
Astrophys Space Sci (2015) 355:225–232
DOI 10.1007/s10509-014-2169-3

O R I G I NA L A RT I C L E

Finite amplitude solitary structures of coupled kinetic
Alfven-acoustic waves in dense plasmas

A. Sabeen · H.A. Shah · W. Masood · M.N.S. Qureshi

Received: 5 August 2014 / Accepted: 23 October 2014 / Published online: 4 December 2014
© Springer Science+Business Media Dordrecht 2014

Abstract In this paper, we have investigated the nonlin-
ear propagating coupled Kinetic Alfven-acoustic waves
in a low beta degenerate quantum plasma in the pres-
ence of trapped Fermi electrons using the quantum hydro-
dynamic (QHD) model. By using the two potential the-
ory and the Sagdeev potential approach, we have inves-
tigated the formation of solitary structures for coupled
kinetic Alfven-acoustic waves in the presence of quan-
tum mechanically trapped electrons. We have shown that
there are regions of propagation and non-propagation for
such solitary structures. We have also highlighted the dif-
ferences between the classical and quantum mechanically
trapped electrons. Interestingly, it has been found that the
nature of the nonlinearity for the quantum mechanically
trapped electrons is different from its classical counterpart.
The results presented here may have applications in white
dwarf asteroseismology as well as next generation laser-
plasma experiments where low beta plasma condition is
met.
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1 Introduction

The low-frequency Alfven wave dispersion relation gets
modified when the perpendicular wavelength becomes com-
parable with the thermal ion Larmor radius. In this case
the wave is called the kinetic Alfven wave (KAW). When
the ion parallel motion is taken into account in a classi-
cal plasma, the Alfven wave couples to the ion acoustic
wave via the parameter λs = k2

xc
2
s /Ω

2
i , where Ωi is the

ion cyclotron frequency and cs is the ion sound speed re-
spectively producing coupled kinetic Alfven-acoustic waves
(CKAAWs). Kinetic Alfven waves (KAWs) are believed to
play an important role in plasma heating, particle accel-
eration, and anomalous transport (Stasiewicz et al. 2000;
Wu 2010).

Kadomtsev (1965) introduced the idea of using two po-
tential theory for Alfven waves in a low β (ratio of thermal
pressure to the magnetic pressure) plasma. Using the two-
potential method, linear and nonlinear KAW in an electron-
ion plasma by including the finite Larmor radius effect was
investigated in the references of Hasegawa and Chen (1975),
Hasegawa and Mima (1976). Yu and Shukla (1978) studied
finite amplitude solitary KAWs for small but finite β effects.
Solitons with density humps were observed with an upper
limit on the amplitude. This work was further extended by
Kakati and Goswami (1998) to the case of electron-positron-
ion plasma. Dust kinetic Alfven waves were investigated by
Yinhua et al. (2000) and it was observed that the density
humps are cusped and narrower than the dips.

The study of numerous collective interactions in dense
plasmas are relevant in the context of intense laser-solid den-
sity plasma experiments (Azechi et al. 1991, 2006; Hu and
Keitel 1999; Marklund and Shukla 2006; Malkin et al. 2007;
Lee et al. 2009; Norreys et al. 2009) the cores of giant
planets and the crusts of old stars (Guillot 1999; Fortney
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et al. 2009), superdense astrophysical objects (Craighead
2000; Shapiro and Teukolsky 2004; Chabrier et al. 2002)
(e.g., interiors of white dwarfs and magnetospheres of neu-
tron stars and magnetars); micro and nano-scale objects
(e.g., quantum diodes Lau et al. 1991; Ang et al. 2006;
Shukla and Eliasson 2008) quantum dots and nanowires
(Shpatakovskaya 2006), nanophotonics (Barnes et al. 2003;
Chang et al. 2006), plasmonics (Marklund et al. 2008),
ultra-small electronic devices (Markovich et al. 1990; Abra-
hams et al. 2001; Magnus and Schoenmaker 2002), metal-
lic nanostructures (Crouseilles et al. 2008), microplasmas
(Becker et al. 2006) and quantum X-ray free-electron lasers
(Serbeto et al. 2008; Piovella et al. 2008). Furthermore,
a Fermi-degenerate dense plasma may also arise when a
pellet of hydrogen is compressed to many times the solid
density in the fast ignition scenario for inertial confinement
fusion (Piovella et al. 2008; Lindl 1995; Tabak et al. 2005).

The rapid development of laser technology since the
invention of chirped pulse amplification (Strickland and
Mourou 1985) has given rise to unprecedented intensities
on target to be realized. Lasers are now routinely focused to
an irradiance on target of Iλ2 = 1021 W cm−2 µm2 (Perry
et al. 1999; Danson et al. 2004) (where I is the intensity
and λ is the wavelength of the laser radiation). A number of
new lasers promise many more order of magnitude increases
in intensity in the near (Hooker et al. 2006; Yanovsky
et al. 2008) and medium-term future (Gerstner 2007). This
field has engendered a lot of interest and attention ow-
ing to the fact that it that has allowed the investigation of
many novel relativistic plasma physics issues, ranging from
compact particle accelerators (Tajima and Dawson 1979;
Pukhov and Meyer-ter Vehn 2002; Mangles et al. 2004;
Geddes et al. 2004; Faure et al. 2004) to high energy den-
sity laboratory astrophysics (Ryutov et al. 1999, 2001; Ryu-
tov and Remington 2003) and fast ignition inertial fusion.
(Tabak et al. 1994; Kodama et al. 2001).

The study of radiative blast waves in atomic cluster media
using intense laser pulses is reported (Smith 2008). Atomic
clusters have been shown to be very efficient absorbers of in-
tense laser radiation. They can be used to create high energy
density plasmas that drive strong shocks (>Mach 50) and
radiative blast waves. Careful application of these equations
and similarities allow experiments to be scaled to astrophys-
ical phenomena that have spatial and temporal scales that
are greater by as much as 15–20 orders of magnitude. In this
way, the radiative blast waves in the laboratory have been
scaled those experienced in supernova remnants and the
physics governing their dynamics investigated under con-
trolled conditions. It is in the fitness of the situation to men-
tion here that the in-situ observations of waves in dense plas-
mas in extreme environments are very difficult. However the
rapid development of laser technology as mentioned above
would hopefully make it possible for us to compare the the-
ory with experiments. Nevertheless it is imperative that we

develop the theory of dense plasmas owing to its applica-
tions to laser-solid and compressed plasmas in the labora-
tory, in addition to the astrophysical applications.

The most frequently employed approaches to describe
the statistical and hydrodynamic behavior of charged species
at quantum scales in dense plasmas is the Wigner-Poisson
and the Schrödinger-Poisson models. These two approaches
are the quantum equivalent of kinetic and fluid treatments of
classical plasmas. The two approaches have been vividly ex-
plained in a review article by Manfredi (2005). The quantum
hydrodynamic (QHD) model is based on the Schrödinger-
Poisson formulation. It has been extensively applied to study
the linear and nonlinear propagation of several waves in the
quantum plasma (Haas et al. 2003; Haas 2005; Marklund
et al. 2005; Masood and Mushtaq 2008).

Gurevich (1967), Landau and Lifshitz (1981) showed
that adiabatic trapping modifies the behavior of nonlin-
ear ion acoustic waves and a 3/2 power nonlinearity ap-
pears instead of the usual quadratic nonlinearity. The exis-
tence of trapping as a microscopic phenomenon has been
confirmed by computer simulations (Erokhin et al. 1996;
Sagdeev 1996) and experimental investigations (Hansen
et al. 1996). Maxwellian and non-Maxwellian distribution
functions were used to investigate the trapping effect on the
propagation characteristics of ion acoustic solitons and it
was seen that solitary dynamics was modified in both cases
(Abbasi et al. 1999; Mushtaq and Shah 2006). In classi-
cal plasmas, the effect of trapping on the vortex formation
was investigated and the modified Hasegawa-Mima equa-
tion was derived (Siddiqui et al. 2008). The effect of trap-
ping as a microscopic phenomenon in a degenerate plasma
has also been investigated in the presence of quantizing
magnetic field (Shah et al. 2012). In a self-gravitating dusty
quantum plasma, adiabatic trapping has also been found to
play an effective role in the formation of solitary structures
(Ayub et al. 2011). Using two potential theory, the effect of
adiabatic trapping on obliquely propagating coupled Kinetic
Alfven-acoustic waves in a low β plasma was investigated
(Shah et al. 2013) for the first time.

In the present paper, we investigate coupled kinetic
Alfven-acoustic solitary structures in a low β degenerate
quantum plasma by including the effect of adiabatic trap-
ping of electrons. The primary difference is that electrons
in this case are governed by the Fermi-Dirac distribution
and therefore the frame work of obtaining the expression for
number density as well as the nature of nonlinearity differs
quite significantly here. The layout of present work is as fol-
lows: In Sect. 2, we give the formulation of basic equations
and derive the linear dispersion relation of the coupled ki-
netic Alfven-acoustic in a degenerate quantum plasma. In
Sect. 3, the nonlinear Sagdeev potential is derived and in-
vestigated. In Sect. 4, the results are discussed and finally in
Sect. 5, the findings of the current investigation are recapit-
ulated.
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2 Mathematical formulation

At the outset, we would like to state that the electrons are
considered degenerate and follow the Fermi-Dirac distribu-
tion function; however the ions due to their heavy mass are
assumed to behave in a classical manner.

In this section, we follow the method illustrated in
Cramer (2001). The limit me/mi < β < 1 allows us to
neglect the electron mass and leads to the investigation of
coupled kinetic Alfven-acoustic waves in the low frequency
limit. The variation exists in the x–z plane, where z is the
direction of ambient magnetic field. The low−β assumption
allows us to use the two potential fields ϕ and ψ to describe
the electric field in the x and z direction in the following
manner Ex = −∂ϕ/∂x, Ez = −∂ψ/∂z, Ey = 0. As a conse-
quence of the two-potential theory, only shear perturbations
in magnetic field are present which is mathematically ex-
pressed as Bz = B0, Bx = 0. The quasi neutrality condition
for ions and electrons densities leads to ne = ni = n.

For low frequency perturbations the phase velocity of the
wave is much less than the electron Fermi speed and elec-
trons are assumed to follow the magnetic field lines. By fol-
lowing the method of integration used by Shah et al. (2010),
the expression for total number density n including trapped
electrons is obtained for a Fermi-Dirac distribution for a
fully degenerate plasma and is given by

n = n0(1 + Ψ )3/2 (1)

Ψ = eψ/εFe is the normalized electrostatic potential, where
εFe is the Fermi energy given by εFe = �

2(3π2n0)
3/2/2me .

It is worth mentioning here that the implicit assumption in
the derivation of Eq. (1) is that the electron Fermi energy is
so high that the electron Landau quantization effects can be
ignored.

Although the equations for ions have been given before
in an earlier paper, we reproduce them here for the sake
of completeness. Following the procedure out lined in ref-
erences (Hasegawa and Mima 1976; Kakati and Goswami
1998; Shah et al. 2013), the x component of ion velocity is
given by

vix = − mi

eB2
0

∂2ϕ

∂x∂t
(2)

The parallel equation of motion for ions is

∂tviz + vix∂xviz + viz∂zviz = − e

mi

∂ψ

∂z
(3)

From Ampere’s law (Hasegawa and Mima 1976), we have

μ0∂t jz = ∂z∂
2
x (ϕ − ψ) (4)

The ion continuity equation is

∂tni + ∂x(nivix) + ∂z(niviz) = 0 (5)

and

∂zjz = e∂tne + e∂z(niviz) (6)

The equation above is derived by using electron continuity
equation. The algebraic manipulation of Eqs. (1)–(6) yield
the following linear dispersion relation

(
1 − v2

Ak2
z

ω2

)(
3

2
− c2

sFk2
z

ω2

)
= v2

Ak2
z

ω2
λsF (7)

where λsF = k2
xc

2
sF/Ω2

i is the coupling parameter, csF =√
εFe/mi is the ion sound speed at the Fermi energy εFe,

vA is the Alfven velocity and Ωi is the usual ion cyclotron
frequency. The wave numbers in the x and z directions are
expressed through the obliqueness angle with respect to the
magnetic field and given by kz = k cos θ , kx = k sin θ . It is
pertinent to mention here that the linear dispersion relation
for coupled kinetic Alfven-acoustic wave given by Eq. (7)
differs from its classical counterpart (Shah et al. 2013) quite
appreciably. Note that the second bracket of left hand side
contains not only the ion sound velocity defined at Fermi
energy but also a 3/2 factor which is the consequence of the
effect of adiabatic trapping on the linear dispersion relation.
In a classical plasma, the linear dispersion relation remains
unaffected by adiabatic trapping as it manifests itself only in
the nonlinear regime.

Equation (7) shows the coupling of Alfven wave with the
ion-acoustic wave through the coupling parameter λsF . If
we set the 2nd factor on the left hand side to unity we get
the linear dispersion relation of KAW (Hasegawa and Mima
1976).

ω2 = v2
Ak2

z (1 + λsF) (8)

3 Sagdeev potential

In this section, we derive the Sagdeev potential to investigate
the formation of solitary structures and to this end we shift
to a co-moving frame of reference in normalized variables

η = Kxx + Kzz − Mt (9)

The normalized variables are given by

n = ne,i/n0, Φ = eϕ/Te, M = v/cs,

K = Kcs/Ωi, t = Ωit,

where n, Φ , M , K , t are the normalized density, potential,
effective Mach number, wave number, and time respectively.

Equations (2)–(6) are recast in dimensionless form and
are given below

− M
∂viz

∂η
+ vxKx

∂viz

∂η
+ vzKz

∂viz

∂η
= −Kz

∂Ψ

∂η
(10)
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vix = KxM
∂2Φ

∂η2
(11)

2K2
xK2

z ∂4
η (Φ − Ψ ) = β

(
M2∂2

ηn − MKz∂
2
η(nviz)

)
(12)

−M∂ηn + Kx∂η(nvix) + Kz∂η(nviz) = 0 (13)

Integrating Eqs. (12) and (13) and applying the boundary
conditions viz, vix , ϕ, ψ → 0, n0 = 1 as η → ∞, we obtain

2K2
xK2

z ∂2
η (Φ − Ψ ) = β

(
M2(n − 1) − MKz(nviz)

)
(14)

Kxvix + Kzviz = M

(
1 − 1

n

)
(15)

Using Eqs. (1), (10), and (15), we get the following expres-
sion for the parallel ion velocity viz

viz = Kz

M(1 + T 2)

[
(1 + Ψ )3/2]Ψ (16)

The algebraic manipulation of Eqs. (11), (15), and (16) yield
the following expression

2K2
x

∂2Ψ

∂η2
= 2

(
(1 + Ψ )3/2 − 1

(1 + Ψ )3/2

)
− βK2

z

M2
A

(
Ψ (1 + Ψ )3/2)

− 2
M2

A

K2
z

(
(1 + Ψ )3/2 − 1

) + β
(
Ψ (1 + Ψ )3)

(17)

In the above equation, we have used M2 = 2M2
A/β , where

MA is the ratio of wave velocity to the Alfven velocity and
is generally referred to as the Alfvenic Mach number. Equa-
tion (17) can be expressed in the form of an energy integral
through the Sagdeev or pseudo-potential in the following
manner

1

2

(
dΨ

dξ

)2

+ V (Ψ ) = 0 (18)

where V (Ψ ) is given by

V (Ψ ) = − 1

K2
x

[(
Ψ + 2√

1 + Ψ

)

− βK2
z

2M2
A

{
2

35
(1 + Ψ )

5
2 (−2 + 5Ψ )

}

− M2
A

K2
z

{
2

5
(1 + Ψ )

5
2 − Ψ

}

+ β

2

{
Ψ 2

2
+ Ψ 3 + 3Ψ 4

4
+ Ψ 5

5

}

+ 2

5

M2
A

K2
z

− 2

35

βK2
z

M2
A

− 2

]
(19)

4 Results and discussions

In this section, we present our analysis in order to obtain the
solitary structures. The Mach number is found to obey the
following conditions:
√

β

3
Kz < MA < M1 (20a)

M2 < MA < Kz (20b)

where

M1 = 1

2

√(
a − b

(1 + Ψ )(1 − √
1 + Ψ + Ψ (2 + Ψ ))

)

M2 = 1

2

√(
a + b

(1 + Ψ )(1 − √
1 + Ψ + Ψ (2 + Ψ ))

)

a = K2
z

(
2(−1 + √

1 + Ψ ) + Ψ
√

1 + Ψ
(
2 + β(1 + Ψ )4))

b = [
K4

z

(
8 − 8

√
1 + Ψ + Ψ

(
β2Ψ (1 + Ψ )9

− 4β(1 + Ψ )4(1 − √
1 + Ψ + Ψ (2 + Ψ )

)

+ 4
(
3 − 2

√
1 + Ψ + Ψ (3 + Ψ )

)))] 1
2

The above conditions are obtained by taking second deriva-
tive of Eq. (19) and setting the coefficients of quadratic term
equal to zero. Here M1 and M2 are the lower and higher
values of Mach number and between these values no soli-
tary structure is formed. Solitary structures are observed to
formed only below M1 and above M2.

We now present the graphical analysis of our model by
using the values of plasma parameters that are typically
found in the vicinity of white dwarf stars (Koester and Chan-
mugam 1990; Ghosh and Lakhina 2004). It has been sug-
gested that electrostatic structures could be excited in ex-
treme events, such as supernova explosions at the outer
shells of the star (Eliasson and Shukla 2012). It was also
remarked that electromagnetic waves should also be stud-
ied in future. Motivated by this suggestion, we have inves-
tigated the coupling of electromagnetic kinetic Alfven wave
with the acoustic wave in the presence of quantum mechan-
ically trapped electrons. It is worth mentioning here that for
the values of number density and magnetic field used here,
the value of plasma beta (β = 2nkBTF μ0/B

2
0 ) turns out to

be less than one and hence the use of two potential theory
is justified. Figure 1 shows the plot of Sagdeev potential for
different values of number density by keeping the values of
magnetic field and Mach number fixed. We see that by in-
creasing the number density the maximum value of poten-
tial increases but depth of the potential decreases. The cor-
responding solitary structures are shown in Fig. 2, in which
the amplitude as well as the width of the soliton increases
with the increase in the number density.
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Fig. 1 Sagdeev potential V (Ψ )

versus Ψ for different values of
n0 when B0 = 0.7 × 107 T and
MA = 0.38

Fig. 2 Solitary structures
corresponding to the Sagdeev
potential V (Ψ ) shown in Fig. 1

In Fig. 3, the variation of Sagdeev potential is explored
for different values of magnetic field by keeping the other
plasma parameters fixed. It is observed that depth of the
potential increases but the maximum value of potential de-
creases by increasing the magnetic field. The corresponding
solitary structures are plotted in Fig. 4. It is found that the
amplitude as well as the width of the soliton decrease with
the increase of magnetic field.

Figure 5 exhibits the change in Sagdeev potential by
varying the Mach number for fixed values of magnetic field
strength and number density. It is observed that the depth
of the potential increases till the upper limit on Mach num-
ber (M1) given in condition (20a) is reached. With a further
increase in the Mach number, Sagdeev potential does not in-
tersect the potential axis and consequently there will be no
corresponding solitary structure. However, when the Mach

number further increases and reaches a certain value (M2)
satisfying the condition (20b), the Sagdeev potential again
intersects the potential axis giving rise to the formation of
the solitary structures again.

Figure 6 is plotted for the maximum amplitude of the
soliton vs the Mach number for different values of angle
of propagation θ = 45◦ (thick black line), θ = 60◦ (thick
dashed line), θ = 75◦ (black line). It is clear from the Fig. 6
that for a particular angle, the maximum amplitude of the
soliton first increases with the increase in Mach number and
then decreases for further increase in the Mach number. Note
that the gaps in maximum amplitude values for each angle
indicate the absence of solitary structure formation as they
correspond to those values of Mach number that do not sat-
isfy the conditions given by Eq. (20a), (20b). It can also be
seen that with the increase in the obliqueness the gap and
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Fig. 3 Sagdeev potential V (Ψ )

versus Ψ for different values of
B0 when n0 = 3 × 1033 m−3

and MA = 0.38

Fig. 4 Solitary structures
corresponding to the Sagdeev
potential V (Ψ ) shown in Fig. 3

range of Mach number decreases. The solitons correspond-
ing to the Fig. 5 are plotted in Fig. 7. Note that the ampli-
tude as well as the width of the soliton enhances with the
increase in the Mach number as long as condition (given by
Eq. (20a)) is satisfied, however, both amplitude and width
of the soliton show a decrease with the increase in Mach
number when the condition (given by Eq. (20b)) is satisfied.

5 Summary

In conclusion, we have investigated the adiabatic trapping
of electrons in a low beta quantum plasma for a coupled ki-
netic Alfven-acoustic wave. It has been observed that the
framework for obtaining the expression of number density
of quantum mechanically trapped electrons is quite differ-

ent from its classical counterpart. Most importantly, the na-
ture of the nonlinearity is found to be different for quan-
tum mechanically trapped electrons by comparison with its
classically trapped counterparts. By using the Sagdeev po-
tential approach, we have studied the finite amplitude non-
linear structures and also mentioned the conditions which
determine the existence regimes of the solitary structures.
We have also explored the variation of the structure of the
solitary waves by using different plasma parameters of inter-
est such as obliqueness, magnetic field strength and number
density. The present work may be beneficial in enhancing
our understanding of the solitary structures in astrophysical
environments with special reference to the pulsating white
dwarfs and also in laboratory experiments on chirped laser
plasma interactions where many astrophysical phenomena
can be mimicked on the laboratory scale.
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Fig. 5 Sagdeev potential V (Ψ )

versus Ψ for different values of
MA when B0 = 0.7 × 107 T and
n0 = 3 × 1033 m−3

Fig. 6 Maximum value of
potential versus Mach number
for different values of angle

Fig. 7 Solitary structures
corresponding to the Sagdeev
potential V (Ψ ) shown in Fig. 5
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