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A formalism for nonlinear interaction of degenerate upper-hybrid waves (DUHWs) with degenerate

ion-cyclotron waves (DICWs) and degenerate Alfven waves (DAWs) is revisited to account for

quantum corrections owing to quantum Bohm potential, quantum exchange-correlations, and quan-

tum statistical pressure. For this purpose, different nonlinear dispersion relations are derived with

quantum settings. By using the phasor matching techniques, the growth rates of three wave decay

and modulational instabilities are analyzed by identifying the nonlinear coupling of high-frequency

DUHWs with low-frequency DICWs and DAWs. Numerically, it is revealed that parametric three

wave decay and modulational instabilities are significantly influenced by the impact of Fermi pres-

sure and exchange-correlation in a degenerate magnetoplasma. The present results are important to

understand the dispersive properties of nonlinear waves and their mutual couplings at quantum

scales in degenerate environments like white dwarfs, neutron stars, and magnetars. Published by
AIP Publishing. https://doi.org/10.1063/1.5031931

I. INTRODUCTION

Quantum plasmas and quantum effects have been suc-

cessfully, recognized for investigating collective dynamics

in different research areas, for example, semiconductor devi-

ces1 quantum computers, quantum dots, quantum wires2

quantum wells, carbon nanotubes and diodes,3 ultracold,4

microplasmas,5 biophotonic,6 superdense giant planets,7

electron-hole plasmas,8 laser-produced plasma experiments,9

etc. To study a quantum mechanical system, we assume that

free particles are present in a finite volume that can occupy a

discrete set of energies called quantum energy levels or

states. These energy states can be filled by the Pauli exclu-

sion principle which simply illustrates that no more than two

identical (i.e., indistinguishable) fermions can occupy the

same quantum state as long as the thermal energy of particles

is negligibly small (e.g., absolute temperature T¼ 0).

However, it is well established that two fermions will only

exist in the same quantum state provided they have opposite

spins. A gas with all the filled lowest energy quantum states

is known as degenerate and the corresponding pressure is

called degeneracy pressure or Fermi pressure.10 One of the

important features of the degenerate gas is that Fermi pres-

sure is not a function of temperature but it depends on the

fermion number density. It is the Fermi pressure that keeps

the dense stars in equilibrium against the gravitational pull.

At room temperature, the electron gas in the ordinary metal

is a good example of quantum plasma exhibiting high den-

sity and low temperature.

Several collective modes11,12 have been investigated in

quantum plasmas with quantum corrections both analytically

and numerically. Relying on the Thomas-Fermi theory,13 the

quantum hydrodynamic (QHD) model has been utilized to

study low-frequency electrostatic streaming instability in a

viscoelastic quantum electron-ion-dust plasma. The paramet-

ric domain of streaming instability has also been discussed

in quantum plasmas by using the modified QHD model.14

Quantum exchange and correlations of electrons may be

arisen from the electron half spin effects,15 while degenerate

pressure identifies the statistical behavior of electrons in

degenerate gases. Collective interactions16,17 with different

approaches16 and nonlinear quantum waves using the QHD

model18–20 have specifically been studied to account for

quantum mechanical effects. The interaction of high-

frequency nonlinear Langmuir waves with low-frequency

nonlinear ion-acoustic waves has also successfully been

described in degenerate plasmas.21 Marklund22 has presented

theoretical and numerical results on quantum plasmas to

investigate modulational instability. Nonlinear dispersion

relations23 that have been derived to demonstrate three wave

decay and modulation instabilities due to nonlinear coupling

of mode-converted electron Bernstein with low-frequency

waves, such as ion-acoustic waves, electron-acoustic waves,

ion-cyclotron waves, quasimodes, magnetosonic waves, and

Alfven waves. In particular, Rozina et al.24 have recently

employed the QHD equations to analyze parametric instabil-

ity existing due to nonlinear interaction between quantum

upper hybrid waves and the quantum lower hybrid, ion-

cyclotrons, and Alfven waves to studying three wave decay

and modulation instabilities. The authors25 have examined

the impact of exchange-correlation effects on the profiles of

nonlinear quantum ion-acoustic waves and an analysis of

exchange correlations with boundary effects on semi

bounded dense plasma has been carried out in a quantum

dense plasma.26a)E-mail: plasmaphysics07@gmail.com
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Following the drift kinetic and fluid descriptions, the

effects of electron density and temperature were studied on

the parametric instability during the propagation of lower

hybrid waves in tokamak.27 The parametric decay of Alfven

waves in solar wind was explored both in turbulent and non-

turbulent plasmas.28 Simulation studies were also carried out

by using the ideal MHD module of PLUTO code to identify

the existence of instability in those plasmas. Laboratory

observations were performed to show parametric shear

Alfven wave instability.29 It has been experimentally

observed that intense high-frequency electric fields indeed

excite the parametric instabilities of electron and ion waves

resulting in the heating of plasma.30,31 More specifically, the

dissipation of electromagnetic energy into a plasma by

damping of electrostatic waves and/or anomalous absorp-

tion32 leads to heating the plasma with significant high tem-

peratures. Physically, parametric instabilities contribute to

coronal heating,33 the observed spectrum and cross helicity

of solar wind turbulence34 as well as the damping of fast

magnetosonic waves in fusion plasmas.35,36 Thus, recogniz-

ing the importance of parametric instabilities in different

plasmas, we extend the work24 to include statistical Fermi

pressure that is consistent with degenerate dense environ-

ments, like white dwarfs, neutron stars, and magnetars.

In this model, we investigate24 nonlinear behavior of

parametrically coupled high-frequency degenerate upper

hybrid waves (DUHWs) with ion cyclotron and Alfven

waves to showing the impact of Fermi pressure on three

wave decay and modulational instabilities. We therefore

derive various nonlinear dispersion relations and calculate

the corresponding parametric growth rates with quantum set-

tings. The plasma under consideration is comprised of

degenerate electrons obeying the quantum-mechanical

degenerate Fermi distribution and classical ions. Since the

electrons are lighter than ions such that their thermal De

Broglie wavelength is larger than that of ions as well. Hence,

the quantum behavior of electrons is reached faster than the

ions. The equation of state describing the degenerate elec-

trons in terms of Fermi pressure law is given by

PFe ¼
mev2

Fen3
e

3ne0

; (1)

where the electron mass is denoted by me and ne represents

the total density of Fermi electrons with equilibrium state

ne0:vFeð¼ 2KBTFe=meÞ1=2
being the electron Fermi velocity

with Fermi temperature37 as

TFe ¼
�h2n

2
3
eð3p2Þ

2
3

2meKB
: (2)

This shows that Fermi temperature is dependent on the equi-

librium electron density and an electron energy distribution

becomes a step-like function in the degenerate limit (i.e.,

absolute temperature T¼ 0).38

II. DEGENERATE UPPER HYBRID WAVES (DUHWs)

To investigate the properties of nonlinear propagation of

electrostatic degenerate upper hybrid waves (DUHWs),

we assume that the external magnetic is applied along

the z–axis, i.e., B0ẑ; where B0 is the strength of magnetic

field and ẑ is the unit vector in a Cartesian coordinates sys-

tem. The electric field associated with DUHWs is E

� x̂Ex0 expðik0x� ix0tÞ þ c:c with k0 the wave number and

x0 the wave frequency. For our purpose, we consider the

basic QHD equations including the electron momentum

equation in the presence of quantum corrections through the

Fermi pressure, quantum Bohm potential, and exchange-

correlation forces as

@Vð1Þe

@t
¼ � e

me
E 1ð Þ þ 1

c
Vð1Þe � Bð0Þ 1þ Bð1Þ

Bð0Þ

 !( )

� rPFe

men
ð0Þ
e

þ �h2

4m2
en
ð0Þ
e

rr2nð1Þe � ve;xc
rnð1Þe

men
ð0Þ
e

(3)

and the continuity equation for electrons

@nð1Þe

@t
þ nð0Þe

@

@x
1þ NSð ÞV 1ð Þ

ex ¼ 0; (4)

where Vð1Þe is the perturbed electron fluid velocity associated

with DUHWs, �hð¼ h=2pÞ being the scaled Planck constant,

e is the magnitude of electronic charge, and c is the speed of

light in vacuum, PFe represents the Fermi statistical pressure

defined in Eq. (1). The third term on R.H.S is the Bohm

potential showing the quantum diffraction effects and the

last term of Eq. (3) pinpoints the electron exchange-

correlation potential in terms of high density, which is one of

the important quantum effects in dense quantum plasmas.39

A general model that shows such exchange-correlation

potentials is usually described by the density functional

theory.40 In the present study, we are looking at the interac-

tions between the electrons governed by the electrostatic

(Hartree) and exchange-correlation potentials, the normal-

ized electron exchange-correlation potential in terms of com-

plicated function of electron density is given as

ve;xc ¼ 0:985e2

� 1þ 0:034

a�Ben
1=3
e

ln ð1þ 18:37a�Ben
1=3
0e Þ

� �
n

1=3
0e ; where

a�Beð¼ ��h2=mee2Þ represents the effective Bohr atomic radius

and � is the relative dielectric constant of the material, and

NSð¼ n
ð1Þ
e

n
ð0Þ
e

Þ is the ratio of electron density oscillations-to-its

equilibrium density at a slow timescale. Rewriting Eq. (3)

into scalar components and solving together Eqs. (1), (2),

and (4) into the x–component of the Poisson equation

@

@x
E 1ð Þ

x þ 4penð1Þe ¼ 0; (5)

we finally obtain a dispersion relation for DUHWs as"
@2

@t2
þ x2

UH þ 2X2
ce

Bð1Þ

Bð0Þ
þ x2

peNS

þ �h2

4m2
e

@2

@x2
r2 � V2

e;xcr2 � v2
Fer2

 !
1þ NSð Þ

#
Eð1Þx ¼ 0;

(6)
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where x2
UH ¼ X2

ce þ x2
pe and r2 ¼ r2

x þr2
z :XceðxpeÞ is the

electron gyrofrequency (electron plasma frequency). In

deriving Eq. (6), we have utilized
te;xcrn

ð1Þ
e

men
ð0Þ
e

¼ V2
e;xcr

n
ð1Þ
e

n
ð0Þ
e

with

Ve;xc being the electron exchange-correlation speed, which

can be defined as

Ve;xc ¼
1

m
1=2
e

0:985e2

�

1

3
nð0Þe

� �1=3

þ 0:985e2

�

0:034

a�Be

(

�
18:37a�Be

1
3

nð0Þe

� �1=3

1þ 18:37a�Be n
ð0Þ
e

� �1=3

9=
;

1=2

:

It is noticeable here that in the absence of density and magnetic

field oscillations, i.e., Ns ¼ 0 ¼ Bð1Þ; Eq. (6) is reduced to

@2
t þ x2

UH þ �h2

4m2
e
@2

xr2 � V2
e;xcr2 � v2

Fer2
� �

Eð1Þx ¼ 0; show-

ing that the upper hybrid pump wave frequency is significantly

modified by the electron Fermi pressure in addition to electron

exchange-correlation effects. By seeking a plane wave solution,

we may arrive at the dispersion relation in a quantum dense

plasma as x0 ¼
�
x2

UH þ �h2

4m2
e

k2
x0k2

0 þ V2
e;xc k2

0 þv2
Fek2

0

�1=2

;

where k0 ¼ ðk2
x0 þ k2

z0Þ
1=2

represents the pump wave number.

In the limit k2
z0 � k2

x0; the quantum pump frequency becomes

as x0 ¼ x2
UH þ �h2

4m2
e
k4

0 þ V2
e;xck2

0 þ v2
Fek2

0

n o1=2

: By neglecting

the electron Fermi speed v2
Fe ¼ 0; we can easily retrieve the

previous result24 from Eq. (6).

III. DEGENERATE ION-CYCLOTRON WAVES (DICWs)

These are the electrostatic perturbation (X ’ Xci) that

propagate almost perpendicular to the magnetic field in a

degenerate dense magnetoplasma. On the ion time scales,

the electrons are assumed to be massless (inertialess) par-

ticles (X ’ kzVTe) along the z–direction. The dynamics of

electrons in the perpendicular direction is neglected here. To

calculate the electrostatic potential associated with DICWs

in the presence of upper-hybrid Ponderomotive force and

electron Fermi pressure, we simplify the momentum equa-

tion for inertialess electrons using the charge-neutrality

ði:e:; nð1Þe ¼ n
ð1Þ
i Þ; as

� e2

4mex2
pe

rzhjE2
x ji þ erz/þ

�h2

4me
rzr2NS

� meV2
e;xcrzNS �

2

3
KBTFerzNS ¼ 0

or

/ ¼ e

4mex2
pe

hjE2
x ji �

�h2

4mee
r2NS þ

me

e
V2

e;xcNS þ
2

3

KBTFe

e
NS:

(7)

Similarly, the dynamics of magnetized classical ions under

the influence of electric and magnetic fields can be described

by the ion equation of motion in component form as

@V
ð1Þ
ix

@t
¼ � e

mi
rx/� XciV

ð1Þ
iy ; (8)

since in our consideration, the electric field is along the x-

axis, so

@V
ð1Þ
iy

@t
¼ �XciV

ð1Þ
ix ; (9)

and the x–component of the continuity equation is

@NS

@t
þrxV

ð1Þ
ix ¼ 0: (10)

Now, solving together (8)–(10), we eventually arrive at

@2

@t2
þ X2

ci

� 	
N̂s ¼

e

mi

@2

@x2
/: (11)

Further elimination of / from Eqs. (7) and (11) leads to a

nonlinear dispersion relation of DICWs as

@2

@t2
þ X2

IC


 �
NS ¼

e2

4mimex2
pe

@2

@x2
hjExj2i; (12)

where the degenerate ion-cyclotron frequency containing the

ion-acoustic Fermi speed CFð¼ 2
3

KBTFe

mi
Þ1=2

and given by

X2
IC ¼ X2

ci þ
�h2

4memi

@2

@x2
r2 � C2

Fr2: (13)

The nonlinear term appears on the R.H.S of Eq. (12) due to

the presence of upper-hybrid Ponderomotive force. If this

force is neglected, then a modified dispersion relation of the

ion-cyclotron waves is obtained by seeking the plane wave

solution. Note that quantum electron density correlations and

Fermi statistical pressure have strong dependence on the dis-

persion relation of DICWs.

IV. NONLINEAR INTERACTION OF DUHWs WITH
DICWs

In this section, we study the amplitude modulation of

the wave packet due to nonlinear interaction of electrostatic

degenerate upper hybrid waves (DUHWs) and degenerate

ion-cyclotron waves (DICWs). In our consideration, the elec-

trons behave quantum mechanically and therefore the quan-

tum effects owing to Fermi pressure, exchange-correlations,

and quantum diffraction are entirely associated with elec-

trons, while ions act as classical species. In order to derive a

nonlinear dispersion relation for parametric instabilities in a

degenerate electron-ion plasma, we consider nonlinear inter-

action of high-frequency pump ðx0;k0Þ DUHWs having the

electric field oscillations Ex ¼ Ex0 exp ðik0:r� ix0tÞ þ c:c
with low-frequency electrostatic DICWs ðX; kÞ having the

density fluctuations NS ¼ N̂S exp ðik:r� iXtÞ: This would

produce two upper hybrid sidebands, i.e., Ex6 exp ðik6:r
�ix6tÞ involving the frequencies x6 ¼ X6x0 and wave

numbers k6¼ k 6 k0. Assuming the magnetic field oscilla-

tions to be absent B(1)¼ 0 and following the standard
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method,23 we then apply the Fourier transform and collect

the same phasor terms on both sides of Eq. (6) to obtain

C6Ex6 ¼ N̂Sx
2
peEx06; (14)

where

C6 ¼ x2
6 � x2

UH �
�h2

4m2
e

k2
x6k2

6 � V2
e;xck2

6 � v2
Fek2

6

 !
:

(15)

Similarly, the Fourier transforms and matching of phasor

terms on both sides of Eq. (12) lead to

X2 � X2
IC

� 
N̂S ¼

k2
x

16mipn
ð0Þ
e

hjEx0Ex� þ E?x0Ex0þji: (16)

Taking into account the inequality X� x0 for high-

frequency pump wave, Eq. (15) will become as

C6 ¼ 62x0 X7a� b½ �; (17)

where

x2
0 ¼ x2

UH þ
�h2

4m2
e

k2
x0k2

0

� �
þ ðV2

e;xc þ v2
FeÞk2

0;

a ¼ �h2

8m2
ex0

k2
x k2

0 þ k2
x0k2 þ k2

x k2
0 þ 4kxkx0k:k0

� �(

þ 1

2x0

ðV2
e;xc þ v2

FeÞðk2 þ k2
0Þ
)
;

b ¼ �h2

4m2
ex0

kxkx0 k2 þ k2
0

� �
þ k2

x þ k2
x0

� �
k:k0

 

þ 1

x0

ðV2
e;xc þ v2

FeÞk:k0

!
: (18)

It is noticeable here that the upper-hybrid frequency x0 is

significantly affected by the Fermi speed, whereas the modi-

fied frequency shifts are appearing due to nonlinear coupling

of degenerate upper hybrid waves with degenerate ion cyclo-

tron waves. Furthermore, we may obtain from Eqs. (14) and

(16), the nonlinear dispersion relation for parametrically cou-

pled DUHWs and DICWs as

X2 � X2
IC ¼

x2
pek2

x jEx0j2

16mipn
ð0Þ
e

X
þ;�

1

C6

: (19)

Equation (19) appears as a consequence of nonlinear

interaction of high frequency DUHWs with low-frequency

DICWs and is the required dispersion equation to investigate

both three wave decay and modulation instabilities. To cal-

culate the nonlinear damping of three wave decay interac-

tion, we consider the lower sideband C� to be resonant,

while the upper sideband Cþ is assumed to be off-resonant,

then in this case Eq. (19) may be reduced to

ðX2 � X2
ICÞðXþ a� bÞ ¼ �

x2
pek2

x jEx0j2

32x0mipn
ð0Þ
e

: (20)

Then by using the coinciding roots X ¼ XIC þ icIC and X
¼ b� aþ icIC where XIC � icIC; we may obtain from

Eq. (20) as

cIC ¼
xpekxjEx0j

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XICx0mipn

ð0Þ
e

q : (21)

This is the growth rate of three wave decay instability which

has strong dependence on Fermi statistical speed through the

parameter XIC, i.e., the increase in Fermi speed leads to the

reduction of the growth rate of three wave decay instability.

However, the growth rate is directly proportional to the strength

of electric field involving the DUHWs that is quite evident

from the above expression. Next, for modulational instability,

both the upper and lower sidebands C6 are assumed to be reso-

nant, then one may simply obtain from Eq. (19)

X2 � X2
IC

� �
X2 þ b2 � 2Xb� a2
� �

¼
x2

pek2
x jEx0j2

16x0mipn
ð0Þ
e

a: (22)

Further if we assume X� b; the growth rate of modula-

tional instability cmIC may be reduced to

cmIC ¼
x2

pek2
xa

16x0mipn
ð0Þ
e

 !1
4

jEx0j
1
2: (23)

Note that modulational growth rate instability cmIC is a

strong function of electric field of DUHWs and Fermi speed

through the parameter a.

V. DEGENERATE ALFVEN WAVES (DAWs)

Here to study the nonlinear dispersion relation of degen-

erate Alfven waves in a magnetized degenerate electron-ion

plasma accounting for Fermi statistical pressure, we consider

the momentum equations of inertialess degenerate electrons

and classical mobile ions, respectively, as

�e Eð1Þ þ 1

c
Vð1Þe � Bð0Þ
� �� �

� e2

4me
r x2

H

x4
pe

hjExj2i

þ �h2

4n
ð0Þ
e me

rr2nð1Þe � ve;xc
rnð1Þe

n
ð0Þ
e

� 2

3
KBTFer

nð1Þe

n
ð0Þ
e

¼ 0

(24)

and

mi
@V
ð1Þ
i

@t
¼ e Eð1Þ þ 1

c
V
ð1Þ
i � Bð0Þ

� �
 �
: (25)

Adding Eqs. (24) and (25) and expressing the total current

density as Jð1Þ ¼ eðnð0Þi V
ð1Þ
i � nð0Þe Vð1Þe Þ, also by making use

of the Maxwell equation r� Bð1Þ ¼ 4pJð1Þ

c and quasineutral-

ity condition, n
ð0Þ
i � nð0Þe to finally arrive at

@V
ð1Þ
i

@t
¼ � 1

4pmin
ð0Þ
i

Bð0Þ � r � Bð1Þð Þ � e2

4memi
r x2

H

x4
pe

hjExj2i

þ �h2

4memin
ð0Þ
e

rr2nð1Þe �
me

mi
V2

e;xcr
nð1Þe

n
ð0Þ
e

� C2
Fr

nð1Þe

n
ð0Þ
e

;

(26)
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where VA ¼ Bð0Þffiffiffiffiffiffiffiffiffiffiffiffi
4pmin

ð0Þ
i

p shows the Alfven speed and
ve;xcrn

ð1Þ
e

men
ð0Þ
e

¼ V2
e;xc
rn
ð1Þ
e

n
ð0Þ
e

: Further using the x–component of Eq. (26) into

Eq. (10), which gives us

@2

@t2
� V2

eff

@2

@x2

� 	
NS ¼

e2

4memi

x2
H

x4
pe

@2

@x2
hjExj2i; (27)

where

Veff ¼ V2
A �

�h2

4memi
r2 þ C2

F

 !1=2

(28)

is the effective Alfven speed influenced by the quantum dif-

fraction and electron degenerate pressure effects. It is impor-

tant to note here that in deriving Eq. (28), we have made the

use of the frozen-in field condition as ðn
ð1Þ
e

n
ð0Þ
e

Þ ¼ ðBð1Þ
Bð0Þ
Þ 	 NS: It

is also clear from Eq. (28) that in the absence of nonlinear

interaction of the degenerate upper hybrid pump wave, one

may obtain the dispersion relation of degenerate Alfven

waves, as

X2 ¼ V2
eff k

2
x 	 V2

A �
�h2r2

4memi
þ C2

F

 !
k2

x ; (29)

whereas for classical regime ð�h2 ! 0Þ and CF¼ 0, one can

easily retrieve from Eq. (29) the dispersion equation of the

usual Alfven waves in the case of electron-ion plasma.

Equations (6) and (27) are the governing equations for inves-

tigating nonlinear interaction between DUHWs and DAWs

in dense quantum magnetoplasma.

VI. NONLINEAR INTERACTION OF DUHWs WITH DAWs

The nonlinear interaction between the degenerate upper-

hybrid pump wave and degenerate Alfven waves can be

studied by solving Eqs. (6) and (27), whereas in this case the

pump wave contains the oscillating magnetic field as well

through the frozen field condition. Accordingly, by using the

Fourier transformation and after matching the phasors, we

can express Eqs. (6) and (27), respectively, as

C6Ex6 ¼ x2
pe þ 2X2

ce

� �
N̂SExo6 (30)

and

X2 � V2
eff k

2
x

h i
N̂S ¼

e2k2
xx

2
H

4mimex4
pe

Ex0Ex� þ E?x0Exþ
� �

; (31)

where Ex0þ ¼ Ex0 and Ex0� ¼ E�x0, and the upper and lower

sidebands C6 are defined in Eq. (15). Similarly, we solve

Eqs. (30) and (31) along with (15) to eventually obtain the

nonlinear dispersion equation, as

X2 � V2
eff k2

x

h i
¼

e2k2
xx

2
UH x2

pe þ 2X2
ce

� �
4mimex4

pe

jEx0j2
X
þ;�

1

C6

:

(32)

This is the dispersion relation for parametrically coupled

DUHWs and Alfven waves in a degenerate magnetoplasma.

For the three wave decay interaction, the lower sideband C�
is assumed to be resonant and the upper sideband Cþ is

assumed to be off-resonant, and thus, one may obtain from

Eq. (32)

X2�V2
ak2

x

� 
Xþa�b½ �ð Þ¼� e2k2

x

8mime

x2
H x2

peþ2X2
ce

� �
x0x4

pe

jEx0j2:

(33)

Next, for the growth rate, we suppose X ¼ Vakx þ icAL and

X ¼ b� aþ icAL to obtain

cA ¼
e x2

pe þ 2X2
ce

� �1=2

xUH

4x2
pe

jEx0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx

Veff x0mime

s
; (34)

which clearly reflects that the growth rate of three wave

decay instability is a function of magnetic field, while it is an

inverse square function of effective Alfven speed V eff. For

modulational instability, the upper and lower sidebands C6

are both to be assumed resonant; thus Eq. (32) gives

X2�V2
ak2

x

� �
X�bð Þ2�a2

� �
¼

e2k2
xx

2
H x2

peþ2X2
ce

� �
4mimex4

pex0

jEx0j2a:

(35)

Assuming that X� b, we can obtain the growth rate of

modulational instability, as

cmA ¼
e2k2

x

4mime

x2
UH x2

pe þ 2X2
ce

� �
x4

pex0

a

0
@

1
A

1=4

jEx0j1=2: (36)

This shows that the growth rate associated with modulational

instability in a magnetized dense plasma is strongly influ-

enced by the perpendicular electric field owing to DUHWs

and the electron Fermi speed through the parameter a. Thus,

Eqs. (21), (23), (34), and (36) are the main results that can be

solved numerically to ascertain that the growth rates of three

wave decay and modulation instabilities have strong electric

field dependence Ex0ð¼ 1010 V=mÞ involving the DUHWs41

that are scattered by the nonresonant electron density

perturbations.

VII. RESULTS AND DISCUSSION

To show the impact of quantum corrections owing to

Fermi pressure and electron exchange-correlations on the

growth rates of three wave decay and modulational instabil-

ities, we solve numerically Eqs. (21) and (23) arising from

the nonlinear interaction of DUHWs with DICWs as well as

Eqs. (34) and (36) resulting from the nonlinear interaction

DUHWs with DAWs. We also choose some typical parame-

ters in cgs units such as n0 ’ 1025–1027;B0 ’ 106, and TF

’ 1:94� 106 consistent with white dwarfs, magnetars, and

interiors of neutron stars.42 For graphical representation,
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Eq. (21) can be normalized by the scaled parameters, as ~k
¼kkFe; ~k0¼k0kFe; ~kx¼kxkFe; ~cF¼ cF

vFe
;~vXC¼ vXC

vFe
; ~x0¼ x0

xpe
; ~XIC

¼XIC

xpe
; and ~cIC¼

cIC

xpe
. It may be noticed from Fig. 1 that when

the electron density increases, the associated electron Fermi

temperature, electron Fermi speed, and electron exchange-

correlation speeds would also increase and consequently, the

magnitude of the growth rate due to three wave decay insta-

bility reduces. Figure 2 displays that how the variation of

electron Fermi pressure via the electron density modifies the

growth rate of modulational instability (~cmICÞ as a function

of normalized wave number (~kxÞ: However, Figs. 3 and 4

represent the growth rates of the three wave decay and mod-

ulational instabilities produced due to the parametric cou-

pling of DUHWs with DAWs. Note that growth rate

instabilities decrease by increasing the electron density con-

centration. Additionally, the growth rates of these instabil-

ities have strong dependence on the strength of electric field.

VIII. CONCLUSION

To conclude, we have examined the effects of Fermi

pressure and exchange-correlations on the profiles of three

wave decay and modulational instabilities in an electron-ion

degenerate magnetoplasma. Following the standard techni-

ques, we have obtained the nonlinear dispersion equations

for DUHWs, DICWs, and DAWs in terms of density and

magnetic field fluctuations. High-frequency DUHWs are

nonlinearly coupled with DICWs and DAWs which lead to

three wave decay and modulational instabilities. It is worth-

while to mention that quantum Bohm potential represents

the density fluctuations at quantum scales and introduces a

dispersion term to modify the frequencies of DUHWs,

DICWs, and DAWs. On the other hand, Fermi pressure can

be coupled with the exchange-correlation terms to signifi-

cantly alter the growth rates of three wave decay and

FIG. 1. The normalized growth rate (~cICÞ of the three wave decay instability

[by scaling Eq. (21)] is plotted against the normalized wave number ~kx for

different values of electron density ne0 ¼ 1025 cm–3 (blue solid line),

1026 cm–3 (black dashed line), and 1027 cm–3 (red dotted line). These values

correspond to electron Fermi speeds vFe 
 4.4� 108 cm/s, 9.6� 108 cm/s,

and 2.1� 109 cm/s, respectively. The electric field is fixed at value

Ex0 ¼ 0:3� 106statvolt=cm.

FIG. 2. The normalized growth rate (~cmICÞ of the modulational instability

[by normalizing Eq. (23)] is plotted against the normalized wave number ~kx

for different values of electron density ne0 ¼ 1025 cm–3 (blue solid curve),

1026 cm–3 (black dashed curve), and 1027 cm–3 (red dotted curve). Other

parameters are the same as in Fig. 1.

FIG. 3. The normalized growth rate ~cAð¼ cA=xpeÞ of the three wave decay

instability [by normalizing Eq. (34)] is plotted against the normalized wave

number ~kx for different values of ion-acoustic Fermi speed CF 
 1.03� 107

cm/s (blue solid curve), 2.2� 107 cm/s (black dashed curve), and

4.8� 107 cm/s (red dotted curve). These values correspond to the electron

density values ne0 ¼ 1025 cm–3, 1026 cm–3, and 1027 cm–3, respectively, with

a fixed electric field strength Ex0 ¼ 0.3� 106 statvolt/cm.

FIG. 4. The normalized growth rate ~cmAð¼ cmA=xpeÞ of the modulation

instability [by normalizing Eq. (36)] is plotted against the normalized wave

number ~kx for different values of electron density ne0 ¼ 1025cm�3 (blue

solid curve), 1026 cm–3 (black dashed curve), and 1027 cm–3 (red dotted

curve). Other parameters are the same as Fig. 3.
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modulational instabilities. Nonlinear coupling between

DUHWs and DICWs gives rise to three wave decay instabil-

ity, which is an inverse square function of Fermi pressure

through parameter XIC, whereas modulation instability is the

direct function of Fermi pressure through parameter a.

Similar results are obtained for nonlinear coupling between

DUHWs and DAWs. The present results provide effective

information on density fluctuations that may be relevant in

microplasmas and micro mechanical systems, like semicon-

ductors, quantum diodes, etc., as well as in astrophysical

plasmas like neutron stars, white dwarf, magnetars, etc.

Since the electron density in semiconductors is much smaller

as compared to metals, therefore, in many electronic devices,

the de Broglie wavelength involving the electrons is assumed

to be of the order of spatial variation of the doping.

Consequently, tunneling effects at quantum scales become

important in ultrasmall electronic devices. However, in

astrophysical and cosmological environments, the density of

electrons is extremely high which strongly modifies the

Fermi temperature and pressures, playing a vital role in the

dynamical study of waves.7
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