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In the present investigation, linear and nonlinear propagation of low frequency (x� Xci)

electrostatic waves have been studied in a spatially inhomogeneous degenerate plasma with one

dimensional electron trapping in the presence of a quantizing magnetic field and finite temperature

effects. Using the drift approximation, formation of 1 and 2D drift ion solitary structures have been

studied both for fully and partially degenerate plasmas. The theoretical results obtained have been

analyzed numerically for the parameters typically found in white dwarfs for illustrative purpose. It is

observed that the inclusion of Landau quantization significantly changes the expression of the

electron number density of a dense degenerate plasma which affects the linear and nonlinear

propagation of drift acoustic solitary waves in such a system. The present work may be beneficial to

understand the propagation of drift solitary structures with weak transverse perturbation in a variety

of physical situations, such as white dwarfs and laser-induced plasmas, where the quantum effects

are expected to dominate. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914859]

I. INTRODUCTION

The field of quantum plasma physics has decades long

diverse tradition,1–3 with interest having arisen recently4,5

owing to its wide ranging potential applications in modern

technology (metallic and semiconductor nanostructures such

as metallic nanoparticles, metal clusters, thin metal films,

spintronics, nanotubes, quantum wells and quantum dots,

nanoplasmonic devices, quantum X-ray free-electron lasers,

etc.). The recent advances in the ultrafast spectroscopy tech-

niques have enabled us to monitor the femto-second dynam-

ics of an electron gas confined in metallic plasmas. In dense

quantum plasmas, the number densities of degenerate elec-

trons and/or positrons are extremely high, and the plasma

particles (mainly electrons and positrons) obey the Fermi-

Dirac statistics.

It was recognized many decades ago that the underlying

physics of nonlinear quantum-like equations can be better

understood by rewriting them in the form of hydrodynamical

(or Euler) equations, which essentially represent the evolu-

tion of quantum particle densities and momenta. This was

elegantly done by Bohm2 and Madelung6 by introducing an

eikonal representation for the wave function evolution in the

nonstationary Schrodinger equation.

Recently, there has been growing and vibrant interest in

investigating new aspects of quantum plasma physics by

developing nonrelativistic quantum hydrodynamical (QHD)

equations5,7 that include the quantum statistical electron

pressure and the quantum force involving tunneling of

degenerate electrons through the Bohm potential.8 The elec-

trostatic QHD equations are useful for studying collective

interactions (e.g., different types of waves, instabilities,

quantum fluid turbulence, and nonlinear structures).5,9–14 For

instance, Mamun and Shukla15 investigated the propagation

of solitary waves in a relativistically degenerate plasmas and

applied their results to compact stars like white dwarfs. It

was observed that the plasma parameters affected the propa-

gation characteristics of the nonlinear electrostatic excita-

tions in the vicinity of compact astrophysical objects like

white dwarfs. The authors also studied the shock wave for-

mation in planar and nonplanar geometries and showed that

plasma number density and ion viscosity, which was intro-

duced by considering the strong correlation among ions, sig-

nificantly changed the shock structure.16 The investigation of

numerous collective interactions in dense plasmas is relevant

in the context of intense laser-solid density plasma experi-

ments;17–23 the cores of giant planets and the crusts of old

stars;24,25 superdense astrophysical objects26–28 (e.g., interi-

ors of white dwarfs and magnetospheres of neutron stars and

magnetars); micro and nano-scale objects (e.g., quantum

diodes,29–31 quantum dots and nanowires,32 nanophoton-

ics,33,34 plasmonics,35 ultra-small electronic devices,36–38

and metallic nanostructures39); and microplasmas40 and

quantum X-ray free-electron lasers.41,42 Furthermore, a

Fermi-degenerate dense plasma may also arise when a pellet

of hydrogen is compressed to many times the solid density in

the fast ignition scenario for inertial confinement fusion.42–44

Due to the fast paced development in the field of short-pulse

petawatt laser technology, it is highly likely that such plasma

conditions are achieved by intense laser-pulse compression

using powerful X-ray pulses. An excellent review on quan-

tum plasmas is written by Shukla and Eliasson45 which not

only introduces the subject to the reader but also explores the

areas of applicability of quantum plasmas in its full glory.

Much of the linear and nonlinear work in quantum plasmas

has effectively been recapitulated in this review.
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The effect of strong magnetic fields has not been the

main focus of attention in degenerate plasmas. The presence

of a strong ambient magnetic field qualitatively changes the

properties of atoms, molecules, and condensed matter when

the electron cyclotron energy �hxce is larger than the typical

Coulomb energy. As is well known, electron gas magnetiza-

tion in a weak magnetic field has two independent parts,

namely, paramagnetic and diamagnetic. The intrinsic or spin

magnetic moment of electrons gives rise to Pauli paramag-

netism. The diamagnetic part owes its existence to the quan-

tized orbital motion of electrons in the magnetic field. This is

also called Landau diamagnetism or Landau quantization.46

The gas is degenerate if the system temperature T (in eV)

� eF (eF is the Fermi energy). If the Landau quantization of

electron motion in a magnetic field is taken into account,

then the field is called quantizing47 and the condition kBT
� �hxce must be fulfilled. The details of Landau quantization

are given in Ref. 48.

Many investigations have also been carried out to study

the linear and nonlinear wave propagation in inhomogeneous

degenerate quantum plasmas using the QHD model. Masood

et al.49,50 studied nonlinear drift ion acoustic waves in inho-

mogeneous quantum magnetoplasma and showed the varia-

tion of shock strength with quantum diffraction term and

positron concentration. Tariq et al.51 studied the electrostatic

drift instability in a nonuniform quantum magnetoplasma

with shear flows and found that sheared ion flow parallel to

the external magnetic field could drive the quantum drift-ion

acoustic wave unstable. Masood et al.52 revisited the coupled

Shukla Varma and convective cell mode in dense plasmas

and showed theoretically how quantum effects could be

incorporated in it. Kendl and Shukla53 studied drift wave tur-

bulence for a degenerate inhomogeneous magnetoplasma

and investigated the growth rate of the collisional drift wave

instability. It was observed that the quantum effects

enhanced the growth rate of the collisional drift wave insta-

bility. It was shown in the pioneering work of Bernstein

et al.54 that trapped particles have a prominent effect on the

nonlinear dynamics of plasma. The trapping in this work was

considered by the wave itself. An alternative approach con-

sidered the effect of adiabatic trapping at the microscopic

level was introduced a decade later by Gurevich55 and it was

observed that the adiabatic trapping produced a 3/2 power

nonlinearity instead of the usual quadratic one when trapping

was absent. Experimental investigations56 and computer sim-

ulations57 confirmed the presence of trapping as a micro-

scopic phenomenon.

Demeio58 investigated the effects of trapping on

Bernstein, Greene, and Kruskal equilibria and solved the

Wigner-Poisson system employing the perturbative tech-

nique in order to study the effect of trapping in quantum

phase space. However, the statistical nature of trapping in

Ref. 58 was not investigated as the Wigner-Poisson equation

was used, which showed only the quantum diffraction

effects. Trapping in quantum plasma has been considered by

Shah et al.59 recently using the Gurevich approach where the

formation of one dimensional ion acoustic solitary structures

in both partially and fully degenerate plasma with small tem-

perature effects were investigated. This work was later

extended to the case of partially relativistic degenerate

plasma including both trapping and finite temperature

effects.60 In the present work, we consider the propagation

of one and two dimensional solitary ion drift waves in a

quantum degenerate plasma taking into account the effect of

trapped particles and finite temperature in the presence of a

quantizing magnetic field via Landau quantization. The

Fermi-Dirac distribution function is used to describe the

massless electrons, whereas the ions are considered to be

classical owing to their three orders of magnitude heavier

mass than electrons.

The layout of the present work is as follows: In Sec. II,

we present the basic set of governing equations and derive

the linear dispersion relation for a two dimensional drift ion

acoustic waves in a dense degenerate plasma for trapped

electrons with finite temperature in the presence of a quantiz-

ing magnetic field. In Sec. III, we derive the Korteweg de

Vries equation for a one dimensional ion drift wave for the

trapped electrons for a partially degenerate plasma in the

presence of the quantizing magnetic field. In Sec. IV, we

consider the coupling of the drift wave with the ion acoustic

wave and derive Kadomtsev-Petviashvili (KP) equation. In

Sec. V, we give an analysis of our results. Finally, the sum-

mary and conclusion of the current investigation is presented

in Sec. VI.

II. GOVERNING EQUATIONS

We study an inhomogeneous quantum magnetoplasma

composed of ions and electrons. In order to derive the non-

linear drift-ion acoustic waves for adiabatic trapping of elec-

trons in a degenerate plasma in the presence of a quantizing

magnetic field, the ions are considered to be classical

whereas the electrons are assumed to follow the Fermi–Dirac

distribution. The equilibrium magnetic field is considered to

be in the z-direction, whereas the density gradients are

assumed to be in the x-direction. The motion of a particle in

the plane perpendicular to the magnetic field is quantized.61

The quantized electron energy levels el
e in the presence of

potential field / in the non-relativistic limit are given by

el
e ¼ l�hxce þ p2

z

2me
� eu, where xce ¼ eB0=mec is the electron

cyclotron frequency, pz is the parallel momentum associated

with the electron, and �eu is the potential energy of the well

in which the electrons are trapped. Trapping occurs when the

condition el
e ¼ 0 is satisfied. Electrons with energy el

e < 0

are trapped and with el
e > 0 are free electrons. We follow

Landau and Lifshitz46 to obtain the expression for the num-

ber densities of the trapped and free electrons, where the

trapping of the electrons occurs in the potential of the ions.

The total occupation number for the Fermi-Dirac distri-

bution after integration over the polar coordinates and change

of variables from momentum p to energy e is given by

ne ¼
p2

Feg

2p2�h3

ffiffiffiffiffiffi
me

2

r X1
l¼0

ð1

0

e�1=2

exp
e� U

T

� �
þ 1

de; (1)

where U ¼ euþ l� l�hxce and l is the chemical potential.

The summation above is over the Landau levels and we note
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here l¼ 0 refers to the case without a quantizing magnetic

field. Following the general treatment for Fermi integrals

and the method outlined by Landau and Lifshitz46 and Shah

et al.,48 the total electron number density for a partially

degenerate plasma can be expressed as

ne ¼ N0

�
3

2
g 1þ /ð Þ1=2 þ 1þ /� gð Þ3=2 � gT2

2
1þ /ð Þ�3=2

þ T2 1þ /� gð Þ�1=2

�
: (2)

The effect of the quantizing magnetic field appears through

g ¼ �hxce=eFe; N0 ¼ p3
Fe=3p2�h3 is the equilibrium number

density for fully degenerate plasma (i.e., for T¼ 0), eFe

¼ ð�h2=2meÞð3p2N0Þ2=3
is the electron Fermi energy, and me

is the mass of the electron. The Landau quantization parame-

ter plays a role similar to that of the small finite temperature

T in modifying the electron occupation number density ne

given by Eq. (2). It is worth mentioning here that Eq. (2) has

been obtained by assuming that electrons travel very fast

owing to their tenuous mass by comparison with ions and

hence their perpendicular motion can be ignored while con-

sidering the wave on an ion time scale. The potential u and

temperature T have been normalized in the following man-

ner: T ¼ pT=2
ffiffiffi
2
p

eFe and / ¼ eu=eFe. Using Binomial series

expansion, Eq. (2) can be written as

ne

N0

¼ g
2

3� T2ð Þ þ T2 1� gð Þ�1=2 þ 1� gð Þ3=2

� �

þ 3

2

g
2

1þ T2ð Þ þ 1� gð Þ1=2 � T2

3
1� gð Þ�3=2

� �
/

þ 3

8
� g

2
1þ 5T2ð Þ þ 1� gð Þ�1=2 þ T2 1� gð Þ�5=2

� �
/2:

(3)

We now draw our attention to the ions; the ions are taken to

be cold and non-degenerate due to their heavy mass by com-

parison with the electrons. The equation of motion for ions is

mini
@

@t
þ vi:r

� �
vi ¼ qini Eþ 1

c
vi � B

� �
; (4)

where E ¼ �r/: The perpendicular component of velocity

from Eq. (4) can be written as

vi? ¼
c

B0

ẑ �r/ð Þ � c

B0Xci
@tr?/; (5)

where ð?Þ mean perpendicular to the magnetic field B0,

Xci ¼ eB0=mic is the ion cyclotron frequency and the limit

@t � Xci for low frequency drift waves has been used in

deriving the above expression.

The parallel component of velocity from Eq. (4) can be

written as

Â viz ¼ �c2
s@z/; (6)

where Â is an operator defined as

Â ¼ @t þ vE:r? þ viz@z

and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eFe=mi

p
is the quantum ion acoustic speed. The

Poisson’s equation is

r2/ ¼ ne � ni: (7)

The perturbed ion number density by using Eqs. (7) and (3)

can be written as

ni

N0

¼ g
2

3� T2ð Þ þ T2 1� gð Þ�1=2 þ 1� gð Þ3=2

� �

þ 3

2

g
2

1þ T2ð Þ þ 1� gð Þ1=2 � T2

3
1� gð Þ�3=2

� �
/

þ 3

8
� g

2
1þ 5T2ð Þ þ 1� gð Þ�1=2 þ T2 1� gð Þ�5=2

� �
/2

� k2
Fer2/; (8)

where kFe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eFe=4pe2N0

p
is the Thomas Fermi Length and

ni0 ¼ ne0 ¼ N0 is the equilibrium plasma density.

The ion continuity equation is

@ni

@t
þr: nivið Þ ¼ 0: (9)

Using Eqs. (5) and (8) in Eq. (9) and assuming @x < @z < @y,

we get

@t½a1@t/þ a2@t/
2 � ðk2

Fe þ q2
s Þ@t@

2
y /þ v�@y/þ a1v�@y/

2�
þ @tð@zvizÞ ¼ 0; (10)

where

a1 ¼
3

2

g
2

1þ T2ð Þ þ 1� gð Þ1=2 � T2

3
1� gð Þ�3=2

� �
;

a2 ¼
3

8
� g

2
1þ 5T2ð Þ þ 1� gð Þ�1=2 þ T2 1� gð Þ�5=2

� �
;

v� ¼ ð�ceFe=eB0Þjn is the drift velocity, jn ¼ jdx ln N0j is

the equilibrium density inhomogeneity and q2
s ¼ c2

s=X
2
ci is

the ion Larmor radius. It is pertinent to mention here that

while deriving Eq. (10), terms containing higher than order 2

in / as well as nabla operator r have been ignored as they

become very small for weakly nonlinear systems such as the

one considered here. Moreover, the ordering of the propaga-

tion vectors (@x < @z < @y) is justified because diamagnetic

drift velocity is much smaller than the acoustic velocity

(i:e:; v� � cs) and therefore to allow for the coupling of drift

and acoustic waves @z ought to smaller than @y. Since the

gradients in density are weaker than the background number

densities (using WKB approximation), therefore the condi-

tion @x < @z, @y is readily justified.

Equation (10) can be written by using Eq. (6) as

a1@
2
t /þ a2@

2
t /

2 � ðk2
Fe þ q2

s Þ@2
t @

2
y /þ v�@t@y/

þ a1v�@t@
2
y /� c2

s@
2
z / ¼ 0: (11)

Equation (11) can be transformed into a form analogous to the

KP equation derived for a homogeneous quantum plasma.62
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A. Linear analysis

On linearizing Eq. (11) and assuming the perturbation /
½ikyyþ ikzz� ixt�, the dispersion relation for the coupled

quantum drift ion acoustic wave in a 2-D quantum magneto-

plasma reads as

x ¼
x�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
� þ 4c2

s k2
z a1 þ k2

Fe þ q2
s

	 

k2

y

	 
r

2 a1 þ k2
Fe þ q2

s

	 

k2

y

	 
 ; (12)

where x� ¼ v�ky is the drift frequency, x is the wave fre-

quency and ky, kz are the wave numbers. Note that if we

ignore the parallel contribution, then Eq. (12) becomes the

dispersion relation for drift wave in 1-D. Moreover, the lin-

ear dispersion relation reduces to an oscillation if we ignore

the parallel and transverse perturbations and goes to zero if

we ignore the background density gradient. Figure 1 explores

the dependence of the wave frequency on the Landau quanti-

zation parameter, g, for a range of the values of propagation

vectors ky and kz. It is observed that the wave frequency

increases with the increase in g.

III. DERIVATION OF KdV EQUATION

In order to derive the KdV equation for a drift wave, we

drop the weak parallel perturbation from Eq. (10) to obtain

a1@t/þ a2@t/
2 � ðk2

Fe þ q2
s Þ@t@

2
y /þ v�@y/þ a1v�@y/

2 ¼ 0:

(13)

It is pertinent to mention here that dropping the parallel

equation of motion implies the decoupling of the drift and

the acoustic ion modes. Let us choose a coordinate n in the

moving frame such that n ¼ y� ut to find the localized solu-

tion of the KdV equation, where u is the velocity of the non-

linear structure moving with the frame. Equation (13) can be

written in the transformed frame as

�U@n/þ A@n/
2 þ B@3

n/ ¼ 0; (14)

where U¼ a1� v�=u, A¼ a1v�=u�a2, and B¼ ð1þk2
Fe=q

2
s Þ.

Equation (14), as is well known, has a stationary soliton so-

lution given by

/ y; tð Þ ¼
12B

A
sec h2 y� utð Þ: (15)

IV. DERIVATION OF KP EQUATION

In this section, we derive the KP equation for a drift ion

acoustic soliton in an inhomogeneous quantum magneto-

plasma. In order to find the localized solution, let us choose a

coordinate n in the moving frame such that n ¼ ðyþ dz� utÞ,
where d represents the obliqueness. Equation (11) in the trans-

formed frame can be written as

@n½a1@n/þ a2@n/
2 þ a3@

3
n/� þ d2a4@

2
n/ ¼ 0; (16)

where a1¼ a1� v�=u;a2¼ a2�a1v�=2u;a3¼�ð1þk2
Fe=q

2
s Þ,

and a4¼�c2
s=u2. Equation (16) can be simplified further

such as

@n½@n/þ A@n/
2 þ B@3

n/� þ d2G@2
n/ ¼ 0; (17)

where A ¼ a2=a1, B ¼ a3=a1, and C ¼ a4=a1. Equation (17)

is analogous to the KP equation derived for the homogene-

ous plasmas. The above equation admits soliton solutions. It

is interesting to note that contrary to its homogeneous coun-

terpart, the KP equation in an inhomogeneous plasma is pre-

dominantly in the transverse direction and weak in the

parallel direction. This difference arises due to the drift

approximation used in solving the inhomogeneous plasmas

that assumes a stronger perturbation in the perpendicular

direction by comparison with the parallel motion along the

ambient magnetic field.

There are a number of methods to solve the nonlinear

partial differential equations (NPDEs), for instance, inverse

scattering method,63 Hirota bilinear formalism,64 Backlund

transformation,65 tanh,66 etc. We employ here the tangent

FIG. 1. Dispersion relation for the 2D

coupled drift ion acoustic wave with

electron trapping in the presence of

quantizing magnetic field and finite

temperature effects for different values

of g. Dashed line is for g ¼ 0:1
whereas thin line is for g ¼ 0:6. Other

parameters are N0 ¼ 1027cm�3;B0

¼ 109G and T ¼ 0:2:
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hyperbolic method67 to arrive at the following solution of

Eq. (17)

/ y; z; tð Þ ¼
12B

A
sec h2 yþ dz� utð Þ; (18)

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4BÞ=C

p
.

V. RESULTS AND DISCUSSION

In this section, we numerically investigate the propaga-

tion of one and two dimensional drift solitary waves in a

dense magnetoplasma with trapped electrons in the presence

of a quantizing magnetic field. It is pertinent to mention here

that in 2-D, the drift wave couples with the acoustic wave

and give rise to drift acoustic solitary structures in the non-

linear regime whereas in 1-D only drift solitary structures

are obtained. It is found that the system under consideration

admits compressive solitary structures for both the drift and

drift-acoustic solitary structures. Most importantly, it is

observed that the solitary structures are formed only for sub

drift and ion acoustic velocity cases, i.e., u < v� < cs both

for the 1 and 2-D solitary structures.

In dense astrophysical objects such as neutron stars and

white dwarfs, the plasma densities are very high and the

quantum effects can no longer be ignored. Recently, it has

been conjectured that electrostatic structures could be

excited in extreme events, such as supernova explosions at

the outer shells of the star or during collisions of the white

dwarf with other astrophysical bodies.68 We, therefore,

choose here the parameters that are typically found in the

pulsating white dwarfs (which have been described in detail

in Sec. I), i.e., n0� 1026–1028 cm�3and B0� 109–1011 G.69,70

Figure 2 explores the effect of the Landau quantization

parameter g, on the structure of 1-D ion drift solitary waves. It

is observed that the increase in Landau quantization parameter

increases the amplitude of the drift solitary wave. Figure 3

investigates the variation of the 2-D drift-ion acoustic solitary

structure with the increasing Landau quantization parameter,

g. It is found that the increasing g increases the amplitude of

the solitary wave under consideration. Figure 4 depicts the

behavior of the nonlinearity and dispersive coefficients with

the change in Landau quantization parameter. It is observed

that the nonlinearity and dispersive coefficients enervate with

the increase in the Landau quantization parameter.

Finally, Figure 5 explores the effect of the increasing

degeneracy temperature on the drift-ion acoustic solitary

FIG. 2. Effect of g on the solitary wave solution of drift KdV equation.

Dotted-dashed line is for g ¼ 0:1, thin line is for g ¼ 0:4, and thick line is

for g ¼ 0:6. Other parameters are the same as in Fig. 1.

FIG. 3. Variation of electrostatic potential / versus y and z for drift KP

equation with g ¼ 0:1 and g ¼ 0:6. Other parameters are the same as in

Fig. 1.

FIG. 4. Variation of coefficients A, B, and C of drift KP equation versus g.

Other parameters are same as in Fig. 1.
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structure. It is pertinent to mention here that the inclusion of

finite degeneracy temperature modifies the shape of the

Fermi-Dirac distribution and it falls less rapidly. It is

observed that increasing the degeneracy temperature enhan-

ces the amplitude of the solitary structure.

We would like to mention here that linear and nonlinear

investigations of the electrostatic waves with classically

trapped electrons have been made in the past.71,72 The differ-

ence here is that the electrons are quantum mechanically

trapped and follow the Fermi-Dirac distribution. For

instance, the third and fourth terms in Eq. (2) are possible

only in a partially degenerate quantum plasma and have no

classical equivalent. Another important thing is that due to

enormous differences in densities and temperatures between

classical and quantum plasmas, the spatio-temporal scales

over which the nonlinear structures form in dense plasmas

are far shorter than their classical counterparts (�eight

orders of magnitude shorter in dense plasmas from that of

classical plasma).73

VI. CONCLUSION

To summarize, we have investigated the linear and

nonlinear propagation characteristics of 1 and 2D ion drift

acoustic solitary structures in an inhomogeneous quantum

plasma for trapped electrons in the presence of quantizing

magnetic field and finite temperature effects. Using the drift

approximation, we have derived drift KdV and KP equa-

tions for ion drift and coupled drift-ion acoustic solitary

structures. We have numerically investigated our theoretical

results for different parameter values such as degeneracy

temperature and Landau quantization parameter using the

values that are typically found in the outer shells of white

dwarfs as an illustration. It is observed that the one and two

dimensional drift ion equations for the system under consid-

eration admits compressive solitary structures. The present

investigation may be beneficial to understand the multi-

dimensional solitary structures in dense plasmas such as

those found in the white dwarf stars, fast ignition scenario

for inertial confinement fusion and in short pulsed petawatt

laser technology.
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