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Linear and nonlinear waves are examined on the ion time scale in a spatially inhomogeneous

plasma having electrons that follow product bi (r,q) distribution. It has been shown that the linear

dispersion relation for product bi (r,q) distribution undergoes appreciable changes as opposed to

the one for the Maxwellian electrons. It has been found that the drift wave frequency is highest for

flat-topped distribution, whereas it is lowest for the spiky distribution. It has been found that the

drift solitary wave with flat-topped distribution (i.e., r> 0) is one of a kind and exhibits peculiar

characteristics. It has been shown that Maxwellian and kappa-like electrons cannot alter the nature

of the electrostatic drift waves under consideration; however, the spiky electrons can. The results

obtained here are general and can be applied to many regions of space plasmas where the satellite

missions have reported the presence of electron distribution functions that show deviation from the

Gaussian behavior. Published by AIP Publishing. https://doi.org/10.1063/1.5052220

I. INTRODUCTION

The importance of drift waves with regard to particle

and energy transport is very well established.1 Most of the

plasma systems are spatially non uniform and give rise to

drift motions and the allied drift waves.2–5 Drift waves on

the ion time scale have frequencies much smaller than the

ion cyclotron frequency and they propagate in the direction

at right angles to the ambient magnetic field. The basic

assumption that is employed to obtain the dispersion relation

for drift waves is that E�B drift is the most prominent drift.

Unlike the ion acoustic waves where space charge effects are

responsible for the wave dispersion, the dispersion of the

drift waves appears through the ion polarization drift.

Ignoring the polarization drift will yield the dispersionless

drift wave. The study of the nonlinear behavior of the drift

waves leads to the emergence of structures like solitons,

vortices, and shocks in plasmas. The literature is replete with

the investigation of these structures in a variety of physical

situations of interest and the study of their properties.6–14

Nonlinear drift waves in inhomogeneous plasmas have

been investigated with the inclusion of a non-zero ion tempera-

ture gradient. It has been shown that the presence of a nonzero

ion temperature gradient induces a corresponding perpendicular

thermal flux that significantly alters the transverse stress tensor

and, therefore, the perpendicular ion polarization drift must

incorporate the corrections in the magnetic viscosity due to the

nonzero thermal flux.15 The decay instability and Kolmogorov

spectra of ion-drift waves were studied in low-b dusty plasmas.

In this regard, the matrix elements of the three-wave interac-

tions in an inhomogeneous plasma with uniform ion tempera-

ture were derived. The growth rate of decay instability and the

weakly turbulent plasma wave spectra were also calculated and

analyzed.16 Shukla et al.17 revisited the coupling between

various low-frequency modes in a nonuniform magnetoplasma

and explained the way to obtain electrostatic drift waves from a

general set of equations. It was shown that the parallel electron

current associated with the electron drift waves is coupled with

the ion polarization current. Nonlinear interactions between

drift waves and zonal flows were also investigated and it was

shown that finite amplitude drift waves can parametrically

excite zonal flows in a nonuniform magnetoplasma.18

The modified tails of the distribution functions that are

usually termed suprathermal or non-Maxwellian plasmas have

been observed in the magnetospheres of many planets of our

solar system and in the solar wind;19–21 however, the reason for

the development of these distributions is still not fully under-

stood.22–28 The observed distributions of charged particles can

be adequately represented by a generalized Lorentzian distribu-

tion and have been found to concur both with the thermal and

the suprathermal parts of the observed energy velocity spec-

tra.29–32 Besides the suprathermal tails, many satellite missions

have observed electron distribution functions in space plasmas

not only with the modified tails but also low energy electrons

that exhibit departure from the Gaussian behavior.33–40 For

instance, cluster PEACE data have shown flat-topped electron

distribution functions downstream of the terrestrial bow

shock.38,39 The flat-topped distributions are usually observed

downstream of the quasi-perpendicular terrestrial bow shock.

The reason for the development of these distribution functions

has been shown to be adiabatic heating of the electrons in the

shock layer.35,37 Non adiabatic heating processes have also

been proposed to account for the heating of electrons in the

regions of high phase space density.41–43 Flat-topped electron

distributions have also been found around the magnetic recon-

nection region in the magnetotail.44 It has been shown that vari-

ous features observed in space plasmas can be satisfactorily

explained by (r,q) distribution.40,45
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In this paper, we have studied the ion drift waves in the

linear and nonlinear regimes in the presence of product bi

(r,q) distribution. The layout of the paper is as follows. In

Sec. II, we write down the model equations for our system

and also write down the functional form of the product bi

(r,q) distribution. Next, we derive the linear dispersion rela-

tion of ion drift waves in a magnetoplasma with non-

Gaussian electrons and also obtain the nonlinear KdV-like

equation for drift waves. In Sec. III, we present and discuss

the results and finally in Sec. IV, we recapitulate the main

findings of the paper.

II. MATHEMATICAL MODEL

We assume an electron-ion (ei) plasma that is immersed

in a constant ambient magnetic field. The direction of the back-

ground magnetic field is considered to be in the z-direction,

i.e., B0 ¼ B0ẑ and the wave propagation is taken to be in the y-

direction. It is supposed that the equilibrium density gradient is

in the negative x-direction, i.e., �n0 ¼ �x̂jdn0=dxj. Note that

the drift wave cannot propagate in one dimension as electron

thermalization requires a non-zero component along the direc-

tion of magnetic field. We use the ordering @x < @z < @y and

neglect the propagation vector along the magnetic field for the

pure drift wave though it is non-zero.

The dynamics of singly charged ions can be expressed

by the following momentum balance equation:

mini
@

@t
þ vi � r

� �
vi ¼ eni Eþ 1

c
vi � B0

� �
; (1)

where the symbols ni, vi, mi, and e represent number density,

fluid velocity, mass and charge of ions.

The ion continuity equation is given by

@ni

@t
þr � nivið Þ ¼ 0: (2)

We employ the drift approximation, i.e., @=@t� Xi, which

enables us to write the perpendicular ion fluid velocity as

vi? ’ �
c

B0

ru� ẑ � c

B0Xi

@

@t
þ vE � r

� �
r?u ¼ vE þ vp;

(3)

where Xi ¼ eB0=mic is the cyclotron frequency for ions,

vE ¼ �c=B0ðru� ẑÞ is the E�B drift, and vp ¼ �c=
B0Xið@=@tþ vE � rÞr?u is the ion polarization drift.

E ¼ �ru, where u is the electrostatic potential. This

expression implies that we are dealing with electrostatic

waves and it is assumed that the propagation vector and the

perturbed electric field are parallel to each other. Note that

this is determined from the geometry of the electrostatic drift

waves given below the start of this section and the assump-

tion that @x < @z < @y.

The ion continuity equation can then be written as

@

@t
þ vE � r

� �
~ni þ

c

B0

ẑ �ru � rni0

þ cni0

B0Xi

@

@t
þ vE � r

� �
r2
?u ¼ 0; (4)

where ~ni is the number density of the perturbed ions.

We use product bi (r,q) distribution for electrons that

closely resembles the distribution functions for many satel-

lites observed in different space plasma environments. The

functional form of the product bi (r,q) distribution is given

by46

f ¼ A 1þ 1

q� 1

p2
k

b2mTk
þ 2U

b2Tk

 !rþ1
2
4

3
5
�q

� 1þ 1

q� 1

p2
?

d2mT?

� �rþ1
" #�q

; (5)

where U ¼ �eu,

A ¼ ðCðqÞÞ2
�

2pðq� 1Þ3=2þ2r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mb2Tk

q
ðmd2T?Þ

�

� C q� 1

2þ 2r

� �
C 1þ 1

2þ 2r

� �
C q� 1

1þ r

� �

� C 1þ 1

1þ r

� ��
;

b ¼ ðq� 1Þ�1=2þ2r
3C q� 1

2þ 2r

� �
C 1þ 1

2þ 2r

� �.�

C q� 3

2þ 2r

� �
C 1þ 3

2þ 2r

� ��1=2

;

and

d ¼ 2ðq� 1Þ�1=2þ2r C q� 1

1þ r

� �
C 1þ 1

1þ r

� �.�

C q� 2

1þ r

� �
C 1þ 2

1þ r

� ��1=2

:

Tk and T? denote the electron temperatures along and

perpendicular directions and C is the standard Gamma func-

tion. We normalize the distribution function to obtain coeffi-

cient A and come up with the restrictions on the values of r
and q such that that q> 1 and qð1þ rÞ > 3=2. Note that the

product bi (r,q) distribution is a generalization of kappa and

the Davydov-Druyvestien distribution function. It gives us

bi-kappa distribution at r¼ 0 and q ¼ jþ 1. For r¼ 0 and

q!1, we retrieve the standard bi-Maxwellian distribution

function from Eq. (5). Integrating the product bi (r,q) distri-

bution function [see Eq. (5)] over the velocity space yields

the following expression for the total number density of elec-

trons under the ordering @x < @z < @y:

ne ¼ ne0ð1þ c/þ d/2Þ; (6)

where / ¼ eu=Te,

c ¼ 2ð1þ rÞðq� 1Þ�1=1þr=b2

� �
C

1þ 2r

2þ 2r

� ��

�C qþ 1

2þ 2r

� �
=C q� 1

2þ 2r

� �
C

1

2þ 2r

� ��
;

and
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d ¼ �2ðq� 1Þ�2=1þrð1þ rÞ2=ð�1þ 2rÞb4

� �
� C

1þ 4r

2þ 2r

� �
C qþ 3

2þ 2r

� �.�

C q� 1

2þ 2r

� �
C

1

2þ 2r

� ��
:

It is pertinent to mention here that after performing the

tedious integrations, we are left with just the parallel temper-

ature and we denote that by Te. Note that in order to obtain

Eq. (6), we have expanded the terms containing the potential

up to the square order. It is appropriate to mention here that

the index r modifies the behavior of the electrons at low

energies, whereas the index q alters the tail or the electron

behavior at high energies.

Finally, the quasi-neutrality condition is given by

ne ’ ni: (7)

A. Linear analysis

Assuming the sinusoidal variation of the perturbations,

i.e., exp½iðkyy� xtÞ� and linearizing Eqs. (4), (6), and (7)

give us the following expression for linear ion drift waves in

the presence of product bi (r,q) distributed electrons:

x ¼ v�dky

cþ q2
i k2

y

; (8)

where qi ¼ cs=Xi is the ion acoustic Larmor radius, cs

¼ ðTe=miÞ1=2
is the ion acoustic speed, and v�d is the ion

velocity due to background density gradient commonly

termed the diamagnetic drift velocity and is given by

ðcTe=eB0Þjni and jni ¼ jd ln Ni0=dxj is the inverse gradient

scalelength. Note that unlike the Maxwellian plasmas, the

expression of ion drift wave gets modified in the presence of

product bi (r,q) distribution. Since c contains both r and q,

therefore, it can easily be seen that the dispersion relation for

the drift wave gets affected by electrons both in the regions

of low and high phase densities. Figure 1 exhibits the behav-

ior of ion drift frequency for different r values which essen-

tially means changing the percentage of electrons in the

regions of high phase space density or behavior of low energy

electrons for a fixed value of q. It is found that the drift wave

frequency is highest for flat-topped distribution, whereas it is

lowest for the spiky distribution. The kappa-like distribution

turns out to have a lower ion drift frequency than the flat-

topped counterpart but higher than the spiky distribution. It

can be seen that the frequency of ion drift waves is second

highest for Maxwellian electrons. Owing to the paucity of

space, suffice it to say that increasing the number of electrons

in the region of low phase density or enhancing q augments

the frequency of the ion drift wave for the kappa-like, flat-

topped, and spiky distribution cases. The change in drift fre-

quency for flat-topped distribution for the increasing q values

is less pronounced by comparison with kappa and spiky elec-

tron distribution functions. Note that unlike the Maxwellian

distribution, the product bi (r,q) distribution gives us a disper-

sion relation that contains the coefficient c which radically

alters the behavior of the drift wave frequency with the

change of spectral indices r and q.

B. Nonlinear analysis

We focus our attention now to obtain nonlinear struc-

tures for the drift waves on the ion time scale. Using Eqs. (6)

and (7) in the ion continuity equation i.e., Eq. (4), we obtain

c@t/þ 2d/@t/� q2
i @t@

2
y /þ v�d@y/þ cv�d/@y/ ¼ 0: (9)

The above equation has been obtained under the assumption

that @x < @z < @y and we have retained the nonlinear terms

containing the potential up to square order since we are deal-

ing with weak nonlinearity i.e., / � 1. The nonlinear terms

in the above equation arise from the convective derivative

and the perturbed number density terms. In order to arrive at

the stationary solution, we use the variable transformation n
¼ y – ut and convert the above nonlinear partial differential

equation (NLPDE) into a nonlinear ordinary differential

equation (NLODE) which reads as

�U@n/þ A/@n/þ B@nnn/ ¼ 0; (10)

where U ¼ ð1� v�d=cuÞ; A¼�2dð1� cv�d=2duÞ=c, and B¼1/

c. A is the coefficient of quadratic nonlinearity and B is the

coefficient of dispersion. Note that although the untransformed

equation i.e., Eq. (9) does not resemble any standard nonlinear

equation, its transformed counterpart closely resembles the

ordinary Korteweg de Vries (KdV) equation. The solution of

this equation is given by

/ ¼ 3U

A
sec h2 nffiffiffiffiffiffiffiffiffiffiffiffi

4B=U
p
" #

: (11)

III. RESULTS AND DISCUSSION

In this section, we will investigate the effect of changing

the percentage of electrons in low and high phase space den-

sity regions (i.e., changing the values of spectral indices r
and q of the product bi (r,q) electron distribution function,

respectively) on the solitary structures propagating in a
FIG. 1. Comparison of the dispersion relation of ion drift waves for different

electron distribution functions for q¼ 3.
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spatially non-uniform magnetoplasma. We have selected the

plasma parameters that are representative of the ionospheric

F-layer.47,48 Before we go on and discuss the results, we

would like to mention that the values of number density and

magnetic field determine (which are different for different

space plasma environments) the ion acoustic Larmor radius

which eventually dictates the spatio-temporal regime and

also the values of the wave vector and the inverse scale-

length for the study of drift waves. However, the qualitative

behavior stays the same and, therefore, the present study is

qualitatively valid for the propagation of linear and nonlinear

propagation of drift waves in different environments in space

plasmas.

Figure 2 examines the behavior of ion drift solitary

waves with the increasing number of energetic electrons in

the tail of the distribution function i.e., increasing q values

and Maxwellian top i.e., r¼ 0 or kappa-like electrons. It is

observed that such an arrangement produces rarefactive soli-

tary waves in the system. It is found that, in terms of magni-

tude, the amplitude and width of the drift solitary wave

experience an increase with the increasing values of q keep-

ing the value of ratio of diamagnetic drift to nonlinear struc-

ture velocity i.e., v�d=u fixed. It is, however, noticed that we

cannot increase the percentage of energetic electrons too

much as for higher values of q, the normalized electrostatic

drift potential exceeds one which indicates that those values

are not permissible for the weakly nonlinear study. Figure 3

exhibits the behavior of solitary ion drift waves with the vari-

ation in the values of v�d=u keeping the value of q fixed for

the kappa-like electrons. It is found that the amplitude of

drift solitary structures, in terms of magnitude, experiences a

decrement, whereas the width increases for the increasing

values of v�d=u for kappa-like electrons. It is observed that

the drift solitary structures exist both for the values of dia-

magnetic drift velocity less than and greater than the velocity

of the nonlinear structure.

Figure 4 depicts the behavior of the ion drift solitary

waves with the increasing number of electrons in the region

of low phase space density for flat-topped electron distribu-

tion function (r¼ 1 in this case). Unlike the kappa-like elec-

trons, compressive drift ion solitary structures are observed

for this case. It is found that the amplitude of drift solitary

wave does not alter significantly; however, there is an

increase in the width of the wave with the increasing q val-

ues. Moreover, it is found that the drift solitary structures

form only for v�d=u < 0 and soliton formation for the v�d=u
> 0 case is forbidden for the flat-topped distribution function.

This type of behavior, as we shall see later, is a peculiar trait

of the flat-topped distribution function. Figure 5 shows the

behavior of the ion drift solitary wave for increasing q values

with flat-topped distribution but for r¼ 3. Interestingly, in

this case, the amplitude of the drift solitary wave decreases

with increasing percentage of energetic electrons in regions

of low phase density in this case. It is observed that this shift

in behavior of the drift solitary wave for different values of r
is a complex interplay of the nonlinear and dispersive coeffi-

cients. Figure 6 examines the behavior of the drift solitary

wave for flat-topped distribution with increasing values of

v�d=u. It is observed that the increasing values of v�d=u miti-

gate the amplitude; however, they enhance the width of the

drift solitary waves. It is observed that the soliton formation

for the weakly nonlinear limit is possible for a restricted

range of v�d=u < 0 values. Figure 7 explores the behavior of

the ion drift solitary waves for increasing values of the elec-

trons in the regions of high phase space density. This shows a

FIG. 2. Solitary drift wave for the kappa-like electron distribution function

(r¼ 0) for different values of q and v�d=u ¼ 0:98.

FIG. 3. Solitary drift wave for the kappa-like electron distribution function

(r¼ 0) for different values of v�d=u with q¼ 3.

FIG. 4. Solitary drift wave for the flat-topped electron distribution function

(r¼ 1) for different values of q and v�d=u ¼ 0:3.
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very interesting and surprising result. For 1< r< 2, the

amplitude of the drift solitary wave increases but for r> 2,

the amplitude of the solitary wave begins to decrease. The

width of the solitary wave for small r values is much less by

comparison with width for large r values. It is observed that

the flat topped distribution does not admit any rarefactive

structures for any range of r values.

Figure 8 studies the effect of the spiky electron distribu-

tion function (r ¼ �0.1) on the drift ion solitary waves with

increasing number of energetic electrons in the tail of the

distribution function. It is found that for this value of spiky

distribution, rarefactive drift solitary structures are obtained

and that the increasing number of electrons in regions of low

phase density enhance (in terms of magnitude) the amplitude

and width of the drift solitary waves. Like the kappa-like

case, it is again found that there is a narrow range of the vari-

ation of the energetic electrons for which the soliton forma-

tion in the weakly nonlinear limit is possible. Without

showing the figure, it is sufficient to say that the increasing

values of ratio v�d=u enervate the amplitude, whereas they

enhance the width of the drift solitary waves for the spiky

electron distribution function. This behavior is akin to the

one found for kappa-like distribution but very different from

flat-topped electron distribution. Figure 9 shows the effect of

change of values of spiky distribution on the behavior of the

ion drift solitary waves. Interestingly, as we enhance the val-

ues of the spiky distribution, the nature of the drift solitary

waves changes from rarefactive to compressive. This is the

unique feature of spiky electron distribution function that it

allows the formation of both compressive and rarefactive

FIG. 6. Solitary drift wave for the flat-topped electron distribution function

(r¼ 1) for different values of v�d=u with q¼ 3.

FIG. 7. Solitary drift wave for the flat-topped electron distribution function

for different values of r with q¼ 3 and v�d=u ¼ 0:3.

FIG. 8. Solitary drift wave for the spiky electron distribution function

(r< 0) for different values of q and v�d=u ¼ 0:8.

FIG. 9. Solitary drift wave for the spiky electron distribution function for

different values of r with q¼ 3 and v�d=u ¼ 0:8.

FIG. 5. Solitary drift wave for the flat-topped electron distribution function

(r¼ 3) for different values of q and v�d=u ¼ 0:3.
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solitary drift waves. Figure 10 shows the behavior of the ion

drift solitary waves for Maxwellian electrons and it is

observed that we obtain rarefactive drift solitary structures in

this case. It is, however, noteworthy that the spatial scales

over which the drift solitary structures form for Maxwellian

electrons are much longer by comparison with the product bi

(r,q) distribution.

Finally, we would like to highlight some unique features

of the product bi (r,q) distribution. It should be noted that

contrary to Maxwellian plasmas where the dispersion coeffi-

cient does not depend on the shape of the distribution func-

tion, the dispersion coefficient of the product bi (r,q)

distribution does depend on the shape of the distribution

function. Note that r> 0 is a particularly unique case. It

shows features which are drastically different from the other

cases. Unlike the r � 0 case, it shows that only a certain

range of values of ratio v�d=u are permissible for the existence

of drift solitary structures. For the rest, the dispersive coeffi-

cient becomes negative and hence gives rise to imaginary

values of the wave potential. It is found that for Maxwellian

and kappa-like distributions, the drift solitary structures do

not show any departure from the usual behavior; however,

for r90 the behavior of the nonlinear drift waves shows

unique properties. This means that changing r or the percent-

age of low energy electrons in the distribution function

brings the major change. This can be understood by keeping

in mind the fact that the maximum number of electrons lie in

the low energy range. Another important feature is that

unlike the r> 0 case, the r � 0 cases show that the weakly

nonlinear structures are very sensitive to the change of per-

centage of electrons in the regions of low phase density or in

the tail of the distribution function and it is observed that the

permissible drift solitary structures form for a very narrow

range of q values.

IV. CONCLUSION

To recapitulate, linear and nonlinear structures of drift

waves have been investigated in an inhomogeneous electron-

ion magnetoplasma with the inclusion of velocity spread of

electrons in phase space that is represented by product bi

(r,q) distribution. It has been found that unlike the

Maxwellian case, the dispersion relation for the product bi

(r,q) distribution gets affected by the shape of the distribu-

tion function. It has been observed that the nonlinear drift

waves exhibit unique features for this distribution function

which are distinctly different from the Maxwellian distribu-

tion function. It has been found that for r¼ 0, meaning the

kappa-like case, the behavior of drift solitary structures is

akin to their Maxwellian counterpart and in both the cases,

we obtain rarefactive solitary structures. However, the spa-

tial scales over which the nonlinear structures form in

Maxwellian plasmas have been found to be much longer

than the ones for the kappa-like electron distribution func-

tion. It has been shown that for r90 cases, the drift solitary

waves exhibit a fascinating deviation from kappa-like and

Maxwellian distribution functions and admit both compres-

sive and rarefactive structures. The r> 0 case is particularly

unique in that it allows only the formation of compressive

solitary structures for a certain range of ratio of diamagnetic

drift velocity to nonlinear structure velocity ratio v�d=u. It has

also been found that the major reason for the extraordinary

behavior of nonlinear drift waves in this case is the change

in the percentage of electrons in regions of high phase den-

sity where the majority of electrons reside. The kappa-like

and spiky electron distributions have been found to be more

sensitive to the change in the tail of the distribution function

and allow the formation of weakly nonlinear structures only

for a narrow range of q values. The present study can be

extended to study dissipative and dispersive structures like

shocks and vortices. The linear and nonlinear coupling

between acoustic and drift waves in higher dimensions can

also be investigated.
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