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In the present work, we have investigated the effect of trapping as a microscopic phenomenon on

the formation of solitary structures in the presence of a quantizing magnetic field in an electron-

positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be

classical and cold. We have found that positron concentration, quantizing magnetic field, and finite

electron temperature effects not only affect the linear dispersion characteristics of the electrostatic

waves under consideration but also have a significant bearing on the propagation of solitary

structures in the nonlinear regime. Importantly, the system under consideration has been found to

allow the formation of compressive solitary structures only. The work presented here may be

beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical

environments and in intense-laser plasma interactions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4973830]

Three-component plasmas having ions with electrons

and positrons are ubiquitous in stellar atmospheres. Multi-

component plasmas exhibit different properties as compared

to ordinary electron-ion plasmas. The conditions under

which the positron annihilation process can be neglected

were investigated by Ali et al.1 It was found that, at a partic-

ular number density, the time for the annihilation process to

take place is much longer than the collective interaction time

for the charged particles. Such densities are found in white

dwarf stars, and therefore, it is reasonable to neglect the

annihilation of electrons and positrons.

Quantum or degenerate plasmas involving the collective

interactions have attracted a lot of interest in the recent years

owing to their potential applications in many situations of

interest such as semiconductors, metals and microelectron-

ics,2 quantum wells, quantum dots, and carbon nanotubes.3–5

Degenerate plasmas are found to play an important role in

dense astrophysical objects like white dwarfs and neutron

stars.6 A substantial volume of literature related to quantum

or degenerate plasmas is available, and linear and nonlinear

propagation characteristics of electrostatic and electromag-

netic modes have been discussed.7–10 A vast majority of this

work is based on the quantum hydrodynamic model.11

The effect of the strong ambient magnetic field has

received some attention in degenerate plasmas. The properties

of atoms, molecules, and condensed matter are qualitatively

changed in the presence of the ambient strong magnetic field

when the electron cyclotron energy is greater than the typical

coulomb energy.12 Due to the extreme confinement of elec-

trons in the transverse direction, the Coulomb force becomes

more effective in binding the electrons along the direction of

the magnetic field. In this case, the Zeeman splitting of atomic

energy levels is not considered as the perturbation effect in

the strong field but instead, the Coulomb forces act as the per-

turbation to the magnetic forces.13

Landau diamagnetism or quantization is that the orbital

motion of electrons in a magnetic field is quantized.14 The gas

is degenerate for temperature T � eF (eF is the Fermi energy).

The magnetic field responsible for Landau quantization of the

electron motion is said to be quantizing.15

Bernstein, Green, and Kruskal showed that the nonlinear

dynamics of the plasma gets significantly modified by the

trapped particles while the trapping is considered by the wave

itself.16 A decade later, Gurevich17 developed a new approach

considering the effect of adiabatic trapping at the microscopic

level. It was observed that the 3/2 power nonlinearity was intro-

duced due to adiabatic trapping instead of quadratic nonlinear-

ity without trapping. Trapping as a microscopic phenomenon

was confirmed by experimental investigations18 and computer

simulations.19 Trapping in quantum plasmas was considered by

Shah et al.20 using the Gurevich approach, and the ion acoustic

solitary structures are investigated for fully and partially degen-

erate plasmas. Later on, this work was extended to relativistic

degenerate plasmas and Landau quantization.21–24

In this brief communication, we derive an expression for

the parallel propagating nonlinear electrostatic ion acoustic

waves in the presence of adiabatic trapping in a quantizing

magnetic field in electron-positron-ion plasmas. Electrons

and positrons are treated quantum mechanically due to their

tenuous masses by comparison with heavy ions. For the

interest of readers, it is mentioned that the magnetic field

(taken along the z-axis) is included here since we are inter-

ested in investigating the effect of Landau quantization.

Using the standard calculations and Fermi-Dirac distribution

function from the following Refs. 14 and 22, we obtain the

following expression for the electron number density
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ne ¼ Ne0

3

2
g 1þ Uð Þ
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2 þ 1þ U� gð Þ3=2

�

� gT2

2
1þ Uð Þ�

3
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The normalizations used here are given by Ne0 ¼ p3
Fe=3p2�h3;

g ¼ �hxce=eFe;U ¼ eu=eFe; and T ¼ pT=2
ffiffiffi
2
p

eFe. Here, ne is

the total electron number density. Simplification of Eq. (1)

yields the following equations:

ne0 ¼ Ne0 3� T2ð Þ g
2
þ 1� gð Þ3=2 þ T2 1� gð Þ�1=2

� �
; (2)

ne1 ¼ Ne0 1þ T2ð Þ 3
4

gþ 3

2
1� gð Þ1=2 � T2

2
1� gð Þ�3=2

� �
U;

(3)

here, ne0 is the equilibrium electron density in the absence of

perturbation. And ne1 is the perturbed electron number den-

sity. Similarly, the total positron number density in the pres-

ence of the quantizing magnetic field is

np ¼ N0p

�
3

2
gd�2=3 1� d�2=3Uð Þ

1
2 þ 1� d�2=3U� d�2=3g
� �3=2

� d�2gT2

2
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3
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� 1� d�2=3U� d�2=3g
� ��1=2

�
; (4)

here, Np0 ¼ p3
Fp=3p2�h3 and d ¼ N0p=N0e. Similarly, the

equilibrium and perturbed number densities for positrons are

given by

np0 ¼ N0p

�
3� d�4=3T2ð Þ gd�2=3

2
þ 1� d�2=3g
� �3=2

þ d�4=3T2 1� d�2=3g
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�
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� 3
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�

� 1� d�2=3g
� �1
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2
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� ��3

2

�
U : (6)

Now, we find the linear dispersion relation for the ion acous-

tic wave by using the following set of equations:

@~vi

@t
þ ~vi � ~r
� �

~vi

� �
¼ � e

mi

~ruþ e

mi
~vi � ~B
� �

; (7)

@ni

@t
þ ~r � ni~við Þ ¼ 0: (8)

Equations (7) and (8) are the ion fluid momentum and conti-

nuity equations, respectively. The parallel propagating ion

acoustic waves are not affected by the external magnetic

field since we have taken the propagation along the magnetic

field B0, and hence, we can drop the Lorentz term in Eq. (7).

Finally, we include the Poisson’s equation to close the

set of equations

r2u ¼ 4peðne � ni � npÞ : (9)

Assuming sinusoidal perturbations, linearizing Equations

(7)–(9), and using Equations (3) and (6), we arrive at the fol-

lowing linear dispersion relation for the electrostatic ion

acoustic wave in an e-p-i plasma in the presence of the quan-

tizing magnetic field and finite electron temperature effects

x
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 � C2dð ÞC2

sF

v1 � dv2ð Þ þ k2k2
TF

s
; (10)

where CsF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eFe=mi

p
is the Fermi ion sound velocity and

kTF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eFe=4pe2Ne0

p
is the screening length called the

Thomas-Fermi length in the degenerate plasma. From the

quasi-neutrality condition, d ¼ Np0=Ne0 and C1; C2; v1, and

v2 are given by

C1 ¼ 3� T2ð Þ g
2
þ 1� gð Þ3=2 þ T2 1� gð Þ�1=2;

C2 ¼ 3� d�4=3T2ð Þ gd�2=3

2
þ 1� d�2=3g
� �3=2

þ d�4=3T2 1� d�2=3g
� ��1=2

;

v1 ¼ 1þ T2ð Þ 3
4

gþ 3

2
1� gð Þ1=2 � T2

2
1� gð Þ�3=2

� �
;

v2 ¼ �
3

4
gd�4=3 1þ d�4=3T2

� �
� 3

2
d�2=3 1� d�2=3g

� �1
2

þ d�2T2

2
1� d�2=3g
� ��3

2:

The typical parameters for number densities for electrons

and positrons and the magnetic fields found in the vicinity

of white dwarfs are the following: The electron number den-

sity is of the order of 1027 cm�3, the positron number density

is 1026 cm�3, and the magnetic field is approximately 1010 G.

The electron Fermi temperature that corresponds to the afore-

mentioned densities comes out to be 4:24291� 107 K.25,26

We begin by examining the effects of the positron con-

centration and quantizing magnetic field expressed through

d and g, respectively, on the linear propagation of ion acous-

tic waves. Fig. 1 shows the dependence of normalized wave

FIG. 1. Dispersion relation for x versus k for different values of the positron

concentration.
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frequency x (normalized by the ion plasma frequency) on

the normalized wave number k (normalized by the Debye

length) with the variation of positron number density keep-

ing the temperature and magnetic field g fixed. It can be seen

from the graphs that the wave frequency decreases with the

increase in the positron concentration with constant tempera-

ture and g. Fig. 2 investigates the change in the frequency of

the linear ion acoustic wave with the increase in the Landau

quantization parameter g. It is observed that the frequency of

the ion acoustic wave enhances with the increase in the

Landau quantizing magnetic field. Note that the finite elec-

tron temperature effects also cause an increase in the fre-

quency of the ion acoustic wave.

In order to study the nonlinear ion acoustic waves in the

presence of degenerate electrons and positrons in the pres-

ence of a trapping and quantizing magnetic field, we proceed

as follows: We consider the one dimensional case by shifting

into the co-moving frame of reference and introducing the

variable n ¼ z� ut, where u is the velocity of propagation

of perturbation. Taking the anti-derivatives of Equations (8)

and (9) and making use of the following boundary conditions

n!1; u; vi ! 0; and ni ! ni0;

we obtain the following nonlinear expression for the ion

number density

ni ¼ Neo C1 � C2dð Þ 1� 2U
M2a

	 
�1=2

; (11)

where ni0 ¼ NeoðC1 � C2dÞ is the background number den-

sity of ions. Here, “M” is the Mach number, which is defined

as M ¼ u
x=k, perturbation speed to the phase speed, and a is a

constant given by

a ¼ C1 � C2dð Þ
v1 � dv2ð Þ þ k2k2

TF

:

Now, we derive an expression for the Sagdeev potential to

study the formation of electrostatic solitary waves in the e-p-

i plasma with trapping of electrons and positrons in a quan-

tizing magnetic field and finite temperature effects.

Following the procedure, we adopted to arrive at the expres-

sion of ion number density and using Equations (1), (4), and

(11) in Eq. (9) yields the following expression

d2U

dn2
¼ 4pe2Ne0

"�
3

2
g 1þUð Þ

1
2þ 1þU� gð Þ

3
2

� gT2

2
1þUð Þ�

3
2þT2 1þU� gð Þ�

1
2

�

�d

�
3

2
gd�2=3 1� d�2=3Uð Þ

1
2þ 1� d�2=3U� d�2=3g
� �3=2

� d�2gT2

2
1� d�2=3Uð Þ�

3
2þ d�4=3T2

� 1� d�2=3U� d�2=3g
� ��1=2

�

� C1�C2dð Þ 1� 2U
M2a

	 
�1=2
#
; (12)

where n is normalized as n ¼ n=kTF. Equation (12) can be

expressed in the form of “energy integral” as follows to

study the solitary structures.

1

2

dU
dn

	 
2

þ V Uð Þ ¼ 0; (13)

where VðUÞ is the Sagdeev potential, which is obtained by

integrating the Eq. (12) and making use of the boundary con-

dition that at n!1; U ¼ VðUÞ ¼ 0; we obtain the final

expression for the Sagdeev potential VðUÞ given by

V Uð Þ ¼ �g 1þ Uð Þ3=2 � 2

5
1þ U� gð Þ5=2 � gT2 1þ Uð Þ�1=2 � 2T2 1þ U� gð Þ1=2

� ��

�d

�
g 1� d�2=3Uð Þ3=2 þ 2

5
d2=3 1� d�2=3U� d�2=3g

� �5=2 þ d�4=3T2g 1� d�2=3Uð Þ�1=2

þ 2d�2=3T2 1� d�2=3U� d�2=3g
� �1=2

�
� C1 � C2dð ÞM2a 1� 2U

M2a

	 
1=2

þ 1þ T2ð Þgþ 2

5
1� gð Þ5=2 þ 2T2 1� gð Þ1=2 þ C1 � C2dð ÞM2a

þd g 1þ d�4=3T2
� �

þ 2

5
d2=3 1� d�2=3g

� �5=2 þ 2d�2=3T2 1� d�2=3g
� �1=2

� �#
: (14)

Equation (13) is considered as the “energy law” of the

oscillating particle with the velocity dU=dn and position

U in the potential V(U) having unit mass. In order to have

the solitary wave solutions of Equation (14), we have (i)

ðd2VðUÞ=dU2ÞU¼0 < 0 so the fixed point is unstable at the

origin and (ii) for compressive solitary waves V(U)< 0

when 0 < U < Umax and V(U)< 0, when 0 > U > Umin for

rarefactive solitary waves. Where UmaxðminÞ is the maximum

(minimum) value of potential U for which V(U)¼ 0.22 From

Equation (14), the range of the Mach number is given below
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1 � M <
2 v1 � dv2 þ k2k2

TF

� �
C1 � C2dð Þ

" #1=2

:

Note that the above range of Mach number defines the exis-

tence regimes of the formation of solitary structures. It can

be seen that the presence of positrons enhances the upper

limit of the existence regime of the formation of electrostatic

solitary structures under investigation here. Now, we investi-

gate the effect of the positron to electron concentrations ratio

d, quantizing magnetic field through g, finite electron tem-

perature effect T, and Mach number M on the dynamical

characteristics of nonlinear ion acoustic waves through the

Sagdeev potential approach. We use Equation (14) to plot

the different graphs. Fig. 3 shows a graph between Sagdeev

potential V (U) and normalized potential U. It is seen from

the graphs that the width and depth of Sagdeev potential are

decreased as the positron concentration is increased keeping

all the other parameters fixed. The solitary structures corre-

sponding to the Sagdeev potential shown in Fig. 3 are shown

in Fig. 4 with the same parameters used in Fig. 3. From Fig.

4, we can see that the amplitude of the solitary structure miti-

gates with the enhancement of the positron to electron con-

centration ratio, d. It is apposite to mention here that the

system under consideration admits only compressive solitary

structures for the plasma parameters used in Figs. 3 and 4.

Next, we examine the effect of Landau quantization, g,

on the formation of the Sagdeev potential. It is observed that

the width and depth of the Sagdeev potential experience a

significant decrease with the increasing values of g as can be

seen from Fig. 5. The corresponding solitary structures of the

Sagdeev potential drawn in Fig. 5 are shown in Fig. 6. It is

interesting to note unlike the electron-ion plasma,22 the

FIG. 3. Sagdeev potential V (U) versus U with the variation of concentration

ratio d at fixed T, g, and Mach number M.

FIG. 4. Solitary wave amplitude U versus n, corresponding to the Sagdeev

potential V(U) shown in Fig. 3.

FIG. 5. Sagdeev potential V (U) versus U with the variation of g, keeping d,

T, and Mach number M fixed.

FIG. 6. Solitary wave amplitude U versus n, corresponding to the Sagdeev

potential V(U) shown in Fig. 5.

FIG. 2. Dispersion relation for x versus k for different values of g.
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amplitude as well as the width of the solitary structures miti-

gates in the e-p-i quantum plasmas.

Fig. 7 shows the plots of the Sagdeev potential V(U)

versus U by varying the finite temperature correction effects

in a partially degenerate plasma. The graph shows a similar

trend to that observed in Figs. 3 and 5. The width and depth

of the potential are observed to decrease with the increasing

values of temperature correction effects. The corresponding

solitary structures are shown in Fig. 8. Once again only the

compressive solitary structures are observed for the plasma

parameters that are used to plot the solitary structures. It is

pertinent to mention here that the variation of the amplitude

of the solitary structures with the plasma parameters such as

Landau quantization and finite electron temperature effects

is less in magnitude in the e-p-i plasma by comparison with

the e-i case (see Ref. 22 for detailed comparison). Most

importantly, the comparison of the solitary structures in this

paper with the e-i one reveals that the spatial scale lengths

over which the solitary structures form in the e-p-i plasma in

the presence of Landau quantization and finite electron tem-

perature corrections are shorter in comparison with their

counterparts in the e-i plasma (see Ref. 22 for detailed

comparison).

In the present work, we have examined the effect of

trapping as a microscopic phenomenon on the formation of

solitary structures in the presence of Landau quantization in

the electron-positron-ion (e-p-i) plasma having degenerate

electrons and positrons whereas ions have taken to be classi-

cal and cold. In this regard, we have derived the linear dis-

persion relation for the ion acoustic wave, which has been

observed to be significantly modified by the positron concen-

tration, quantizing magnetic field, and finite electron temper-

ature effects. In the nonlinear case, the expression for the

Sagdeev potential is procured for the e-p-i plasma taking

Landau quantization into account. It has been observed that

the system under consideration admits only compressive sol-

itary structures. It has been shown that the inclusion of posi-

trons increases the upper limit of the existence regime of the

electrostatic structures under consideration here. It has also

been found that the spatial extent of the solitary structures

formed in e-p-i plasmas is shorter by comparison with their

counterparts in e-i plasmas. The work presented here may be

beneficial to understand the propagation of nonlinear electro-

static structures in dense astrophysical environments and in

intense-laser plasma interactions.
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