0. (7)ci

i

i

ci 0 0

2

By assuming the plasma to be quasineutral, i.e.

= = + δ( )n n n (x) 1i e 0
n

n0
, upon using equation (2), where

δ = −n n ne 0, we obtain

δ η Φ Φ η= + + + − −( ) ( )n

n

3

2
1 1 1. (8)

0

1 2 3 2

Using equation (8) in equation (7), we obtain

  



⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

ρ Φ Φ

η Φ Φ η Φ η

η Φ Φ η

ρ Φ Φ

∂ + ∂ − *∂ + ∂ + ∂

×
− + − + − + + −

+ + + −

= × ̂ ·

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )

v v v

z

3 1 2 1
1

2
1

3

2
1 1

B

T

e
, (9)

t g y e y t g y
2 2

1 2 3 2 3

1 2 3 2

2

0

F 2

where * = κve
T

eB
F

0
is the electron diamagnetic drift, κ is the

inverse scale length of the number density inhomogeneity
(defined earlier), ρ = Ω

cs

ci
is the ion larmour radius and

= εcs m
Fe

i
is the ion sound velocity.

In equation (9), we can note that the presence of trapped
particles produces a modified HM equation as the nonlinear
term (last term on the left-hand side of equation (9)) differs
here from the classical HM equation [20], where the addi-
tional terms containing η occur due to the effect of Landau

quantization. The fractional power nonlinear terms will make
a larger contribution than the quadratic nonlinearity occurring
in the original HM equation, and thus the higher order non-
linearities have subsequently been dropped.



⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

ρ Φ Φ

η Φ Φ η

Φ η η Φ

Φ η

∂ + ∂ − *∂ + ∂ + ∂

×

− + − + −

+ + − + +

× + −

=

( ) ( ) ( )
( ) ( )

( ) ( )

( )

v v v

3 1 2 1

1

2
1

3

2
1

1

0. (10)

t g y e y t g y
2 2

1 2 3 2

3 1 2

3 2

We note here that this is a complicated equation and, in
general, analytically exact solutions are not possible to obtain.
Thus, in the following sections, we investigate the equation in
different limits.

3. Linear dispersion relation and bounce frequency

In the present section we begin by linearizing equation (10)
and by using the plane wave solution we obtain the linear
dispersion relation for drift ion-acoustic waves in the presence
of Landau quantization, as

⎜ ⎟⎛
⎝

⎞
⎠ω ρ η= * − + +k v k k v

2

3
1

2

3

5

2
. (11)y e y g

2 2

In the absence of Landau quantization η = 0, we obtain
the same linear dispersion relation as derived in reference [29]
except for the last term on the right-hand side. This equation
is analyzed graphically in section 6.

We now consider that the trapped particles in the
potential well, which can move to and fro in the well itself,
remain trapped if their energy is less than the potential energy
of the well. We expand Φ around a fixed minimum value Φ0

of the potential well by taking Φ Φ Φ= +0 1 and linearizing
equation (10), we obtain

ω
ρ η Φ Φ

Φ η Φ η

=
*

+ + + +

− + − + −

−( ) ( )

( ) ( )

k v

k
3

2
1 3 1

3

2
1 3 1

9

4

, (12)b
y e

2 2
0

1 2

0

1 2

0

2

0

where ω ω= − k vb y gy is the bounce frequency as the particle

is reflected off the walls of the potential well.

4. KdV-type solution

In this section, we use the reductive perturbation technique
[30] for the long wavelength solution of equation (10) and
derive a KdV-type equation which is valid for large-scale
motions [31]. Stretched variables are introduced in the fol-

lowing manner: ξ ε= −y ut( )
1
2 , τ ε= t

3
2 , =x x and the

perturbations in potential are Φ εΦ ε Φ= +1
2

2. Here, u is the
speed of perturbation in the co-moving frame of reference. By
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using these perturbations in equation (10), and collecting the

lowest order terms in ε (i.e. ε
3
2 ), we obtain

ρ Φ Φ Φ− ∂ ∂ − *∂ = − ∂ξ ξ ξ( )v u v v u( )
3

2
( ) . (13)g xx e g

2
1 1 1

Equation (13) corresponds to the linear regime and
integration will yield the linear dispersion relation derived in
the preceding section. By collecting the terms in the next

order, i.e. ε
5
2 , we get

ρ Φ ρ Φ

ρ Φ Φ

Φ Φ

Φ η Φ

∂ ∂ + − ∂

+ − ∂ ∂ − *∂

= − ∂ − − ∂

+ ∂ − − ∂

τ ξξξ

ξ ξ

ξ ξ

τ ξ

( )
( )

v u

v u v

v u v u

v u

( )

( )

3

2
( )

3

4
( )

3

2

15

8
( ) . (14)

xx g

g xx e

g g

g

2
1

2
1

2
2 2

2 1
2

1 1
2

Following the method used by Dodd et al [30], we do a
separation of variables as: Φ η τ= A Y x( , ) ( )1 and by using
equation (13) in equation (14), we obtain

ρ ρ

η

∂ − ∂ + − ∂

+ − ∂ + − ∂ =

τ τ ξξξ

ξ ξ

⋅⋅( )Y A Y A v u Y A

v u Y A v u Y A

3

2
( )

3

4
( )

15

8
( ) 0.

g

g g

2 2

2 2 2 2

Multiplying by ‘y’ on both sides and integrating by
taking boundary conditions such that when

→ ± ∞ →x y, 0dy

dx
, we get

∂ + ∂ + ∂ =τ ξξξ ξA a A b A 0. (15)2

where a and b are the coefficients given by

⎜ ⎟

⎜ ⎟
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⎛
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⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫
∫

∫
∫

∫
∫

ρ

ρ

ρ

η
ρ

=
−

−

= −
−

+ −
−

−∞

+∞

−∞

+∞
⋅⋅

−∞

+∞

−∞

+∞
⋅⋅

−∞

+∞

−∞

+∞
⋅⋅

a
v u y dx

Y y ydx

b v u
y dx

Y y ydx

v u
y dx

Y y ydx

( )

3

2

3

4
( )

3

2

15

8
( )

3

2

g

g

g

2 2

2

3

2

3

2

The solution of equation (15) is

⎛
⎝⎜

⎞
⎠⎟

λ λ ξ λ= −( )A
b

sech
a

t
3

2

1

2
. (16)2

Here, λ
b

3

2
is the amplitude and λ is the velocity of the co-

moving frame of reference. Equation (16) is the standard
solution of the KdV equation. However, we note that x
dependence on y can be evaluated if a specific form of the x
dependence is given. However, we have left the result gen-
eral here.

5. Sagdeev potential

In order to proceed further in the analysis of our modified HM
equation, i.e. Equation (10), we derive the Sagdeev potential
to investigate the formation of solitary waves and to this end
we shift to the co-moving frame of reference, i.e.
ξ α β= + −x y ut. Here, α and β are the direction cosines.

Thus equation (10) can now be reset into the following
form

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Φ
ξ

η Φ Φ η

η Φ Φ η

Φ η

η η

η η η

= −
*

−

− + − + −

+ + + −

+ + −

+
− − −

+ − + −

( ) ( )

( ) ( )

( )

( )

( ) ( )

d

d

v

u

3 1 2 1

3

2
1 1

1

2
1

3 2 1

3

2
1

1

2
1

. (17)

e
2

2

1 2 3 2

1 2 3 2

3

3 2

3 2 3

By standard manipulation [32], equation (17) can be
expressed in the form of an energy integral

⎛
⎝⎜

⎞
⎠⎟

Φ
ξ

Φ+ =d

d
V

1

2
( ) 0, (18)

2

where ΦV ( ) is the Sagdeev or pseudo potential and is given
below

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Φ Φ ηΦ η Φ

η η Φ η Φ η Φ

η Φ η η

Φ η η

η Φ Φ η
Φ

η Φ

η η η

=
*

+ + − −

× − − − − +

+ − + − + −

+ + − − −

+ + + −
+

−   +

− − −

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )
( )

( ) ( )

V
v

u
( )

2
3 2 1

3

2

1
1

2
1 2 1

2
4

5
1

4

5
1

1

8
1

1

8
1

1

16
1 1

8 1

14 1

1

16
1 8 14 . (19)

e
2

3 2

3 2 3 3 2

5 2 5 2

4 4

1 2 1 2
2

1 2

In order to obtain solitary waves, the conditions which
must be fulfilled are: Φ <V ( ) 0 when Φ Φ> >0 min for
refractive solitary waves and for compressive solitary waves

Φ <V ( ) 0 when Φ Φ< <0 max, where Φmin and Φmax are the
maximum and minimum values of potential for which

Φ =  V ( ) 0 [33]. However, we can see that the Sagdeev
potential given by equation (19) has a complicated depen-

dence on the different parameters, i.e. η and *ve , as well as
having whole power nonlinearities and fractional power
nonlinearities. As an exact solution of equation (19) is not
possible, the behavior of the Sagdeev potential is investigated
numerically in the next section.
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6. Results and discussion

In this section, we present the numerical solution of our
theoretical results. For numerical values, we use the para-
meters of dense astrophysical objects like the white dwarf
star, where the values of number density and magnetic field

are of the order of 1032 m−3 and 106 T, respectively [34, 35].
We start by considering the linear dispersion relation

(equation (11)) and investigate the effect of number density
and quantizing magnetic field. Numerical investigations show
that an increase in number density enhances the frequency.
Higher frequencies are observed with a decrease in magnetic
field (expressed through an increase of η).

Figure 1 depicts the relation between the bounce fre-
quency and the potential using equation (12). We can note
that as the potential reaches a value of 0.425, the bounce
frequency becomes infinity, which means that no particle
remains trapped in the potential well. If we compare our result
of bounce frequency with the results given in reference [29],
in which bounce frequency is derived for a classical plasma
without taking into account the Landau quantization η, the
bounce frequency in the present case approaches infinity at a
much lower value of potential; i.e., the range of trapping
potential is reduced.

Graphical investigations of the Sagdeev potential (equa-
tion (19)) and corresponding solitary structures are numeri-
cally obtained and are shown in figures 2–5. In these plots the
dependence of the Sagdeev potential on the magnetic field,
number density (through η) and inverse of scale length κ of
number density inhomogeneity are investigated. From fig-
ure 2, it is observed that the depth and width of the Sagdeev
potential increases with an increase in the magnetic field,
when density is taken as =n 100

32 m−3. Corresponding soli-
tary structures are shown in figure 3, where we can see that by
increasing the magnetic field (as η increases) the amplitude of
solitons increases but the width decreases slightly.

In figure 4, the Sagdeev potential is plotted for different
values of number densities by keeping the magnetic field
fixed. In this figure, we notice that by increasing the number
density there is an enhancement in the width and depth of the

Sagdeev potential. The corresponding solitary structures are
plotted in figure 5. It is found that the width of soliton
decreases but the amplitude increases with the increase of
number density. Similarly, by increasing the strength of the
inhomogeneity κ , the Sagdeev potential becomes deeper and
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Figure 1. Bounce frequency versus potential for fixed values of
= −n 10 m0

32 3, =B 10 T0
6 and κ = −10 m8 1. Figure 2. Sagdeev potential ΦV ( ) versus Φ for different values of B0

when = −n 10 m0
32 3 and κ = × −4 10 m8 1.

Figure 3. Solitary structures corresponding to the Sagdeev potential
ΦV ( ) shown in figure 2.

Figure 4. Sagdeev potential ΦV ( ) versus Φ for different values of
n0 when = ×B 0.5 10 T0

6 and κ = × −4 10 m8 1.



the value of the potential increases as well. The same trend
can also be noted in the solitary structures.

To conclude, in this paper, we have investigated the
formation of solitary structures in an inhomogeneous degen-
erate quantum plasma in the presence of a quantizing mag-
netic field. We have derived the modified HM equation for an
ion-acoustic wave. Large scale structures have been investi-
gated via the KdV equation. We have investigated our theo-
retical results numerically for different parameters such as
magnetic field, density and inverse of inhomogeneity scale
length. These results have been presented graphically show-
ing the formation of solitary structures. The present study can
be useful in understanding the propagation characteristics of
nonlinear drift waves in dense astrophysical plasmas such as
white dwarf stars where quantum effects are expected to play
an important role.
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