
Alfvén solitary waves with effect of arbitrary temperature degeneracy in spin quantum
plasma
Qasim Jan, A. Mushtaq, M. Farooq, and H. A. Shah

Citation: Physics of Plasmas 25, 082122 (2018); doi: 10.1063/1.5037649
View online: https://doi.org/10.1063/1.5037649
View Table of Contents: http://aip.scitation.org/toc/php/25/8
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1914574873/x01/AIP-PT/COMSOL_PoPArticleDL_WP_0818/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Jan%2C+Qasim
http://aip.scitation.org/author/Mushtaq%2C+A
http://aip.scitation.org/author/Farooq%2C+M
http://aip.scitation.org/author/Shah%2C+H+A
/loi/php
https://doi.org/10.1063/1.5037649
http://aip.scitation.org/toc/php/25/8
http://aip.scitation.org/publisher/


Alfv�en solitary waves with effect of arbitrary temperature degeneracy in spin
quantum plasma

Qasim Jan,1 A. Mushtaq,1,2 M. Farooq,1,a) and H. A. Shah3

1Department of Physics, FPNS, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
2Department of Physics, FBAS, International Islamic University (IIUI), Islamabad 44000, Pakistan
3Physics Department, GC University, Lahore 54000, Pakistan

(Received 26 April 2018; accepted 12 August 2018; published online 30 August 2018)

Nonlinear Alfv�en waves are studied in a fluid model for nonrelativistic, magnetized spin-1/2

quantum plasmas with an arbitrary degeneracy effect. Following a local Fermi-Dirac distribution

function, a modified equation of state is utilized which is applicable to both classical and degener-

ate limits. Using the fluid equations for Hall magnetohydrodynamics with quantum corrections due

to statistical effects, Bohm potential, spin magnetization energy, and temperature degeneracy, a set

of modified Zakharov equations are derived for circularly polarized nonlinear Alfv�en waves. Ions

are assumed to be cold, and the spin effects of electrons are incorporated through spin force along

with spin magnetization current. A linear dispersion relation for finite amplitude Alfv�en waves

duly modified by spin magnetization and arbitrary temperature degeneracy effects is also obtained.

Employing the Sagdeev potential approach, the properties of Alfv�en solitary profiles in quantum

plasmas with arbitrary degeneracy effects of electrons are analyzed. The amplitude of Sagdeev

potential and of the associated soliton structure for both right and left-hand circularly polarized

Alfv�en waves is observed to decrease with the decrease in the value of the arbitrary temperature

degeneracy factor G for the case of the nearly degenerate limit. Similarly, it is found that the ampli-

tude of Sagdeev potential and of the related solitary profile increases for both kinds of circular

polarized Alfv�en waves with the increasing value of G in the case of the nearly non-degenerate

limit. Published by AIP Publishing. https://doi.org/10.1063/1.5037649

I. INTRODUCTION

Over the last several years, the physics of low tempera-

ture and high density plasmas has rapidly grown beyond the

conventional high temperature and low density plasmas

commonly observed in space and laboratory. The interest in

the field of quantum plasmas is due to their potential applica-

tions in high density astrophysical objects (interiors of white

dwarf stars and neutron stars),1,2 in thin metal films,3 in

quantum wells,4 in ultra-cold plasmas,5 in microelectronic

devices,6 and in strong laser produced plasmas.7 In quantum

plasmas, due to their high density and low temperature char-

acteristics, the de Broglie wavelength of the electron

becomes comparable to (or greater than) the average distance

between them, i.e., kDeð¼ �h=mevteÞ �
ffiffiffiffiffiffiffiffiffi
n�3
p

(with n repre-

senting the equilibrium density, �h the reduced Plank’s con-

stant, me the mass of electrons, and vte the thermal speed of

electrons), which leads to a number of novel quantum effects

as a result of overlapping of wavefunctions associated with

these electrons. Under such circumstances, the degeneracy

pressure is larger than the usual thermal pressure, and the

Fermi energy of the electrons exceeds their thermal energies

due to which the electrons become degenerate. In order to

consider the novel quantum effects arising due to the Pauli

exclusion principle and Heisenberg’s uncertainty principle,

the quantum hydrodynamic (QHD) model has been exten-

sively used in recent years.8–10 The QHD model, a quantum

analog of the classical fluid model,11 generalizes the usual

fluid model with the inclusion of the so-called Bohm poten-

tial,12 a quantum correction term arising as a result of the

quantum tunneling effect of electrons. This model also incor-

porates the quantum statistical effects through the inclusion

of the Fermi pressure for degenerate electrons.

The most typical electromagnetic phenomena associated

with plasmas in the presence of strong magnetic fields, i.e.,

Alfv�en waves, are transverse magnetohydrodynamic (MHD)

waves13 propagating in a direction parallel to the external mag-

netic field. Various plasma regimes such as laboratory, space,

and astrophysical plasmas are deeply influenced by the propaga-

tion of nonlinear Alfv�en waves. These waves have been exten-

sively studied in recent years due to their applications in plasma

heating,14 self-modulation in strongly magnetized plasmas,15

reconnection,16 interplanetary shocks,17 and turbulence.18 The

ideal magnetohydrodynamic (MHD) model, commonly applied

for the description of a magnetized plasma, was first used19 for

the derivation of Alfv�en waves. In an ideal MHD model, the

whole plasma is assumed to act like a single fluid as compared

to that of the two-fluid model where the plasma is considered to

consist of two intermingled fluids, i.e., electron fluid and ion

fluid. The dispersion in the case of the two-fluid model arises as

a result of the inclusion of the Hall term. The Hall-MHD

description has been utilized by Brodin and Stenflo20 to study

the interactions caused by Alfv�enic fluctuations. The propaga-

tion of linearly and circularly polarized Alfv�en waves with the

inclusion of their linear and nonlinear characteristics is a subject

of prime focus in recent research activities.21–23a)Electronic mail: mfarooqi7878@gmail.com
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In the case of plasmas subjected to strong magnetic fields,

the propagation of waves is believed to be significantly influ-

enced by the collective spin effects of charge particles. Owing

to this fact, the MHD model has been extended to include the

spin magnetization.24,25 A modified Korteweg-de Vries (KdV)

equation has been derived in Ref. 26 to study Alfv�en solitary

waves in non-degenerate (ND) quantum plasmas including

the spin-1/2 effects of electrons. The electron spin effects are

believed to play a vital role in the dynamics of low frequency

modes as depicted in Refs. 25 and 27. Two dimensional non-

linear solitary profiles in degenerate quantum plasmas without

spin28 and in non-degenerate plasmas with the electron spin

effects have been analyzed.29 Similarly, magnetosonic solitary

structures have also been analyzed for the case of one and two

dimensional multicomponent quantum plasmas.30,31 The prop-

agation of nonlinear Alfv�en waves in degenerate Fermionic

quantum plasmas without and with electron spin effects was

studied in Refs. 32 and 33, respectively.

Two main approaches, i.e., kinetic model and fluid

model, have been extensively used to study the wave propa-

gation in a degenerate quantum plasma. In the former

approach, the electron distribution is characterized by

employing a Fermi-Dirac (FD) function, whereas for the lat-

ter approach, the force balance equation is modified with the

equation of state for a degenerate electron gas. For the classi-

cal ideal electron gas obeying the Maxwell-Boltzmann (MB)

distribution, the energy distribution is solely determined by

the thermodynamic temperature, and accordingly, the energy

spread of a quantum degenerate electron gas is subjected to

Fermi-Dirac (FD) distribution which is characterized by two

parameters, i.e., thermodynamic temperature Te and chemi-

cal potential l. For the case of fully degenerate electron gas,

the equation of state reduces to a function of only chemical

potential l. Thus, depending on the competition between

thermal temperature and chemical potential, it is important

to study the propagation of nonlinear waves in the intermedi-

ate regime by incorporating an arbitrary temperature degen-

eracy parameter G

�
¼

Li5
2
ð�nÞ

Li3
2
ð�nÞ

�
(notations are defined in

Sec. II), for the transition between thermal and ultra-cold

cases. Inertial confinement fusion plasmas,34 ultrasmall

semiconductor devices,35 and laboratory simulations of

dense astrophysical scenarios (white dwarfs, neutron stars,

etc.)36 provide striking examples of such systems which are

neither strongly degenerate (quantum) nor completely non-

degenerate (classical).

Using classical kinetic theory, a general dispersion rela-

tion for ion-acoustic waves (IAWs) (low frequency) and

Langmuir waves (high frequency) was previously obtained37

in dense quantum plasmas with the effect of arbitrary tem-

perature degeneracy of electrons. A longitudinal response

function for a thermal electron gas has been calculated for

arbitrary degeneracy in Ref. 38 by using quantum kinetic

theory. Apart from these works which are restricted to linear

waves only, nonlinear fluid evolution equations for high fre-

quency plasma oscillations have also been derived39 in a

quantum plasma with the effect of arbitrary degeneracy of

electrons. A Bernoulli pseudopotential approach has been

utilized to analyze ion-acoustic waves (IAWs) in isothermal

plasmas with arbitrary degeneracy effects. Linear and non-

linear characteristics of ion-acoustic waves with some

degenerate degree of electrons were studied using the fluid

model for nonrelativistic, unmagnetized, and magnetized

quantum plasmas,40,41 where the electron equation of state is

modified by deriving the pressure tensor, solving the FD dis-

tribution in terms of the polylogarithm function with some

arbitrariness in degeneracy.

In the present article, we study the propagation of non-

linear Alfv�en waves nearly parallel to the ambient magnetic

field, in spin quantum plasmas with the effect of arbitrary

temperature degeneracy of electrons. Our main objective is

to study the interaction of shear Alfv�en waves and ion acous-

tic waves (IAWs), both of which predominantly propagate

along the applied magnetic field with some sort of quantum

and finite Larmor radius corrections.

In Sec. II, we present the basic equations for quantum

Hall-magnetohydrodynamics (QHMD) and define a baro-

tropic equation of state in terms of an arbitrary temperature

degeneracy factor G. Using a two time scale perturbation

approach, a set of modified nonlinear equations (called

Zakharov equations) are obtained from the governing equa-

tions in Sec. III. We also derive a linear dispersion relation

for Alfv�en waves duly modified by spin effects of electrons

and the arbitrary temperature degeneracy effect in the same

section. In Sec. IV, the derivation of nonlinear nonrelativistic

electromagnetic Sagdeev or pseudopotential is carried out,

which is essential for the discussion of the soliton solution

for circularly polarized spin-1/2 Alfv�en waves. In Sec. V, the

main results of this paper are presented. The summary of the

work is given in Sec. VI.

II. BASIC EQUATIONS AND FORMULATION

We consider a two component electron-ion quantum

magnetoplasma with arbitrary degeneracy of electrons

including the spin effects of electrons. The ambient magnetic

field is supposed to be along the z-axis in a Cartesian coordi-

nate system ðB0 ¼ B0ẑÞ, while the propagation is assumed to

be predominantly in a direction parallel to the external mag-

netic field, i.e., r ¼ ð0; 0; @zÞ with small corrections of the

transverse finite Larmor radius effect. In order to construct

the one fluid quantum magnetohydrodynamic (QMHD)

model, we start with the usual quantum hydrodynamic fluid

equations for electrons and ions with the inclusion of quan-

tum corrections. We have ignored the quantum effects of

ions because of their large inertia as compared to that of

electrons. The set of dynamic equations for nonlinear circu-

larly polarized Alfv�en waves in a spin-1/2 quantum plasma

with arbitrary degeneracy effects is described as follows:

The force balance equation for inertial cold classical

ions is

mi
dui

dt
¼ e Eþ ui � Bð Þ; (1)

and the continuity equation is

082122-2 Jan et al. Phys. Plasmas 25, 082122 (2018)



@ni

@t
þr � ðniuiÞ ¼ 0: (2)

The electrons are considered inertialess owing to the

low frequency nature of Alfv�en waves, and thus, the inertia-

less equation of motion for electrons can be written as

0 ¼ �eðEþ ue � BÞ � rPe

ne
þ FQ: (3)

In the above equations, mi represents the mass of ions,
d
dt ¼ @

@tþ ðui � rÞ is the usual convective fluid derivative, ui

and ue are the symbols used for ion and electron fluid veloci-

ties, respectively, whereas ni and ne are the ions and electron

number densities. 6jej represents the magnitudes of the

charge on ions (electron), E is the wave electric field vector,

and B is the wave magnetic field vector. In Eq. (3), P ¼ PðneÞ
is the electron fluid pressure which is specified by a barotropic

equation of state, which is given as

Pe ¼
G

b0
ne; (4)

where G ¼
Li5

2
ð�nÞ

Li3
2
ð�nÞ

38 is the arbitrary temperature degeneracy

factor for the transition between thermal and ultra-cold cases,

with n ¼ eb0l; b0 ¼ 1
kBTe

. Here, l is the chemical potential

which is the function of position r and time t, kB is the usual

Boltzmann constant, and Te is the electron’s temperature (con-

stant). The moments of a local Fermi-Dirac (FD) distribution

function of an ideal fermi gas lead40 to the equation of state

(4). The parameter n, which is a function of chemical potential

l and electron temperature Te, describes the degeneracy. For

the case of the nearly nondegenerate (NND) limit, we assume

n� 1 ( l
kBTe

is large and negative), whereas for the nearly

degenerate (ND) limit, n� 1 ( l
kBTe

is large and positive).38

The equation of state (4) contains the polylogarithm function

with index m, i.e., Limð�nÞ. For the case when m> 0, the pol-

ylogarithm function has the general form42

Lim �nð Þ ¼ � 1

C mð Þ

ð1
0

tm�1

et

n
þ 1

dt; (5)

where CðmÞ is the gamma function. The polylogarithm func-

tion (5) can be expanded under various assumptions. For the

case of the nearly nondegenerate (NND) limit ðn� 1Þ, we

get

Lim �nð Þ ¼ �nþ n2

2m : (6)

Putting the expanded values of Li5
2
ð�nÞ and Li3

2
ð�nÞ, the

arbitrary temperature degeneracy factor G becomes

G ¼ 1þ n

2
5
2

: (7)

Similarly, for the case of the nearly degenerate (ND) limit

ðn� 1Þ; Eq. (5) yields

Lim �nð Þ ¼ � ln nð Þm

Cðmþ 1Þ : (8)

By using the values of Li5
2
ð�nÞ and Li3

2
ð�nÞ, the arbitrary

temperature degeneracy factor G takes the form

G ¼ 2

5d
1� p2

12
d2

� �
; (9)

where d ¼ Te

TF
: It is important to discuss some limiting cases

of the equation of state (4). For the dilute plasma limit, i.e.,

in the case of complete nondegeneracy (CND) ðn! 0Þ, one

get from Eq. (7) GCND ¼ 1, and thus, Eq. (4) reduces to the

usual classical isothermal equation of state, i.e., P ¼ nekBTe.

On the other extreme for the dense plasma limit, i.e., in the

case of complete degeneracy (CD) ðn!1Þ, Eq. (9) yields

GCD ¼ 2
5

TF

Te
, which on putting in Eq. (4) gives the Fermi pres-

sure for degenerate electrons, i.e., P ¼ ð3p2Þ2=3�h2

5me
n5=3

e .43

A general coupling parameter applicable to both nearly

non-degenerate (NND) and nearly degenerate (ND) limits can

be derived in terms of arbitrary temperature degeneracy factor

G to show that our model does not take into account collisional

damping.40 The dimensionless coupling parameter K by defini-

tion is the ratio of the mean interaction energy per particle

hEinti to the corresponding mean kinetic energy hEkini, i.e.,

K ¼ hEinti
hEkini

:

For K � 1; the system is collision dominated, whereas

the condition for low collisionality is that the average kinetic

energy should be greater than the average electrostatic poten-

tial energy per particle, i.e., K < 1. For arbitrary degeneracy

incorporating the values of electrostatic potential hEinti

� 4no

3p2

� �1
3 e2

eo
(using the definition of the Wigner-Seitz ratio

rs ¼ ð 3
4pno
Þ

1
3) and kinetic energy hEkini ¼ 3

2b0
Li5

2
ð�nÞ

Li3
2
ð�nÞ (with

degenerate fugacity n ¼ eb0l), the coupling parameter can be

expressed as

K ¼ 1

6

4no

3p2

� �1
3 e2b0

eo

Li3
2
�nð Þ

Li5
2
�nð Þ ¼

1

6

4no

3p2

� �1
3 e2b0

eoG
; (10)

where G ¼
Li5

2
ð�nÞ

Li3
2
ð�nÞ. The relationship between the number den-

sity no and the chemical potential l via a polylogarithm

function can be written as40,41

� no

Li3
2
�nð Þ

meb
0

2p

� �3
2

¼ 2
me

2p�h

� �3

:

The coupling parameter (10) in terms of the polylogarithm

function can be deduced

K ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meb

0=2
p

3
4
3p

7
6

e2

eo�h

Li3
2
�nð Þ

� �4
3

Li5
2
�nð Þ : (11)
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By simplifying Eqs. (11) and (10), we can express tem-

perature T and number density n0 in terms of the coupling

parameter K as

T ¼ me

2kB

e2 Li3
2
�nð Þ

� �4
3

3
4
3p

7
6eo�hKLi5

2
�nð Þ

2
64

3
75

2

(12)

and

no ¼
3p2

4

6eoKLi5
2
�nð Þ

e2b0Li3
2
�nð Þ

" #3

: (13)

For the case of the nearly nondegenerate (NND) limit

ðn� 1Þ, the expanded form of the polylogarithm function,

i.e., Eq. (6), yields Li3
2
ð�nÞ ¼ �nþ ð�nÞ2

2
3
2

and Li5
2
ð�nÞ ¼ �n

þ ð�nÞ2

2
5
2

: Accordingly, for the case of the nearly degenerate

(ND) limit ðn� 1Þ, the expanded form of the polylogarithm

function using Eq. (8) takes the form Li3
2
ð�nÞ ¼ �ðln nÞ

3
2

C5
2

;

Li5
2
ð�nÞ ¼ �ðln nÞ

5
2

C7
2

. In Eq. (3), the last term is the force (quan-

tum) on electrons that can be expressed as

FQ ¼
�h2

2me
r r

2 ffiffiffiffiffi
ne
pffiffiffiffiffi
ne
p

" #
þ b0l2

BB

G

� �
rB;

where the first term is the quantum Bohm potential term that

arises as a consequence of the tunneling effect of the elec-

trons (degenerate), whereas the second term is the result of

spin magnetization force in degenerate plasmas duly modi-

fied by the arbitrary temperature degeneracy factor G, �h is

the reduced Planck’s constant, and lBð¼ e�h
2me
Þ is the Bohr

magneton. The two relevant Maxwell equations, i.e.,

Ampere’s law with the inclusion of spin magnetization and

Faraday’s law, are as follows:

r� B ¼ l0 Jp þ Jmð Þ; (14)

r� E ¼ � @B

@t
: (15)

Here, l0 is the permeability of free space, Jp ¼ e ðniui

� neueÞ is the plasma current density, and Jm ¼ r�M rep-

resents the electron magnetization spin current density, with

M ¼ b0l2
B

G nB the microscopic spin magnetization in a plasma

in terms of temperature degeneracy factor G. In Eq. (14), we

have ignored the displacement current as we consider low

frequency waves only; furthermore, in any conducting

medium, its value is negligible in comparison to the net cur-

rent density J. Substituting ue from (14) and Eq. (4) into (3),

using the quasineutrality condition n ¼ ni ’ ne, we get

E ¼ � ui �
1

enl0

r� Bþ 1

en
r�M

� �

� B� G

enb0
rnþ FQ

e
: (16)

The normalized effective one fluid momentum equation

can be obtained by eliminating E from (1) and (15) by using

Eq. (16), which is

dui

dt
¼ 1

n
r� Bð Þ � B� 1

n
r�Mð Þ � B� bdG

2
rn

þ H2
e

2
r r2

ffiffiffi
n
pffiffiffi
n
p

 !
þ e2

ob
2dG

BrB; (17)

where b ¼ c2
qs

V2
A

¼ 2l0n0EFe

B2
0

is a factor that measures the quantum

statistical effects in a degenerate plasmas and is usually

termed as plasma beta,44 EFe ¼ kBTF ¼ ð3p2neÞ2=3�h2

2me
is the

Fermi energy of degenerate electrons, which is the same as

the equilibrium chemical potential in the fully degenerate

case, cqs ¼ ð2EFe

mi
Þ1=2

is the quantum ion sound speed, VA

¼ B0

ðl0n0miÞ1=2 is the Alfv�en speed, and He ¼ �hXiffiffiffiffiffiffiffiffi
memi
p

V2
A

is a dimen-

sionless parameter that arises as a result of the collective

electron tunnelling effect through the so-called Bohm poten-

tial, with Xi ¼ eB0

mi
being the ion cyclotron frequency and

e0 ¼ lBB0

kBTF
being the Fermi-normalized Zeeman energy. Now,

elimination of electric wave vector E between (1) and (15)

leads to the magnetic field induction equation (normalized)

with the inclusion of the Hall term, which is given as

@B

@t
¼ r� ui � Bð Þ � r

� 1

n
ðr � BÞ � B� 1

n
ðr �MÞ � B

� �
: (18)

In Eqs. (17) and (18), we have used the following rescaling:

r! Xir

VA
; t! Xit; ui !

ui

VA
; B! B

B0

;

n! n

n0

; M ¼ l0M

B0

:

The presence of the ion cyclotron effects (i.e., the wave fre-

quency is comparable to the ion gyrofrequency Xi) in the

QMHD model is guaranteed by the inclusion of the Hall

term in (18). Equations (2), (17), and (18) are the set of basic

equations of the QMHD model for a magnetized and colli-

sionless plasma composed of classical cold ions and inertia-

less hot electrons with spin-1/2 effects.

III. NONLINEAR EVOLUTION EQUATIONS

Since we consider waves propagating along the direc-

tion of the external magnetic field (i.e., z-axis), the time

derivative of x- and y-components of Eq. (18) can be writ-

ten as

@Bx

@t
¼ @

@z
ðux � uzBxÞ þ

@

@z

1

n

@By

@z
� @My

@z

� �� �
;

@By

@t
¼ @

@z
ðuy � uzByÞ �

@

@z

1

n

@Bx

@z
� @Mx

@z

� �� �
:

082122-4 Jan et al. Phys. Plasmas 25, 082122 (2018)



Here, uz is the velocity of perturbation directed along

the z-axis, Bx and By represent the components of the wave

magnetic field, whereas Mx and My are the magnetization

density magnitudes in the x and y directions, respectively. In

order to deal with circularly polarized Alfv�en waves, it is

convenient to introduce a complex description of the trans-

verse fields along with the perturbation velocity. The x and y
components of Eq. (17) can be combined by using

u6 ¼ ux6iuy;B6 ¼ Bx6iBy, and M6 ¼ Mx6iMy to obtain

the following relation:

du6

dt
¼ 1

n

@B6

@z
� e2

ob
n

@ nB6ð Þ
@z

; (19)

where we have used M6 ¼ e2
obn

2dG B6 obtained from the defini-

tion of M ¼ b0l2
B

G nBB̂. Now, by using these relations, the x

and y components of Eq. (18) can be combined to get

@2B6

@t2
þ @

@z
uz
@B6

@t
þ d

dt
uzB6ð Þ

� �

� @

@z

1

n

@B6

@z
� e2

ob
2dGn

@ nB6ð Þ
@z

� �

6i
@

@z

d

dt

1

n

@B6

@z

� �� �
7i

e2
ob

2dG

@

@z

d

dt

1

n

@

@z

@ nB6ð Þ
@z

� �� �
¼ 0:

(20)

Here, the upper and lower signs ð6Þ are used for right

and left circularly polarized Alfv�en waves (RCPAWs/

LCPAWs) propagating along the z axis, respectively. By

using the above definitions of M6 and Eq. (19), the parallel

component of (17) can be obtained as

duz

dt
¼ � 1

2n

@jB6j2

@z
þ e2

ob
4dG

@jB6j2

@z
þ e2

ob
2dGn

jB6j2
@n

@z

�bdG

2n

@n

@z
þ H2

e

2

@

@z

@2

@z2

ffiffiffi
n
p

ffiffiffi
n
p

2
64

3
75
: (21)

The quantities uz and n are related via the continuity

equation

@n

@t
þ @

@z
ðnuzÞ ¼ 0; (22)

and operating the above equation by @
@tþ uz

@
@z

� �
and incor-

porating Eq. (21) yield

@2n

@t2
� bdG

2

@2n

@z2
¼ uz

@2 nuzð Þ
@z2

þ 1

2

@2jB6j2

@z2
� e2

ob
4dG

@

@z
n
@jB6j2

@z

� �

� e2
ob

2dG

@

@z
jB6j2

@n

@z

� �
� @

@z
uz

dn

dt

� �

�H2
e

2

@

@z
n
@

@z

1ffiffiffi
n
p @2

ffiffiffi
n
p

@z2

 !" #
: (23)

Equations (20), (22), and (23) form a complete set of

nonlinear equations in a Fermionic spin quantum plasma

with an arbitrary degeneracy effect relating B6, n, and the

fluid velocity along the direction of the ambient magnetic

field, i.e., uz. For a brief study of the linear dispersion rela-

tion for Alfv�en waves in spin quantum plasmas, we can line-

arize Eq. (20). Since in the linear approximation the

quantities n and uz are treated as constants, Eq. (20) in

dimensional form can be written as

@2

@t2
� #V2

A

@2

@z2
6i#

V2
A

Xi

@3

@z2@t

� �
B6 ¼ 0; (24)

where # ¼ 1� e2
ob

2dG. Using the plane wave solution, the above

equation yields

x26
xx2

A

Xi
� x2

A ¼ 0: (25)

For the case of low frequency waves (xA

Xi
� 1), Eq. (25)

reduces to

x6 ¼ xA 17
xA

2Xi

� �
; (26)

which gives the linear dispersion relation for finite amplitude

spin-1/2 Alfv�en waves modified by the spin magnetization

along with the arbitrary temperature degeneracy effect. The

quantity xA is the Alfv�en wave frequency (modified) with

associated wave number kA such that xA ¼ kAVAð1� e2
ob

2dGÞ
1
2.

For classical plasmas, i.e., in the case of complete non-

degeneracy, Eq. (26) reduces to the same expression as

obtained in Ref. 45, with xA ¼ kAVA. The same result26 is

also obtained in Ref. 33 for the case of complete degenerate

plasmas with xA ¼ kAVA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e2

obÞ
p

: It is important to note

that the dispersion relation given by Eq. (26) represents a

wave propagating towards right, whereas the wave travelling

in the opposite direction,

x6 ¼ �xA 17
xA

2Xi

� �
;

is not considered here. In order to determine the changes in

transverse magnetic field B6, number density n, and parallel

fluid velocity uz (Alfv�enic fluctuations), we linearize equa-

tions (20), (22), and (23) by putting vz ¼ dv and n ¼ 1 þdn
to get the following set of equations:

@2B6

@t2
þ @

@z
dv
@B6

@z
þ d

dt
ðdv B6Þ

� �
� @

@z
ð1� dnÞ @B6

@z

� �

þ e2
ob

2dG

@

@z
ð1� dnÞ @

@z
ð1þ dnÞB6½ 	

� �

6i
@

@z

d

dt
ð1� dnÞ @B6

@z

� �
7i

e2
ob

2dG

@

@z

d

dt

� ð1� dnÞ @
@z
ð1þ dnÞB6½ 	

� �
¼ 0; (27)

@2

@t2
� bdG

2

@2

@z2
þ H2

e

2

@4

@z4

� �
dn ¼ 1

2
1� e2

ob
2dG

� �
@2jB6j2

@z2
;

(28)
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@ dn

@t
þ @

@z
ðdvÞ ¼ 0: (29)

Equations (27)–(29) constitute a set of modified Zakharov

equations for Alfv�en solitary waves propagating in spin

quantum plasmas with the arbitrary temperature degeneracy

effect. For the case of complete degenerate plasmas

ð2dG 
 1Þ, the above set of equations reduces to the results

obtained in Ref. 33. Similarly, by ignoring the spin effect,

i.e., by substituting eo ¼ 0, we obtain the Zakharov equations

of Ref. 32. Equation (28) is similar to one of the quantum

Zakharov equations obtained for Langmuir envelope soli-

tons,46 where the term on the right hand side is the pondero-

motive force, showing that density fluctuations are caused by

the transverse magnetic pressure gradient for Alfv�en wave

solitons in spin quantum plasmas. To proceed with the analy-

sis, we begin by inserting an Alfv�en wave of the form

B6 ¼ bðz; tÞ exp iðkAz� x6tÞ½ 	 (30)

into Eqs. (27) and (28), with b(z, t) being the real amplitude,

x6 the frequency, and kA the wavenumber of the carrier

wave. Introducing the inequality xA=Xi � 1; with the

assumption of a set of stretched time variable s, such that

1=s� x6 � xA,32,45 we finally obtain the following set of

equations with

i
@b

@t
þ ivg

@b

@z
þ x2

A

2
dnb� kAdvb7

1� a
2

@2b

@z2
¼ 0; (31)

@2

@t2
� bdG

2

@2

@z2
þ H2

e

2

@4

@z4

� �
dn ¼ 1

2
1� að Þ @

2jbj2

@z2
; (32)

and

@ dn

@t
þ @

@z
ðdvÞ ¼ 0; (33)

where vg ¼ ð1� aÞð17kAÞ is the group velocity (normal-

ized) of the Alfv�en wave with kA

ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

� xA and a ¼ e2
ob

2dG.

The above set of equations, i.e., (31)–(33), are the nonlinear

evolution equations describing the variations in the perturbed

magnetic field b(z, t), the plasma number density dn(z, t),
and the velocity dv(z, t) for a nonlinear wavepacket propa-

gating along the ambient magnetic field through a spin quan-

tum plasma with the arbitrary temperature degeneracy effect

of electrons taken into account. The set of nonlinear evolu-

tion equations for a classical plasma45 can be retrieved from

Eqs. (31)–(33) by ignoring terms, i.e., He and eo, with b ¼ c2
s=

V2
A (cs being the ion acoustic speed given by cs ¼ ðkBTe

mi
Þ1=2

).

For classical plasmas, for the limit of jbj ! 0, Eq. (32)

reduces to the quantum acoustic wave equation, whereas by

ignoring the nonlinear coupling in the system, Eq. (31)

becomes the Schr€odinger equation for a free particle with

dvðz; tÞ; dnðz, tÞ ! 0.

IV. SAGDEEV POTENTIAL FOR SPIN ALFV�EN WAVES
WITH THE EFFECT OF ARBITRARY TEMPERATURE
DEGENERACY

In the current section, we apply the Sagdeev potential

approach for the spin-1/2 Alfv�en wave by neglecting the

Bohm potential term while retaining the Fermi pressure and

magnetization energy terms duly modified with the arbitrary

temperature degeneracy effect of electrons in Eq. (32). In

order to obtain an energy integral equation (nonlinear differ-

ential equation) from the set of Eqs. (31)–(33), we choose a

transformed coordinate n by shifting to a comoving frame of

reference such that

n ¼ z� vot; (34)

where vo represents a constant speed normalized by the

Alfv�en velocity VA, called the Alfv�enic Mach number. Now,

by using Eq. (34) in Eq. (32), we obtain dn ¼ 1�a
2ðv2

o�cÞ jbj
2
,

with c ¼ bdG
2
: Here, we have ignored the dimensionless

parameter He that arises due to the collective electron tunnel-

ling effect through the so-called Bohm potential. Similarly,

putting Eq. (34) in Eq. (33) yields dv ¼ vodn. Now, substitut-

ing the values of dn and dv in Eq. (31), we get the following

expression:

�iðvo � vgÞ
@b

@n
7

1� a
2

@2b

@n2
þ kAð1� aÞ

2ðv2
o � cÞ ðt� voÞbjbj2 ¼ 0;

(35)

where t ¼
ffiffiffiffiffiffi
1�a
p

2
. Furthermore, by using the expression for the

complex perturbed magnetic field, i.e., b ¼ AðnÞei/ðnÞ in Eq.

(35), and separating the resulting equation into real and

imaginary parts, we obtain

ðvo � vgÞA
@/
@n

7
1� a

2

@2A

@n2
� A

@/
@n

� �2
" #

þ kAð1� aÞ
2ðv2

o � cÞ ðt� voÞA3 ¼ 0; (36)

�ðvo � vgÞ
@A

@/
7

1� a
2

2
@A

@n
@/
@n
þ A

@2/

@n2

" #
¼ 0: (37)

Here, A and / are real quantities whose values will be deter-

mined presently. Integrating Eq. (37) yields47 / ¼ �7 1
2F

�ðMA � VgÞn: Substituting this value into (36), we obtain

the nonlinear differential equation

d2A

dn2
þ d

dA
VðAÞ ¼ 0; (38)

where the Sagdeev potential (pseudopotential) is defined as

VðAÞ ¼ 7
kAðt� voÞ
4ðv2

o � cÞF A4 � 3ðvo � vgÞ
2 1� að Þ2

A2: (39)

A straight forward procedure can be applied to investi-

gate the Sagdeev potential. For instance, from the roots of

V(A) ¼ 0, we obtain A¼ 0 and

A ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

6ðvo � vgÞ2ðv2
o � cÞ

kA 1� að Þ2ðt� voÞ
;

s
(40)

where the upper negative sign inside the square root corre-

sponds to the right-handed circularly polarized Alfv�en wave
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(RCPAW), while the lower positive sign corresponds to the

left-handed circularly polarized Alfv�en wave (LCPAW). We

may obtain various conditions for the formation of solitary

structures through Sagdeev potential for different values of

quantum plasma beta and magnetization energy with the

effects of arbitrary temperature degeneracy of electrons, by

using the well-established conditions.48

In order to have a real amplitude A of the pseudopoten-

tial V (A), given by Eq. (40), the following conditions must

be met for the formation of RCPAW:

(1) v2
o > c) v2 > dGc2

qs (super-quantum acoustic) and t< vo

) kAVA

2
< v (super-spin Alfv�enic)

(2) v2
o < c)v2 < dGc2

qs (sub-quantum acoustic) and t > vo

) kAVA

2
> v (sub-spin Alfv�enic)

These conditions show that the solitary structures for the

RCPAW will form when the wave is either super-quantum

acoustic and super-spin Alfv�enic or sub-quantum acoustic

and sub-spin Alfv�enic.

Now, for the LCPAW, the conditions that lead to the

real value of A are as follows:

(1) v2
o > c) v2 > dGc2

qs (super-quantum acoustic) and t> vo

) kAVA

2
> v (sub-spin Alfv�enic)

(2) v2
o < c)v2 < dGc2

qs (sub-quantum acoustic) and t < vo

) kAVA

2
< v (super-spin Alfv�enic)

Thus, the set of conditions obtained for solitary wave

propagation are different in this case as compared to the case

for the RCPAW. These conditions predict that the solitary

structures are formed for LCPAW when the wave is super-

quantum acoustic and sub-spin Alfv�enic or when it is sub-

quantum acoustic and super-spin Alfv�enic.

V. RESULTS AND DISCUSSION

In this section, we are going to analyze the main results

of Sec. IV, i.e., the general expression obtained for the

Sagdeev potential of Eq. (39), and discuss parametrically the

associated solitary profile in spin quantum plasmas. To

obtain the conditions for the existence of nonrelativistic

nearly degenerate (ND) and nearly non-degenerate (NND)

electron quantum fluid, we use typical numerical values rele-

vant to the dense plasmas of compact astrophysical objects.

In such dense astrophysical scenarios, like the interiors of

massive white dwarf stars and the atmosphere of neutron

stars, the density, magnetic field, and temperature vary over

a wide range of values. For example, the magnetic field in

some white dwarf stars (neutron stars) is estimated to be

varying from the fraction of a tesla to few megatesla (terate-

sla).49,50 For such regimes, the density lies in the range

1029–1035 m�3, and the temperature is estimated to lie in the

range 105–107 K. Since the parameters such as quantum

plasma beta b; magnetization energy eo; and Fermi energy

EFe are the functions of particle density no, magnetic field

Bo, and temperature TFe, any change in these parameters

will consequently alter the wave dynamics. Using the

numerical values of constants in SI units, the quantum sta-

tistical parameter (quantum plasma beta) can be written as

b 
 10�28 ðn5=3
o TFe=B2

oÞ; and the normalized Zeeman energy

due to electron spin is eo ¼ lBBo

EFe
, with TFe ¼ ð3p2noÞ2=3�h2

2kBme
. For

the above-mentioned dense astrophysical objects, the quan-

tum statistical parameter b has some finite values, and the

normalized Zeeman energy due to the electron spin effect

eo is of the order of unity or less. To check the validity of

the quantum plasma model devised in Secs. II and III, we

will calculate the numerical values of the relevant plasma

parameters of a white dwarf with a system temperature of

T� 106 K. Our theory is more relevant in the intermediate

regimes, where the Fermi temperature must be comparable

to the thermal temperature of electrons, i.e., TF � T; other-

wise, the fully degenerate and fully nondegenerate limits

are well established and are sufficiently accurate.

A. Nearly degenerate (ND) case

For the discussion of the nearly degenerate case, the

parameters chosen are no ¼ 1033m�3; Bo ¼ 106T; me ¼ 9:1
�10�31kg, and mi ¼ 1:67� 10�27kg: The Fermi temperature

of the degenerate electrons is a function of the plasma den-

sity, i.e., TFe / n
2
3
o; which for the above-mentioned plasma

density comes out to be 3.8� 107 K. Similarly, for the cho-

sen parameters, the values of the plasma beta and Zeeman

energy turns out to be b ¼ 3.8 and eo ¼ 0:016, respectively.

Since the value of the Fermi temperature is slightly larger

than the system temperature, the condition TF > T, for nearly

degenerate electrons in plasma, is justified. The ions remain

nondegenerate in the present model due to the fact that their

Fermi temperature TFi ¼ 2� 104K is much smaller than

the system temperature ðTFi � TiÞ. The condition for

degenerate electrons to be in the non-relativistic regime is

kBTF � mec2; where kBTF is the Fermi energy and mec2 is

the rest mass energy associated with the degenerate elec-

trons. In our model, the Fermi energy comes out to be

5.2� 10�16 J, which is clearly less than the rest mass energy

of the degenerate electrons 8.2� 10�14 J, justifying the

above condition. Furthermore, the value of the magnetization

energy, i.e., lBBo ¼ 8:8� 10�17J; in the current model is

comparable to the Fermi energy of the electrons, thus leading

to the justification of the inclusion of the spin effects of elec-

trons in the model. For the case when lBBo (magnetization

energy) � kBTF (Fermi energy), the spin effects of the

degenerate electrons can be ignored.

The general expression obtained for Sagdeev potential

given by Eq. (39), for right-handed circularly polarized

Alfv�en waves (RCPAWs) in nearly degenerate (ND) spin-1/

2 quantum plasma with arbitrary degeneracy effects of elec-

trons, is plotted at different values of d ð¼ Te

TF
Þ; as shown in

Fig. 1. The corresponding solitary profile variation with

respect to d is depicted in Fig. 2, where we have plotted the

soliton amplitude A against the space coordinates g. It can be

seen form Figs. 1 and 2 that the amplitudes of Sagdeev

potential and of the associated soliton structure decrease

with the increasing values of d. Increasing the value of d cor-

respondingly decreases the value of the arbitrary temperature

degeneracy factor G ð¼ 2
5d ½1� p2

12
d2	Þ for the nearly degener-

ate (ND) case, and since that is proportional to the ampli-

tude, as a result, the amplitude decreases. Decreasing
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degeneracy means that the number density minifies, which

resultantly reduces the system energy and hence the ampli-

tude of soliton. Figures 3 and 4 show the same pattern as

observed in Figs. 1 and 2, where the Sagdeev potential of

(39) and related soliton solution for left-handed circularly

polarized Alfv�en waves (LCPAWs) are plotted for two

values of d. However, for the case of LCPAW, the decrease

in the amplitude is more accompanied by the decrease in the

width of the soliton.

B. Nearly non-degenerate (NND) case

In order to investigate the propagation of spin-1/2 Alfv�en

waves in nearly non-degenerate regimes, we chose the plasma

parameters as no ¼ 1029m�3;Bo ¼ 103T;me ¼ 9:1� 10�31kg;
mi ¼ 1:67� 10�27kg, and d ¼ 10. For these typical parame-

ters of the dilute degenerate plasma limit, the values of Fermi

temperature TF; quantum plasma beta b, and Zeeman energy eo

turn out to be 8.2�104 K, 0.82 and 0.008, respectively. Thus,

the condition TF < T holds for the nearly non-degenerate

(NND) electrons because the Fermi temperature is slightly

smaller than the system temperature. For the chosen plasma

density, the value of the ion Fermi temperature is 44.7K, which

is again much smaller than the system temperature ðTFi � TiÞ;
and thus, ions remain nondegenerate. The condition for elec-

trons to be in the non-relativistic regime, i.e., kBTF � mec2, is

also valid in nearly nondegenerate limits.

Figures 5 and 6 show plots of Sagdeev potential given

by Eq. (39) and the corresponding soliton structure variation

for RCPAW in nearly nondegenerate spin-1/2 quantum

FIG. 2. Variation of soliton amplitude A versus coordinates g for right circu-

larly polarized Alfv�en waves in a nearly degenerate regime with the same

numerical values as in Fig. 1.

FIG. 3. The plot of Sagdeev potential V(A) as a function of amplitude A for

various values of dFor left circularly polarized Alfv�en waves in a nearly

degenerate limit such that d ¼ 0.1 (solid blue line) and d ¼ 0.5 (dashed blue

line) with b ¼ 3.8 and eo ¼ 0.016.

FIG. 4. Corresponding soliton amplitude variation with respect to coordi-

nates g for left circularly polarized Alfv�en waves in a nearly degenerate limit

with the same numerical parameters as in Fig. 3.

FIG. 1. Variation of Sagdeev potential V (A) versus amplitude A for right

circularly polarized Alfv�en waves in a nearly degenerate regime for different

values of d such that d ¼ 0.1 (solid blue line) and d ¼ 0.5 (dashed blue line)

with other physical parameters b ¼ 3.8 and eo ¼ 0.016.

FIG. 5. Variation of Sagdeev potential V(A) versus amplitude A for right cir-

cularly polarized Alfv�en waves in a nearly non-degenerate regime for two

values of f such that n ¼ 0.1 (solid blue line) and n ¼ 0.9 (dashed blue line)

with b ¼ 0.82, eo ¼ 0.008, and d ¼ 10.
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plasma for two values of n ð¼ eb0l; b0 ¼ 1
kBTe
Þ. The parameter

n, which is a function of chemical potential l and electron

temperature Te, describes the degeneracy. For the case of the

nearly nondegenerate (NND) limit, n� 1 ( l
kBTe

is large and

negative), whereas for the nearly degenerate (ND) limit, n
� 1 ð l

kBTe
is large and positive). In Fig. 5, the amplitude of

Sagdeev potential V(A) is observed to enhance with the

increasing values of parameter n. The amplitude of the asso-

ciated solitary profile, which is a function of the space coor-

dinates g, also increases for the given parameters, as shown

in Fig. 6. For the case of the nearly nondegenerate limit, the

increase in the value of parameter n is accompanied by the

increase in the arbitrary temperature degeneracy factor

G ð¼ 1þ n

2
5
2

Þ, and since G is proportional to the amplitude,

consequently, the amplitude increases. From 0 to higher val-

ues of n (less than one) means that in the non-degenerate sys-

tem, some degenerate levels add due to the higher values of

number density, which consequently increases the amplitude

of Sagdeev potential and of soliton. The same increasing

trend is depicted in Figs. 7 and 8 where the Sagdeev potential

and the corresponding soliton structure are plotted with the

same numerical values for left-handed circularly polarized

Alfv�en waves (LCPAWs).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the propagation of

nonlinear circularly polarized Alfv�en waves in a nonrelativ-

istic, magnetized spin-1/2 quantum plasma with arbitrary

degeneracy effects of electrons. We have assumed the ambi-

ent magnetic field to be in the z-direction, and the propaga-

tion was also considered in the parallel direction. Employing

a local Fermi-Dirac distribution function, a modified equa-

tion of state was utilized which is applicable for both the

dilute and dense cases. Besides degeneracy, the spin effect

of electrons was also incorporated through the inclusion of

the spin force along with the spin magnetization current. In

this regard, a linear dispersion relation for finite amplitude

Alfv�en waves duly modified by spin magnetization and arbi-

trary temperature degeneracy effects of electrons was

derived. A modified set of Zakharov equations have been

derived by using a two time scale perturbation approach. The

nonlinear coupling of Alfv�en waves and quantum acoustic

waves in the presence of arbitrary temperature degeneracy

effects of electrons in both nearly degenerate (ND) and

nearly non-degenerate (NND) quantum plasmas has also

been investigated. The soliton solutions for nearly degener-

ate (ND) and nearly non-degenerate (NND) spin-1/2 quan-

tum plasmas have been discussed through the well-known

Sagdeev potential (pseudopotential) approach. The effects of

the values of arbitrary temperature degeneracy factor G for

both the right-hand and left-hand circularly polarized Alfv�en

waves in ND and NND limits were discussed. In the case of

the nearly degenerate (ND) limit, the amplitude of Sagdeev

potential and of the related solitary profile has been found to

diminish with the increasing values of d ð¼ Te

TF
Þ (decreasing

G) for both RCPAW and LCPAW. Decreasing the value of

arbitrary temperature degeneracy factor G means that the

number density minifies, which resultantly reduces the sys-

tem energy and hence the amplitude of soliton. However, for

the case of the nearly non-degenerate (NND) limit, the

amplitude of Sagdeev potential and of the associated soliton

FIG. 6. Variation of soliton amplitude A versus coordinates g for right circu-

larly polarized Alfv�en waves in a nearly non-degenerate regime with the

same numerical values as in Fig. 5.

FIG. 7. Effect of temperature degeneracy on Sagdeev potential V(A) as a

function of amplitude A for left circularly polarized Alfv�en waves in a nearly

non-generate regime such that n ¼ 0.1 (solid blue line) and n ¼ 0.9 (dashed

blue line). Other physical parameters are chosen as b ¼ 0.82, eo ¼ 0.008,

and d ¼ 10.

FIG. 8. Corresponding soliton amplitude variation with respect to coordi-

nates n for left circularly polarized Alfv�en waves in a nearly non-degenerate

limit with the same numerical parameters as in Fig. 7.
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structure was observed to enhance with the increase in the

value of G for both kinds of circularly polarized Alfv�en

waves. In this case, increasing the value of G means that in

the NND system, some degenerate levels add due to the

higher values of number density which consequently

increased the amplitude of Sagdeev potential and of soliton.
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