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In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to

the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic

(SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with

the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels

of spin polarization effect flip over at a particular value of wave number. The spin polarization effect

enhances the energy flow speed before this value of wave number and then suppresses it afterward.

The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for

the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high

wave number domain in both the waves. This study may find its applications to understand the energy

behavior inspin polarized solid state plasmas

 2019 Published by Elsevier B.V.

1. Introduction

In recent times there has been great interest in the study of

energy transport and energy flow speed of various waves in plas-

mas. The energy flow speed depends upon the energy flux density

contributed by various types of energy sources [1–3]. For electro-

magnetic waves, Poynting theorem enables us to find the energy

flux density and thus to determine the energy flow rate [4]. In case

of electrostatic waves, the energy transfer is shared by the electric

potential energy, kinetic energy and, for dense plasmas, quantum

interaction energy. Recently, several works on this subject have

been executed for electrostatic and electromagnetic waves propa-

gating through three dimensional (bulk) and two dimensional (lay-

ered) electron–ion, magnetized and unmagnetize quantum Fermi

plasmas [5–7].

Last two decades have witnessed intense activity on quantum

plasma due to its numerous applications in laboratory plasma

(in microelectronic devices, laser produced plasma, nano-systems)

[8–10] and in extremely dense astrophysical objects (like white

dwarfs, neutron stars, pulsars and magnetars) [11–13]. The cold

and highly dense plasmas qualify for quantum treatment. The sta-

tistical quantum effects are included through the Fermi pressure

E-mail address: abbasiravian@yahoo.com (Z. Iqbal).

and the quantum interaction (diffraction and tunneling effects)

are incorporated through the Bohm force term in the momentum

equation. Another quantum effect which is commonly present in

strongly magnetized plasmas is the intrinsic spin property of the

electrons. The electron spin effect in the plasma was introduced

by deriving the quantum hydrodynamic (QHD) model for spin-1/2

particles in Refs. [14–16]. Later on generalized form of QHD model

for spin-1/2 particles was presented by Andreev [17] in which the

author considered that the electrons of spin-up and spin-down

are two different fluids. This model is called separate spin evo-

lution quantum hydrodynamic (SSE-QHD) model. The QHD model

for spin-1/2 particles has received great deal of attention due to

emergence of some new wave phenomena and its effect on in-

stabilities [18,17,19–24]. Subsequently, the kinetic quantum model

for spin-1/2 quantum plasmas was developed and applied to study

the dispersion properties of different plasma waves [25–29]. The

SSE has unique features which give birth to new wave phenom-

ena [17,19,20,23]. The non linear analysis of these newly investi-

gated spin dependent waves has been investigated in electron-ion

and electron-positron-ion plasma [30–32]. Employing the SSE-QHD

model some new wave features and Langmuir wave instability

have been investigated inside the cylindrical waveguide. It is found

that electron spin effects the geometry effects have opposite effects

on the growth rate and wavenumber-domain of the instability [33].

Further, SSE predicted two new waves solutions in the spectrum of

https://doi.org/10.1016/j.physleta.2019.06.005

0375-9601/ 2019 Published by Elsevier B.V.
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obliquely propagating extraordinary waves [34]. Recently, spin po-

larization effect on the Raman three-wave interaction and hybrid

wave instabilities have been discussed in Refs. [35,37,36].

The energy densities and energy flow speed for the electro-

static and electromagnetic waves have been investigated in quan-

tum plasma in which only Bohm potential effect was taken into

account. Spin of the electrons is also responsible for interaction of

particles in the presence of external magnetic field. Thus the en-

ergy density is changed due to the spin effect and consequently

the energy flow speed. So the study of energy flow speed for

spin polarized plasma is very much in order. However to the best

of our knowledge energy behavior of high frequency electrostatic

waves have yet not been discussed in spin polarized plasma. In

this manuscript, we describe the energy densities and energy flow

speed for upper hybrid waves and SECW in a magnetized electron-

ion quantum degenerate plasmas on the basis of SSE.

The manuscript is arranged as follows: In section 2, the mathe-

matical formulation for the derivation of energy densities and en-

ergy flow speed for perpendicular propagating electrostatic waves

is presented. Results and discussion are given in section 3. Sec-

tion 4 is devoted for the conclusion.

2. Mathematical formulation

We consider an electron-ion magnetized quantum degenerate

plasma in which high frequency longitudinal waves propagating

perpendicular to the magnetic field are to be investigated. The ions

are assumed to be stationary lying in the back ground. The elec-

trons are supposed to form a degenerate gas for which quantum

statistical and particle dispersive effects are included through the

Fermi pressure and Bohm potential terms respectively. For govern-

ing the dynamics of electrons, we consider the SSE-QHD model

which was developed in Ref. [17]. In this model the spin-up and

spin-down electrons are considered as separate fluids. Therefore,

the continuity equation with spin projection of each species is pre-

sented as

∂tns + ∇.(nsvs) = (−1)is T z, (1)

where s = u,d for the spin-up and spin-down state of particles, ns

and vs are the number density and velocity field of electrons be-

ing in the spin state s, T z =
γe

h̄
(BxS y − B y Sx) is the z-projection of

spin torque, γ = −µB ,µB is the Bohr magneton, is = 2,1 for up

and down species respectively, Sx and S y are spin density projec-

tions. In this model, the z-projection of the spin density Sz is not

an independent variable, it is a combination of concentrations i.e.,

Sz = nu − nd . The momentum equation for electrons is given as

mns(∂t + vs.∇)vs + ∇ P s −
h̄2

4m
ns∇

(
1ns

ns

−
(∇ns)

2

2n2s

)

= −ens

(
E+

1

c
[vs,B]

)
+ (−1)isγns∇Bz

+
γ

2
(Sx∇Bx + S y∇B y) + (−1)ism(̃Tz − vsT z). (2)

Here s = u,d where u is for up-spin and d is for down-spin.

P s = (6π2)2/3n
5/3
s h̄2/5m is the degenerate pressure for both the

species of electrons, term proportional to h̄2 is Bohm potential. On

the right hand side the of momentum Eq. (2) is the Lorentz force,

T̃z =
γ
h̄
(J(M)xB y − J(M)yBx), which is the torque current, where

J(M)x = (vu + vd)Sx/2, and J(M)y = (vu + vd)S y/2 are the convec-

tive parts of the spin current tensor. For the study of propagation

of electrostatic waves (B1 = 0) in electron-ion plasma the set of

equations for SSE-QHD model is closed by taking the Poisson’s

equation as

∇.E = 4πe(ni − nu − nd). (3)

For the electrostatic waves the perturbation in magnetic field is

zero (B1 = 0). We assume that the perturbations are ∼ ei(kz−ωt)

and by using E z = −ik8 in Eq. (1) to Eq. (3) we obtain the ex-

pressions for perturbed velocity and number density of electrons

as

v1s = −
eωk8

m(ω2 − ω2
ce − v2F sk

2 − h̄2k4

4m2 )
, (4)

n1s = −
en0sk

28

m(ω2 − ω2
ce − v2F sk

2 − h̄2k4

4m2 )
. (5)

By using Eq. (3) and Eq. (5), we obtain the dispersion relation for

perpendicularly propagating electrostatic waves as

ǫ = 1−
ω2

pu

ω2 − ω2
ce − k2(v2Fu + h̄2k2

4m2 )

−
ω2

pd

ω2 − ω2
ce − k2(v2

Fd
+ h̄2k2

4m2 )
. (6)

Here ωce = eB0/mc is the electron cyclotron frequency, ω2
p(u,d)

=

(1 ∓ η)ω2
pe/2, where ωpe =

(
4πn0e

2/m
) 1
2 is the electron plasma

frequency, v2
F (u,d)

= v2F (1 ∓ η)
2
3 /3, v F = (3π2n0)

1/3h̄/me is the

Fermi velocity of electrons. The spin polarization factor can be

expressed as η = (n0u − n0d)/n0 = −(3µB B0/2εF ), where εF =

(3π2n0)
2/3h̄2/2m is the Fermi energy of the electrons. The equilib-

rium number density of spin-up and spin-down electrons in terms

of unpolarized equilibrium number density can be expressed as

n0(u,d) = n0(1 ∓ η)/2. Eq. (6) is an equation of second degree rel-

atively ω2 which means it has two wave solutions. However, if

we treat the electrons as a single fluid (v2Fu = v2
Fd
) we get only

one wave solution i.e., upper hybrid wave modified with quantum

Bohm potential effect. Further in the limit of small magnetic field

Eq. (6) admits two possible solutions given as

ω2 = ω2
pe + ω2

ce +
1

2
k2(v2Fu + v2Fd +

h̄2k2

2m2
)

+
k4(v2Fu − v2

Fd
)2 + 2k2(v2Fu − v2

Fd
)(ω2

pu − ω2
pd

)

4(ω2
pu + ω2

pd
)

(7)

ω2 = ω2
ce +

1

2
k2(v2Fu + v2Fd +

h̄2k2

2m2
)

−
k4(v2Fu − v2

Fd
)2 − 2k2(v2Fu − v2

Fd
)(ω2

pu − ω2
pd

)

4(ω2
pu + ω2

pd
)

. (8)

Eq. (7) and Eq. (8) are the dispersion relations of UHW and SECW.

The latter one is an additional wave which arises due to the pres-

sure difference of the spin-up and spin-down electron fluids. It is

obvious that for a single electron fluid only UHW is observed. On

the other hand, the separate spin evolution reveals its second part-

ner SECW in the spin polarized plasma. In this case, the energy is

stored and carried away by both the waves. To examine this we

exploit the Poynting theorem which can be expressed for one di-

mensional case, in the electrostatic approximation, as follows

∂Ŵ

∂x
= −

∂

∂t

(
1

2
ǫ0E

2
x

)
− Ex Jx. (9)

Where Ŵ is the energy flux density and Jx is the current density

which can be expressed as
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Jx = −e (n0uvxu + n0dvxd) . (10)

We use Eq. (2) and Eq. (10) to evaluate Ex Jx;

Ex Jx =
∑

s=u,d




(
1−

ω2
ce

ω2

)
mn0s

2

∂v2xs

∂t
+

m(v2F s + h̄2k2

4m2 )

2ne0s

∂n2s

∂t

+m(v2F s +
h̄2k2

4m2
)
∂(nsvxs)

∂x

)
. (11)

Detailed derivation up to Eq. (11) is given in appendix. Now we

use Eq. (4), Eq. (5), Eq. (9) and Eq. (11) to express the energy con-

servation law as follows

∂Ŵ

∂x
+

∂ε

∂t
= 0, (12)

where Ŵ = ŴxE + ŴxQ and ε = εE + εK + εQ is energy density. The

symbols E , K and Q in the subscripts represent the electrostatic,

kinetic and quantum aspects respectively. We can easily identify

the various types of energy densities and energy flow densities

from the energy conservation law (Eq. (12)) as

εE =
1

2
ǫ0k

282
0 sin

2 (kx− ωt) , (13)

εK =
1

2
ǫ0k

282
0




ω2
pu

(
ω2 − ω2

ce

)
(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
ω2 − ω2

ce

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 cos2 (kx− ωt) , (14)

εQ =
1

2
ǫ0k

282
0







ω2
pu

(
v2Fuk

2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2





 cos2 (kx− ωt) , (15)

ŴxE = 0, (16)

ŴxQ = ǫ0ωk82
0




ω2
pu

(
v2Fuk

2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 cos2 (kx− ωt) , (17)

where Ex = −∂8/∂x and we assume that 8 = 80 cos (kx− ωt).

Now we find time average values of energy densities and energy

flow densities as below:

〈εE〉 =
1

4
ǫ0k

282
0, (18)

〈εK 〉 = 〈εE〉




ω2
pu

(
ω2 − ω2

ce

)
(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
ω2 − ω2

ce

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 , (19)

〈εQ 〉 = 〈εE 〉




ω2
pu

(
v2Fuk

2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 (20)

〈ŴxE〉 = 0, (21)

〈ŴxQ 〉 = 〈εE 〉
2ω

k




ω2
pu

(
v2Fuk

2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 . (22)

Finally, we find the energy flow speed in degenerate plasma, given

as

v =
〈Ŵx〉

〈ε〉
, (23)

where 〈Ŵx〉 = 〈ŴxE 〉 + 〈ŴxQ 〉 and 〈ε〉 = 〈εE 〉 + 〈εK 〉 + 〈εQ 〉. Thus by

using Eqs. (18)–(22) we get

〈Ŵx〉 = 〈εE 〉
2ω

k




ω2
pu

(
v2Fuk

2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 , (24)

〈ε〉 = 〈εE〉


1 +

ω2
pu

(
ω2 − ω2

ce + v2Fuk
2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2

+
ω2

pd

(
ω2 − ω2

ce + v2
Fd
k2 + h̄2k4

4m2

)

(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2


 . (25)

By using Eq. (24) and Eq. (25) in Eq. (23) we obtain the energy

flow speed as following,

v =
2ω

k

×

[
ω2

pu

(
v2Fuk

2 + h̄2k4

4m2

)(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2

+ ω2
pd

(
v2
Fd
k2 + h̄2k4

4m2

)(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2
]

[(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2 (
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2

+ ω2
pu

(
ω2 − ω2

ce + v2Fuk
2 + h̄2k4

4m2

)(
ω2 − ω2

ce − v2
Fd
k2 − h̄2k4

4m2

)2

+ ω2
pd

(
ω2 − ω2

ce + v2
Fd
k2 + h̄2k4

4m2

)(
ω2 − ω2

ce − v2Fuk
2 − h̄2k4

4m2

)2
]

(26)

Eq. (26) can be analyzed for the energy flow speed for the propa-

gation of UHW and SECW using their dispersion relation given by

Eq. (6). If we consider the electrons as a single fluid (v2Fu = v2
Fd
),

we obtain the result for energy flow speed modified by quantum

Bohm potential for the propagation of only UHW.
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Fig. 1. The figure shows the effect of spin polarization on energy flow speed, for

the propagation of SECW in the plasma. In this figure thick colored curves shows

variation of flow speed for different values of spin polarization factor η in the pres-

ence of Bohm potential and dashed colored curves without taking account of Bohm

potential. In figure η = 0.25 (Red thick and dashed), η = 0.25 (Green thick and

dashed) and η = 0.25 (Blue thick and dashed). The other parameters are used as:

n0e = 1× 1022 cm−3 and B0 = 5× 107 G, 1× 108 G and 1.5× 108 G. (For interpre-

tation of the colors in the figure(s), the reader is referred to the web version of this

article.)

3. Results and discussion

In this section we present the numerical analysis of energy flow

speed for the propagation of SECW and UHW. First we discuss the

energy flow speed for SECW. Fig. 1 shows the energy flow speed

plotted against the wave number with and without the Bohm po-

tential effect. The bold curves illustrate the variation of energy flow

speed with k when the Bohm potential effect is taken into account

where as dashed lines represent the same when it is not included.

We chose the different values of the spin polarization effect, typ-

ically i.e. η = 0.25,0.50,0.80, for plotting the curves. A couple of

observations are in order. The curves of energy flow speed at dif-

ferent values of η flip over at a particular value of wave number

0.52. The spin polarization enhances the energy flow speed for

k < 0.52 and suppresses it for k > 0.52. In the absence of Bohm

potential the energy flow speed decreases exponentially with k and

tends to go for a constant value. It is evident that Bohm potential

plays an important role at larger values of k where it enhances the

flow speed. The upward trend begins around k = 0.52. The Bohm

potential effect is not just a small correction but changes the en-

ergy flow speed significantly. The corresponding results for UHW

are summarized in Fig. 2 which clearly demonstrates that the spin

polarization effect enhances the energy flow speed over the whole

range of k in the absence of the Bohm potential effect. The Bohm

potential effect plays a similar role here to keep the upward trend

almost linearly in the upper range of k as well. Thus the Bohm po-

tential effect plays an important role and enables both the waves

to transport energy at high speed in the upper range of wave num-

ber which otherwise stays at a constant level. In the low k domain,

however, the energy transport due to SECW is quite significant.

4. Summary and conclusion

In this work, using the SSE-QHD model, we have investigated

energy behavior in the electrostatic longitudinal waves propagating

perpendicular to the external magnetic field in the spin polarized

quantum plasma. This model generates a new wave SECW which

arises due to spin polarization. Regarding its energy flow speed, it

is observed that for different values of η the curves flip over at

a particular value of the wave number. In the absence of Bohm

potential effect the energy flow speed decreases exponentially to

Fig. 2. Fig. 1: The figure shows the effect of spin polarization on energy flow speed,

for the propagation of upper hybrid in the plasma. In this figure thick colored curves

shows variation of flow speed for different values of spin polarization factor η in

the presence of Bohm potential and dashed colored curves without taking account

of Bohm potential. In figure η = 0.25 (Red thick and dashed), η = 0.25 (Green thick

and dashed) and η = 0.25 (Blue thick and dashed). The other parameters are used

as: n0e = 1× 1022 cm−3 and B0 = 5× 107 G, 1× 108 G and 1.5× 108 G.

a constant value. On the other hand, in the presence of Bohm

potential effect, the energy flow speed increases almost linearly

for wave numbers beyond the flip-point. It is concluded that the

Bohm potential effect enables the wave to transmit energy with

high speed at larger values of k. It may also be mentioned here

that, in the low k domain, the flow speed falls very rapidly for

both with or without Bohm potential. Moreover, we have stud-

ied energy flow speed of UHW. First we note that the speed is

enhanced as we increase η. Further, without the Bohm potential

effect the energy flow speed initially increases with k and then

becomes almost constant. But with Bohm potential effect the en-

ergy flow speed increases with k almost linearly at higher values.

Usually, Bohm potential effect is seen to be a small correction in

most of quantum treatments but here its role is domineering as it

drastically enhances the energy flow speed at higher values of k

in both the waves. From the application point of view, we have

chosen the parameters of spin-polarized plasma having equilib-

rium number density n0 ≈ 1022 cm−3 yielding Fermi temperature

of the order T F ≈ 2 × 104 K. These parameters lie in the domain

of metallic structures and magnetically ordered metals (like Fe, Py,

Co, Ni, or MnAs) which are spin polarized and are used in the

development of spintronic devices [38]. Further for most practical

purposes, metallic structures can be thought of as operating ef-

fectively at room temperature (T = 300 K). Moreover, the electron

dynamics in these metallic structures is governed by the plasma

effects [39]. Thus quantum statistical and electron tunneling effects

should be included because the Fermi temperature is greater than

the room temperature and the de Broglie wavelength is compara-

ble or larger than the inter-particle distance [40]. Spin polarization

of carriers in solid state materials is a precondition for spintronic

devices and magnetoelectronic devices, in which spin rather than

charge is carrier of information. Further the spin polarized carriers

can also be produced by injecting polarized particles or by opti-

cal pumping [41,42] or through interaction of plasma with strong

ultrashort laser pulses [43,44]. Although the spintronics has ben-

efited from these magnetic materials there is an immense need

for fundamental studies of these materials before the potential of

spintronics applications can be fully realized. We investigated en-

ergy flow speed in these spin polarized metallic structure materials

because in most of the solid state devices the energy flow speed

determines the rate of information (data) transfer. Thus our re-

sults may be relevant to understand the energy behavior in spin
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polarized metallic structure materials which are used in the devel-

opment of spintronic devices.

5. Appendix

Detailed derivation up to Eq. (11).

For the perpendicular electrostatic waves the perturbation of

magnetic field is zero (B1 = 0). So the above Eqs. (1) and (2) can

be rewritten in a simplified form as

∂tnes + ∇.(nesves) = 0 (27)

mns(∂t + vs.∇)vs + ∇ Peu −
h̄2

4m
ns∇

(
1ns

ns

−
(∇ns)

2

2ns

)

= −ens

(
E+

1

c
[vs,B]

)
(28)

Here we have used Ex = −∂x8. The x-component of Eq. (28)

∂x8 =
m

e
∂t v1xs +

mωc

e
v1ys +

m

en0s
(v2F s +

h̄2k2

4m2
)∂xns (29)

The y-component of Eq. (28)

∂t v1ys = ωcv1xs (30)

on substituting v1ys in above equation, we obtain,

∂x8 =
m

e
(1−

ω2
c

ω2
)∂t v1xs +

m

en0s
(v2F s +

h̄2k2

4m2
)∂xns (31)

As the Poynting theorem for the electrostatic energy flow is

∂Ŵ

∂x
+

∂

∂t

(
1

2
ǫ0E

2
x

)
= (∂x8) Jx, (32)

where Jx = −e (n0uv1xu + n0dv1xd). Multiply Eq. (31) by Jx and the

product (∂x8) Jx may be expressed as

(∂x8) Jx =
m

e
(1 −

ω2
c

ω2
)(−en0sv1xs)∂t v1xs

+
m

en0s
(v2F s +

h̄2k2

4m2
)(−en0svxs)∂xns (33)

By using continuity equation for spin up electrons, we rearrange

the above equation as

(∂x8) Jxu = −
mn0u

2
(1 −

ω2
c

ω2
)∂t v

2
1xu −m(v2Fu +

h̄2k2

4m2
)∂x(v1xunu)

−
m

2n0u
(v2Fu +

h̄2k2

4m2
)∂tn

2
u (34)

Similarly for spin-down electrons

(∂x8) Jxd = −
mn0d

2
(1−

ω2
c

ω2
)∂t v

2
1xd −m(v2Fd +

h̄2k2

4m2
)∂x(v1xdnd)

−
m

2n0d
(v2Fd +

h̄2k2

4m2
)∂tn

2
d (35)

By adding the above equations to get

(∂x8) Jx (36)

= −
m

2
(1−

ω2
c

ω2
)

(
n0u∂t v

2
xu + n0d∂t v

2
xd

)

−m

[
(v2Fu +

h̄2k2

4m2
)∂x(v1xunu) + (v2Fd +

h̄2k2

4m2
)∂x(v1xdnd)

]

−
m

2

[
1

n0u
(v2Fu +

h̄2k2

4m2
)∂tn

2
u +

1

n0d
(v2Fd +

h̄2k2

4m2
)∂tn

2
d

]

By substituting vxu, vxd,nu and nd from Eq. (4) and Eq. (5) we get

the next equations of the paper.
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Highlights

• Studied the energy flow speed for the propagation spin electron cyclotron wave (SECW) and upper hybrid wave.

• Examined how the spin polarization and Bohm potential influence the energy flow speed.

• Results are applicable to environments like solid state plasma.


