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In this paper, we have investigated the formation of obliquely propagating magnetoacoustic shock

structures in dense dissipative plasmas with relativistically degenerate electrons. Using the

reductive perturbation technique, we have derived the nonlinear Kadomtsev-Petviashvilli-Burgers

(KPB) equation for both fast and slow magnetoacoustic modes. We have explored the non-

relativistic and ultrarelativistic limits for degenerate electrons for both the modes and highlighted

the differences in propagation characteristics of their respective shock structures. We have also

studied the limiting cases of KPB in one dimension for both the fast and slow modes. Interestingly,

it has been found that unlike the other cases, the one dimensional Burgers equation for the fast

mode changes the nature of the shock waves. It has been explained in the paper that this happens

owing to the change of sign of the nonlinearity coefficient. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986112]

I. INTRODUCTION

Quantum plasmas have engendered enormous interest in

the past decade or so on account of its applications in a variety

of physical situations of interest such as in ultra cold plasmas,1,2

in plasmonic devices,3 in next generation high intensity light-

sources experiments,4 in metal nanostructures, and in stellar

environments.5 Plasmas with degenerate electrons having num-

ber densities comparable with solids and temperatures of several

electron volts fall under the category of warm dense matter.6,7

Such plasmas have been conjectured to exist in the core of giant

planets8,9 and the crusts of old stars.10 High-energy density

physics11 has gained interest due to its applications in astrophys-

ical and cosmological environments12–15 and in inertial fusion

science that involves intense laser-solid density plasma interac-

tion experiments3,16–21 and inertial confinement fusion.22

Collective interactions in non-relativistic, dense quantum plas-

mas are frequently investigated by means of quantum hydrody-

namic (QHD)5,23,24 and quantum kinetic25–27 models.

The QHD equations have been frequently used to investi-

gate linear and nonlinear plasma waves and the stability of

quantum plasmas5,24,28–30 at nanoscales involving the quan-

tum tunneling effects23,31 and the quantum statistical pressure

law for an unmagnetized quantum plasma with degenerate

electrons. Linear and nonlinear electromagnetic waves have

also been extensively studied in quantum plasmas employing

the QHD model. Spin-1/2 quantum magneto hydrodynamics

models for hydrodynamic waves, respectively, were pro-

posed32,33 for applications to solid state plasmas and dense

astrophysical environments. Several other investigations have

been carried out to study the linear and nonlinear structure for-

mation for obliquely propagating magnetoacoustic waves in

both non-dissipative and dissipative cases.34–36

Magnetoacoustic waves propagate perpendicular to

the ambient magnetic field and are usually termed as fast

hydromagnetic waves having phase speed always greater

than the Alfven wave. The magnetic field and density com-

pressions are responsible for the formation of this mode.

Oblique propagation of the magnetoacoustic wave to the

ambient magnetic field gives rise to fast and slow magnetoa-

coustic (SM) modes. Fast mode arises when magnetic field

and plasmas density oscillations are in phase whereas slow

mode exists when these two oscillations are out of phase.

These modes have both transverse and longitudinal compo-

nents and also form nonlinear wave structures such as soli-

tons, shocks, and double layers. The nonlinear propagation

characteristics of magnetoacoustic waves have been explored

by many authors due to their applications in space and fusion

plasmas where they are used in particle acceleration and

heating experiments.37–41

The self-steepening and shock formation in relativisti-

cally degenerate plasmas have been investigated using sim-

ple wave solutions.42 Pulsations observed in white dwarf

stars are thought to be originating from gravity (g-mode)

waves in the inhomogeneous density of the star,43,44 while

compressional (p-mode) waves are still to be observed.45 It

was also suggested that investigation can be readily general-

ized to include an ambient magnetic field, in which we have

the possibility of magnetosonic solitons46 and shocks47 in

dense plasmas. Motivated by these observations, we examine

here the linear and nonlinear oblique propagation of magne-

toacoustic shocks in non-relativistic and relativistic plasmas.

This paper is organized in the following manner. In

Sec. II, we write down the basic set of equations for the system

under consideration. In Sec. III, the Kadomtsev Petviashvili

Burgers (KPB) equation is derived and its solution is obtained

using the tangent hyperbolic method. In Sec. IV, we present

and discuss the results. Finally, in Sec. V, we recapitulate the

main findings of the paper.
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II. MODEL EQUATIONS

We consider an electron-ion plasma embedded in a mag-

netic field in which the ions are singly charged and fully ion-

ized and considered to be cold. The electrons are taken to be

degenerate and are assumed to obey the Fermi Dirac statis-

tics. We consider an oblique background magnetic field in

the (x, y) plane making a small angle h with the x-axis and

the propagation is considered in the (x, z) plane. The deriva-

tion of the Kadomtsev-Petviashvili-Burger (KPB) equation

in the relativistic plasma assumes a predominant propagation

direction along the x-axis and a weakly transverse propaga-

tion along the z-axis. The continuity and momentum equa-

tions describing the dynamics of ions are

@ni

@t
þr � nivið Þ ¼ 0; (1)

mi
dvi

dt
¼ ZeEþ Z

e

c
vi � Bþ �lr2vi: (2)

Here, ni is the perturbed ion density, mi is the mass of ion, vi is

the ion velocity, e is the electron charge, l ¼ �l=mi is the kine-

matic viscosity, E and B are the applied electric and magnetic

fields, respectively, and d=dt ¼ @=@tþ ðvi:rÞ is the convec-

tive derivative. Here, we have ignored the ion quantum effects

due to large ion inertia as compared to electrons. The ion pres-

sure is ignored because the main restoring force comes from

electrons; however, this does not imply Ti¼ 0 owing to the

fact that the viscosity of ions requires a finite ion temperature.

The momentum equation governing the dynamics of the

degenerate relativistic inertialess electrons is given by

0 ¼ �eE� e

c
ve � Bð Þ ��PeR

ne
: (3)

Here, ne is the perturbed electron density and ve is the elec-

tron velocity. The quantum diffraction effect due to wave

nature of particles in the quantum plasma is ignored because

its contribution is negligible compared to the relativistic

quantum pressure term. The relativistic quantum pressure

term is obtained by considering the quantum statistics of an

electron, where PeR is the relativistic degenerate pressure

and the expression for this pressure is given later.

The Faraday’s law and Ampère’s law are

�� E ¼ � 1

c

@B

@t
; (4)

�� B ¼ 4p
c

j; (5)

where the current density j is

j ¼ eðZnivi � neveÞ: (6)

We express the two fluid equations in the form of one fluid

equation by eliminating the electric field. We substitute the

value of ve from Eq. (6) to Eq. (3) to obtain

E ¼ � vi

c
� Bþ 1

4peZni
r� B� B��PeR

Znie
: (7)

We use the quasineutrality condition ne ’ Zni and substitute

the above equation in Eq. (2) to obtain the following one

fluid momentum equation

dvi

dt
¼ 1

4pmini
r� Bð Þ � B��PeR

nmi
þ lr2vi: (8)

The relativistic degenerate pressure PeR for the fully degen-

erate electrons is given as48

PeR ¼ Pe0 þ
2

3ce0

eFedne þ
c2

e þ 2
� �
9c3

e0ne0

eFedn2
e ; (9)

where ce0 is the relativistic gamma factor of an electron,

defined as ce0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2

eÞ
p

with ce¼PFe/mec, where PFe

¼ 3h3ne

8p

� �1
3

is the momentum of the electron on the Fermi sur-

face and electron Fermi energy is given as eFe ¼ �h2

2me

� �
ð3p2neÞ2=3: Now, we have the following normalized effective

one fluid momentum equation

dvi

dt
¼ 1

ni
r� Bð Þ � B� aeb

ni
rdni þ

beb
ni
rdn2

i þ gr2vi;

(10)

where b ¼ C2
s=v

2
A; Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZeFe=mi

p
is the ion acoustic speed,

vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmini

p
is the Alfv�en speed, ne ’ Zni; ae

¼ 2=3ce0; be ¼ ðc2
e þ 2Þ=9c3

e0, and g is the normalized kine-

matic viscosity of ions defined as g ¼ lxci=v2
A with

xci¼ ZeB0/mi is the ion cyclotron frequency.

The following normalization scheme is used for the

above equations

vi !
vi

vA
; B! B

B0

; t! xcit; r ! r
xci

vA
; ni !

ni

n0

:

(11)

Now substituting E from Eq. (2) to Faraday’s law and nor-

malizing the resultant equation, we get magnetic field induc-

tion equation as

@B

@t
¼ r� vi � Bð Þ � r � dvi

dt
: (12)

Equations (10) and (12) along with the continuity equation (1)

serve as the basic governing equations for the one fluid rela-

tivistic quantum model of electron-ion plasma. The one fluid

equations are linearized by assuming kz� kx and Bz�By and

considering the perturbations / exp ½iðkx� xtÞ�, we obtain

the following linear dispersion relation

x2

k2
¼ 1

2
1þ aebð Þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aeb cos2 h

1þ aebð Þ2

s2
4

3
5: (13)

This linear normalized dispersion relation for the relativistic

quantum plasma describes two modes of obliquely propagat-

ing magnetoacoustic waves. “þ” sign is for fast magnetoa-

coustic (FM) whereas “�” sign is for slow magnetoacoustic

(SM) waves. These modes show variations with the number

density and ambient magnetic field via b and the angle of

propagation h.
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A. Special cases

1. Non-relativistic limit

In the non-relativistic limit ce� 1, so that ce0¼ 1, then

the linear dispersion relation becomes

x2

k2
¼ 1

2
1þ 2b

3

� �
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

8

3
b cos2 h

1þ 2

3
b

� �2

vuuuuut

2
66664

3
77775: (14)

This dispersion relation is similar to the already known

results.35

2. Parallel propagation

When h¼ 0�, then FM waves become the pure Alfv�en

waves and the SM become the acoustic waves, for Alfv�en

speed greater than the acoustic speed and their normalized

dispersion relations are x2/k2¼ 1 and x2/k2¼ aeb, respec-

tively. However, for acoustic speed greater than Alfv�en

speed, FM waves become the pure acoustic wave and SM

waves become the pure Alfv�en waves.

3. Perpendicular propagation

When h¼ 90�, the SM vanishes and only fast relativistic

quantum magnetoacoustic mode exists. The dispersion rela-

tion of FM is then

x2

k2
¼ 1

2
1þ aebð Þ: (15)

III. KADOMTSEV-PETVIASHVILI-BURGER (KPB)
EQUATION

To study the magnetoacoustic perturbations propagating

in a relativistic degenerate dense plasma, we construct a

weakly nonlinear theory which leads to the scaling of the

independent variables,49 through the standard stretching as

n ¼ �1=2ðx� ktÞ;
v ¼ �z;
s ¼ �3=2t;

(16)

where � is a small parameter measuring the weakness of the

nonlinearity and k is the wave phase velocity normalized by

vA. The perturbed quantities n, vix, viy, viz, Bx, By, Bz, and g
can be expanded in terms of power series of � about their

equilibrium values as

n ¼ 1þ �n1 þ �2n2 þ � � � � �;
vix ¼ �u1 þ �2u2 þ �3u3 þ � � � � �;
viy ¼ �v1 þ �2v2 þ �3v3 þ � � � � �;
viz ¼ �3=2w1 þ �5=2w2 þ � � � � �;
Bx ¼ cos h;

By ¼ sin hþ �By1 þ �2By2 þ � � � � �;
Bz ¼ �3=2Bz1 þ �5=2Bz2 þ � � � � �;
g ¼ �1

2g0:

(17)

Using the stretched variables for Eqs. (1), (10), and (12), we

develop equations in various powers of �. Eliminating the

higher order terms and doing some tedious algebraic manipu-

lations lead to the Kadomtsev-Petviashvili-Burger (KPB)

equation for fast and slow magnetoacoustic shock waves in

the relativistic quantum plasma (see Appendix for the details)

@

@n
@By1

@s
þ lBy1

@By1

@n
þ m

@3By1

@n3
� n

@2By1

@n2

" #
þ p

@2By1

@v2
¼ 0;

(18)

where l¼C/A, m¼D/A, n¼F/A, and p¼G/A. Here, A, C,

D, F, and G are defined in terms of plasma parameters as

A ¼ cos2 hþ k2

k2
þ sin2 h aebþ k2

� �
aeb� k2
� �2

;

C ¼ k sin h

k2 � aeb
� � 3þ 2b sin2 h ae þ beð Þ

aeb� k2
� �2

" #
;

D ¼ �k cos2 h

k2 � cos2 h
;

G ¼ k5 sin2 h

aeb� k2
� �2

k2 � cos2 hð Þ
;

F ¼ g0

k2 sin2 h

aeb� k2
� �2

þ cos2 h

k2

" #
:

(19)

Note that all the coefficients of the shock wave are modified

by relativistic quantum statistical effects. Now, we switch to a

co-moving frame to solve the nonlinear differential equation

(NLDE) (18) by using the transformation f¼ k(nþ v � Us),

where k is the wave number. There are many methods to solve

this NLDE like inverse scattering method,50 Hirota bilinear

formalism,51 Backlund transformation,52 and tanh.53 To solve

such partial differential equations which contains the effects

of dispersion and dissipation, the tanh method is most suit-

able.54 We obtain the following solution with the help of the

tanh method

By1 n; v; sð Þ ¼ 6n2

25ml
1� tanh

n

10m
nþ v� Usð Þ

	 


þ 3n2

25ml
sech2 n

10m
nþ v� Usð Þ

	 

; (20)

where U ¼ 6n2

25m
þ p is the velocity in commoving frame for

nonlinear structure.

A. Stability analysis of the KPB equation

In order to check the stability of the shock structures,

the KPB equation is transformed into a new coordinate frame

f¼ k(nþ v � Us), where k is the dimensionless wave num-

ber and U is the velocity of co-moving frame. Integrating the

resultant equation twice gives

mk2 @
2By1

@f2
� nk

@By1

@f
� U � pð ÞBy1 þ

l

2
B2

y1 ¼ 0: (21)
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The boundary conditions By1 ! B0;
@By1

@f ! 0;
@2By1

@f2 ! 0 as f

! �1 are applied to investigate the asymptotic behavior of

above equation by linearizing it with respect to By1.55

Simplifying the equation gives

mk2 @
2By1

@f2
� nk

@By1

@f
þ U � pð ÞBy1 ¼ 0: (22)

The asymptotic solution of the above equation is propor-

tional to exp(Wf), where

W ¼ n

2mk
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m U � pð Þ

n2

r" #
: (23)

This shows that the shock structure would be stable when
4mðU�pÞ

n2 � 1, else it would be an oscillatory shock. It can eas-

ily be seen that the weak transverse perturbation plays a cru-

cial role in the stability of the shock.

B. Limiting cases

We can deduce the one dimensional nonlinear partial

equation Korteweg–de Vries Burgers equation from Eq. (18)

by ignoring the weak transverse perturbation (i.e., p¼ 0) for

obliquely propagating magnetoacoustic wave in the relativis-

tic degenerate quantum plasma and the solution is given as

By1 n; sð Þ ¼ 6n2

25ml
1� tanh k n� Usð Þ½ �

þ 3n2

25ml
sech2k n� Usð Þ
� �

; (24)

where k ¼ n
10m

and U ¼ 6n2

25m
. The exact solution of this planar

KdVB equation contains the contribution from both disper-

sive and dissipative effects which changes the eventual shape

of the wave potential. If we ignore both predominant and

weak dispersions in Eq. (18), then we end up with the one

dimensional Burgers equation, which has the following

solution:

By1 n; v; sð Þ ¼ 2n

l
1� tanhn½ �: (25)

IV. NUMERICAL RESULTS

In this section, we will see the effects of number densi-

ties, magnetic field intensities, and the kinematic viscosity

on the dense relativistic magnetoacoustic shock structures. In

high density plasmas found in dense astrophysical objects

like white dwarfs and neutron stars, the properties of shocks

are studied. The plots of shock waves are obtained and com-

pared for different plasma parameters in nonrelativistic and

the ultrarelativistic regimes for both the fast and slow mag-

netoacoustic modes.

A wide range of values exist for the number densities

and the magnetic field in white dwarfs.56,57 Typical values of

densities are n0 ¼ 1032�1035m�3 and those of magnetic

field are B0 ¼ 105�108T for the nonrelativistic electron

region ðkBTFe � mec2Þ. The system temperature is taken to

be T¼ 105 K which is less than the electron Fermi temperature

(107–108 K) and hence it is justified to consider degenerate

electrons. The ion Fermi temperature (103–104 K) comes out

to be less than the system temperature, so ions are taken to

be non-degenerate. These ranges of densities and magnetic

field are permissible for the validity of quantum fluid model,

i.e., kFe> d, where the electron Fermi length is defined as

kFe ¼ ð2kBTFe=4pne0e2Þ1=2
and the mean distance between

particles is d ¼ ð3=4pne0Þ1=3
. The spin effects for these densi-

ties can also be ignored since the condition lBB0 � kBTFe is

met, along with the condition lBB0 � miv2
A,58 where the Bohr

magneton is lB ¼ e�h=2me.

For the ultra-relativistic limit, the Fermi energy of elec-

trons is much greater than rest mass energy of electrons, i.e.,

kBTFe 	 mec2 or ce	 1. Typical values of densities and

magnetic fields in this regime are ne0 ¼ 1036�1040m�3 and

B0¼ 108–1010 T in the literature.59 The system temperature

is again less than the electron Fermi temperature and greater

than the ion Fermi temperature, so that electrons are taken to

be degenerate and ions are considered as non degenerate.

Interestingly, it is observed that spin effects can be ignored

for relatively larger values of ambient magnetic fields (i.e.,

B0 ¼ 108�1010T), since for high densities of the ultrarela-

tivistic region the electron Fermi energy is also increased

and condition lBB0 � kBTFe still holds.

A. Plots of KPB equation

Before we discuss anything else, it is pertinent to men-

tion here that the system under consideration admits rarefac-

tive shock structures for both the fast and slow modes for the

KPB equation. Figure 1 shows the dependence of magnetic

field on the magnetoacoustic shock potential for fast mode. It

is found that increasing the magnetic field strength mitigates

the strength of magnetoacoustic shock potential in terms of

magnitude for both the non relativistic and the ultra relativis-

tic shock waves for the fast mode. However, the reverse hap-

pens for the case of the slow magnetoacoustic shock wave as

shown in Fig. 2. It is worthwhile to note here that the direc-

tion of propagation of the shock wave is found to be opposite

for the case of slow mode as compared to the fast mode.

This is due to the fact that the dissipation coefficient along

the z-direction changes its sign for the case of slow magneto-

acoustic wave.

Figure 3 explores the dependence of the non relativistic

and ultra relativistic magnetoacoustic shock waves for the

FIG. 1. Effect of the magnetic field on the fast mode of the KPB shock struc-

ture. The bold curve is for B0¼ 2� 105 T, dotted curve is for

B0¼ 2.3� 105 T, and no¼ 1033 m�3 for the non-relativistic case. For the

ultra relativistic case, no¼ 1036 m�3, bold curve is for B0¼ 6� 107 T, and

dotted curve is for B0¼ 7 � 107 T. Other parameters are Z¼ 6, t¼ 1,

g0¼ 0.1, and h ¼ 30�.
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fast mode on number density. It is found that the increasing

number density enhances the strength of the magnetoacoustic

shock in terms of magnitude for the nonrelativistic as well as

the ultra-relativistic shock. The reverse of the above happens

for the slow magnetoacoustic shocks as shown in Fig. 4. It is

pertinent to mention here that not only the behavior of fast

and slow shocks is different for magnetic field and number

density but the relative strength of the non relativistic and

ultra relativistic shocks also varies for both the parameters as

can be seen from the close observation of Figs. 1–4.

Figure 5 manifests the effect of kinematic viscosity only

for the ultra relativistic shock potential for both the fast and

slow magnetoacoustic modes. It is seen that, in terms of

magnitude, the increase in resistivity enhances the shock

strength for both the fast and slow modes.

B. Plots of KdVB equation

The magnetoacoustic waves in this case admit the rare-

factive shock structures for all the non relativistic and ultra

relativistic cases of fast and the slow modes. We discuss

here the dependence of magnetoacoustic shock waves only

on the number density for both fast and slow modes. Figures

6 and 7 exhibit the behavior of fast and slow modes for both

non relativistic and ultra relativistic cases. It is found that the

increasing number density enhances the strength of the fast

magnetoacoustic shock in terms of magnitude for the nonrel-

ativistic as well as the ultra-relativistic shock (see Fig. 6).

The reverse of the above happens for the slow magnetoa-

coustic shocks as shown in Fig. 7.

C. Plots of Burgers equation

Before we go on and discuss the results in this case, we

take a brief digression to reflect on the behavior of fast and

FIG. 2. Effect of magnetic field on the slow mode of the KPB shock struc-

ture. The bold curve is for B0¼ 5� 106 T, dotted curve is for B0¼ 5.5

� 106 T, and no¼ 1033 m�3 for the non relativistic case. For the ultra relativ-

istic case no¼ 5� 1035 m�3, bold curve is for B0¼ 9� 108 T, and dotted

curve is for B0¼ 9.5� 108 T. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1, and

h¼ 30�.

FIG. 3. Effect of number density on the fast mode of the KPB shock struc-

ture. The bold curve is for no¼ 1.2� 1033 m�3, dotted curve is for no¼ 1.5

� 1033 m�3, and B0¼ 4� 105 T for the non relativistic case. For the ultra rel-

ativistic case, B0¼ 4� 107 T, bold curve is for no¼ 5� 1035 m�3, and dotted

curve is for no¼ 8� 1035 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1,

and h¼ 30�.

FIG. 4. Effect of number density on the slow mode of the KPB shock struc-

ture. The bold curve is for no¼ 1.2� 1033 m�3, dotted curve is for no¼ 1.6

� 1033 m�3, and B0¼ 8� 106 T for the non relativistic case. For the ultra rel-

ativistic case B0¼ 9� 108 T, bold curve is for no¼ 5� 1035 m�3, and dotted

curve is for no¼ 7� 1035 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1,

and h¼ 30�.

FIG. 5. Effect of resistivity on the KPB shock structure for the ultra relativ-

istic case. The bold curve is for g0¼ 0.1, dotted curve is for g0¼ 0.15 and

no¼ 1036 m�3, and B0¼ 108 T is for the fast mode. For slow magnetoacous-

tic mode no¼ 1035 m�3, B0¼ 4� 108 T, bold curve is for g0¼ 0.1, and dot-

ted curve is for g0¼ 0.15. Other parameters are Z¼ 6, t¼ 1, and h¼ 30�.

FIG. 6. Effect of number density on the fast mode of the KdVB shock struc-

ture. The bold curve is for no¼ 1033 m�3, dotted curve is for no¼ 1.2

� 1033 m�3, and B0¼ 5� 105 T for the non relativistic case. For the ultra rel-

ativistic case B0¼ 6� 107 T, bold curve is for no¼ 1036 m�3, and dotted

curve is for no¼ 1.2� 1036 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1,

and h ¼ 30�.

FIG. 7. Effect of number density on the slow mode of the KdVB shock

structure. The bold curve is for no¼ 1033 m�3, dotted curve is for no¼ 1.2

� 1033 m�3, and B0¼ 5� 106 T for the non relativistic case. For ultra relativ-

istic case B0¼ 9� 108 T, bold curve is for no¼ 5 � 1035 m�3, and dotted

curve is for no¼ 6� 1035 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1,

and h¼ 30�.
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slow magnetoacoustic waves for the Burgers equation.

Interestingly, the fast magnetoacoustic mode for the

Burgers equation admits compressive shock structures,

whereas the slow magnetoacoustic waves allow the forma-

tion of rarefactive shock structures. The reason for com-

pressive and rarefactive shocks is the sign of nonlinearity

that changes for slow and fast modes and that is due to the

difference in physics of the two modes. Figure 8 investi-

gates the dependence of nonlinear fast magnetoacoustic

shock potential on the number density for both the non rel-

ativistic and ultra relativistic cases for the Burgers equa-

tion. As mentioned earlier, the fast acoustic mode admits

compressive shock structures for the Burgers equation. It is

found that the increasing number density reduces the

strength of the magnetoacoustic shock for the nonrelativis-

tic as well as the ultra-relativistic shock. The shock

strength is found to be greater for the non-relativistic shock

by comparison with its ultra-relativistic counterpart. The

same behavior is observed for the slow magnetoacoustic

shocks as shown in Fig. 9; however, rarefactive shocks are

formed in this case.

V. CONCLUSION

In this paper, we have investigated the formation of

obliquely propagating non-relativistic and ultra-relativistic

cases of magnetoacoustic shock structures in dense dissipa-

tive plasmas consisting of cold non-degenerate ions and

degenerate inertialess electrons by means of the Kadomtsev-

Petviashvili-Burger (KPB) equation. The assumptions under

which the KPB equation has been obtained have been dis-

cussed. The solution of the KPB equation has been obtained

by using the tanh method. It has been pointed out that limit-

ing cases of the KPB equation yield the one-dimensional

KdVB and Burgers equation which also admits shock solu-

tions. Stability analysis of the KPB equation has also been

presented and it has been shown that the weak transverse

perturbation plays a vital role in the stability of the shock

wave. The variation in the propagation characteristics of

fast and slow magnetoacoustic modes for non-relativistic

and relativistic cases has been discussed in detail. The sys-

tem has been found to admit rarefactive shock structures

for KdVB and KPB equations. Interestingly, it has been

found that the nature of the shock wave changes for the

Burgers equation which allows the formation of both com-

pressive (for fast mode) and rarefactive (for slow mode)

shock structures. It has been found to be due to the change

in the sign of the nonlinearity coefficient for the two modes

which further highlights the difference in the fundamental

character of fast and slow modes. The results presented

here may be beneficial to understand the formation and

propagation of nonlinear dissipative structures in extremely

dense environments such as those found in the vicinity of

white dwarfs or neutron stars.

APPENDIX: DERIVATION OF THE KPB EQUATION

In this section, the KPB equation is derived using the

small amplitude perturbation expansion method. For the low-

est order of �, (O-�3=2) we obtain the following equations:

k@nn1 ¼ @nu1;

�k@nu1 ¼ �sin h@nBy1 � aeb@nn1;

�k@nv1 ¼ cos h@nBy1;

�k@nBy1 ¼ �sin h@nu1 þ cos h@nv1:

(A1)

Solving the system (A1) yields the dispersion relation as

obtained in Eq. (13),

k ¼ 1

2
1þ aebð Þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aeb cos2 h

1þ aebð Þ2

s2
4

3
5

2
4

3
5

1=2

: (A2)

Collecting the terms in next higher order of � (O-�2), we

get

�k@nBz1 ¼ cos h@nw1 þ k@2
n;nv1;

�k@nw1 ¼ �sin h@vBy1 þ cos h@nBz1 � aeb@vn1:
(A3)

Now using relations (A3) along with the equations for the

lowest order in �, i.e., (A1) we obtain the following expres-

sion between w1 and By1:

cos2 h� k2ð Þ@nw1 ¼ cos2 h@2
n;nBy1 þ

k3 sin h

aeb� k2
@vBy1: (A4)

From the set of equations of the next higher order of �, we

obtain the following set of equations:

FIG. 8. Effect of number density on the fast mode of the Burgers shock

structure. The bold curve is for no¼ 1032 m�3, dotted curve is for no¼ 1.4

� 1032 m�3, and B0¼ 5� 105 T for the non relativistic case. For ultra relativ-

istic case B0¼ 5� 108 T, bold curve is for no¼ 1036 m�3, and dotted curve

is for no¼ 1.3� 1036 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1, and

h¼ 30�.

FIG. 9. Effect of number density on the slow mode of the Burgers shock

structure. The bold curve is for no¼ 1033 m�3, dotted curve is for no¼ 1.3

� 1033 m�3, and B0¼ 5� 106 T for the non relativistic case. For the ultra rel-

ativistic case B0¼ 5� 108 T, bold curve is for no¼ 1036 m�3 and dotted

curve is for no¼ 1.3� 1036 m�3. Other parameters are Z¼ 6, t¼ 1, g0¼ 0.1,

and h¼ 30�.
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�k@nn2 þ @nu2

¼ �@sn1 � @nðn1u1Þ � @vw1

�k@nBy2 � cos h@nv2 þ sin h@nu2

¼ �@sBy1 � sin h@vw1 � @nðBy1u1Þ
þk@2

n;vu1 � k@2
n;nw1;

�k@nu2 þ sin h@nBy2 þ aeb@nn2

¼ �@su1 � By1@nBy1 � u1@nu1

þ sin hn1@nBy1 þ bðae � 2beÞn1@nn1 þ g0@
2
n;nu1;

�k@nv2 � cos h@nBy2

¼ �@sv1 � u1@nv1 � cos hn1@nBy1 þ g0@
2
n;nv1: (A5)

Solving this set of equations leads to the Kadomtsev-

Petviashvili-Burger (KPB) equation as given in Eq. (18).
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