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Following the idea of three-wave resonant interactions of lower hybrid waves, it is

shown that quantum-modified lower hybrid (QLH) wave in electron–positron–ion

plasma with spatial dispersion can decay into another QLH wave (where electron

and positrons are activated, whereas ions remain in the background) and another

ultra-low frequency quantum-modified ultra-low frequency Lower Hybrid (QULH)

(where ions are mobile). Quantum effects like Bohm potential and Fermi pressure

on the lower hybrid wave significantly reshaped the dispersion properties of these

waves. Later, a set of non-linear Zakharov equations were derived to consider the

formation of QLH wave solitons, with the non-linear contribution from the QLH

waves. Furthermore, modulational instability of the lower hybrid wave solitons is

investigated, and consequently, its growth rates are examined for different limiting

cases. As the growth rate associated with the three-wave resonant interaction is gen-

erally smaller than the growth associated with the modulational instability, only the

latter have been investigated. Soliton solutions from the set of coupled Zakharov and

NLS equations in the quasi-stationary regime have been studied. Ordinary solitons

are an attribute of non-linearity, whereas a cusp soliton solution featured by non-

local nonlinearity has also been studied. Such an approach to lower hybrid waves

and cusp solitons study in Fermi gas comprising electron positron and ions is new

and important. The general results obtained in this quantum plasma theory will have

widespread applicability, particularly for processes in high-energy plasma–laser

interactions set for laboratory astrophysics and solid-state plasmas.
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1 INTRODUCTION

This paper is an attempt to develop a set of Zakharov equations[1] to study modulation instability (MI) and the subsequent

formation of non-linear stationary structures for an extremely high-energy density matter, particularly a Fermi gas that makes an

assembly of electrons, positrons (holes), and ions. Here, unlike usual pair plasmas with the same mass and charge,[2–10] electrons

and holes (positrons) have mass asymmetry, which is either due to interaction between the particles or some other non-linear

phenomena emerging naturally or due to the different mobility of charge carriers. This mass asymmetry, however, opens up an

interesting avenue for the plasma physicists to study the waves and instabilities on different time scales, such as low and high

frequencies in comparison to gyro frequencies of the particles.[7,10,11]
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Solid-state plasma or quantum (Fermi) liquid semiconductors have potential applications when the effective mass of charge

carriers (electrons and holes) differs significantly from that of free electrons. Charge carriers in semiconductors such as lighter

electrons and heavier positive holes can make up a degenerate system, for example, at ne ≥ 1016 − 1018 cm−3, with the effective

mass of electrons 𝑚∗
e ≈ (0.01 − 0.1)𝑚e and at temperature T < 102 K.[12] However, this kind of plasma can be considered colli-

sionless as the mean free path is usually longer than a few centimetres at low temperature, and even the particles are separated

at a few angström distances. This can happen for two reasons: one is the Pauli exclusion principle restrictions, and the second

reason is the screening of the Coulomb interaction between the particles[13–15]

Moreover, the creation of positrons with a milli-electron volt (Mev) of energy in laboratory conditions has emerged as a

potential possibility to new avenues of antimatter research. There are a variety of other processes such as positronium produc-

tion and Bose-Einstein condensates and astrophysical environments such as black holes and gamma ray bursts, which can be

understood with the positron production in the lab.

The first experimental observations were that the temperatures of both electrons and positrons were different, and the

temperature of positrons was found to be half of the effective electrons, as demonstrated by Chen et al.[16]

Where short (∼1 ps) and ultra-intense (∼1× 1020 W/cm2) laser pulses were used to illuminate the gold targets of ∼ mm

thickness, positrons (coming out the back of gold target) up to 2× 1010 per steradian were observed. The effective temperature

of positrons was 2.8± 0.3 MeV.

Difference in the masses between species is another source of asymmetry; the mass asymmetry can be initially given and

is different from the temperature asymmetry. Such asymmetric plasma can be produced by the insertion of suitable ion beams

into a trap.[10] As stated earlier, electron–hole plasma in certain semiconductors or electron–positron collider plasma produced

by slightly different Lorentz factor beams are also possible examples of asymmetric plasma. Appropriate conditions for such

plasma production could readily appear in dusty plasmas, as well as in astrophysical plasmas.

In support of the asymmetric plasma system, it is worth mentioning that results from the Tevatron collider at Fermi National

Accelerator Laboratory, Batavia suggest that matter wins the antimatter. Experiments showed an unbalanced ratio of matter to

antimatter going beyond imbalance predicted by the Standard Model, which has a 1% difference.[17]

Pair plasma exist in many astrophysical environments, such as those of neutron stars, bipolar outflows (jets), in active galactic

nuclei, interior of accretion disks surrounding black holes, magnetospheres of pulsars and neutron stars, polar regions of neutron

stars, the centre of the Milky Way galaxy, etc. and in labs such as laser beam-produced plasmas, non-linear quantum optics,

microelectronic devices, etc.[9,18–23] Electron–positron plasmas are speculated to be highly degenerate and ultra-dense. The

presence of ions other than electrons and positrons has also been predicted, which is why extensive studies have been carried

out using quantum hydrodynamics (QHD).[24–30]

Thermal de-Broglie wave length (𝜆B = ℏ/mvT) is a parameter to determine the quantum degeneracy effects and entails the

spatial extension of the wave function of constituent particles due to quantum uncertainty and is either of the order or greater

than the average inter-Fermionic distance, viz. (𝑑 = 𝑛
−1∕3

0
), where n0 is the equilibrium number density. In such a scenario of

high number densities, Fermi pressure dominates over the thermal pressure, which supports the compact objects against the

gravitational burst.[31]

While treating the quantum plasma system, in the greater part of the existing literature, the equations of Schrodinger, Pauli,

Klein–Gordon, and Dirac have been cast into fluidized variables through Madelung transforms and appropriately averaged

to obtain the fluid equations[24,25] The idea is that the standard quantum equations of motion can be translated into equiv-

alent equations of “classical” particles whose dynamics are determined by “quantum forces” (such as the gradient of the

Bohm potential, exchange correlation effects, Fermionic pressure etc.) in addition to the external forces.[24] Later, Tsintsadze

and Tsinsadaze[25] developed a kinetic equation for Fermi plasma using a single Fermi particle concept by utilizing the

non-relativistic Pauli equation with the aid of one-particle distribution function. The authors used the one-particle concept in

spite of the large number of particles in the unit volume, and all of them have only one position and momentum (r, p).[26]

The QHD formulation developed by Manfredi and Haas[21–23] has also been successfully implemented to predict new aspects

of plasma in various systems, such as dense astrophysical objects, microelectronic devices, and in the laser-produced plasma,

and received much attention in the plasma community.

The MI is a well-known mechanism for the energy localization of wave packets in a non-linear dispersive medium and can

lead to an unstable situation that can potentially lead to the formation stable structures such as envelope or cusp solitons or

rogue waves in plasma-like media. This happens when, for example, electromagnetic waves or light beams decay, eventually

triggering the non-linear structures. Hidenori et al.[32] carried out the experiments on MI in electron plasma waves, and the

observed results were precisely in agreement with the theory of Zakharov.[1] This kind of instability has potential applications in

non-linear optics (lasers, self-focusing, non-linear radio waves, etc.), hydrodynamics, electromagnetics, etc.[33–41]; that is why

a large amount of work has been devoted to this.
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Lower hybrid waves are well known to admit non-linear structures, such as ordinary solitons and envelope solitons,[42–44]

which have been observed in the Earth's magnetosphere by the FREJA satellite and have been examined with and without an

extra charged species in plasma.

Liu et al. studied the non-linear theory of cylindrical lower hybrid drift-solitary waves in an inhomogeneous, magnetized

plasma using a two-fluid model and reported attenuation in the wave amplitude and width of the solitary waves with the increase

in the inhomogeneity in density.[38]

In this study, we investigate the MI of lower hybrid waves, associated growth rates, and stationary structures such as spiky

and ordinary solitons in electron–positron (hole)–ion Thomas Fermi plasma. The peculiar spiky solitons exhibit a cusp at the

crest unlike ordinary solitons.[45,46] The cusp type of soliton structures has been paid less attention in plasmas; however, an

attempt was made by Ehsan et al.[37] to study the decay of lower hybrid wave into relatively lower-frequency lower hybrid waves

in dusty plasmas, eventually forming the cusp type of solitons. The study of these phenomena is also very important because of

the possibility of heating. Recently, coupling between fast lattice ions and electrons in piezoelectric semiconductor plasma using

a semi-classical hydrodynamic model was studied, which led to the possible formation of the subsonic cusp-like solitons.[47]

This manuscript is organized in the following manner. In Section 2, the basic formulation of two types of lower hybrid waves

is given, and the respective dispersion relations are obtained in Section 3. Section 4 deals with the mechanism of three-wave

resonant interaction, and the subsequent derivation of the Zakharov and NLS equations is given in Section 5. In Section 6, the

MIs and associated growth rates are examined. Section 7 demonstrates the one-dimensional analytical solutions of ordinary and

cusp solitons. Finally, the main findings are recapitulated in Section 8.

2 BASIC EQUATIONS

Considering the propagation of small longitudinal perturbations in electron–positron (hole)–ion plasmas, the relevant quantum

Euler equations for the j species in quantum Fermi-Dirac plasmas[31] are:

(
𝜕

𝜕𝑡
+ v𝑗 ⋅ ∇

)
v𝑗 =

𝑞𝑗

𝑚𝑗

(
E +

v𝑗

𝑐
× B𝑜

)
+ ℏ2

2𝑚2
𝑗

∇ 1√
𝑛𝑗
(∇2

√
𝑛𝑗) −

∇𝑃𝐹𝑗

𝑛𝑗𝑚𝑗

−
∇𝑈𝑗,𝑥𝑐

𝑚𝑗

(1)

and
𝜕𝑛𝑗

𝜕𝑡
+ ∇ ⋅ (𝑛𝑗vj) = 0 (2)

Δ𝜑 = 4𝜋𝑒[𝑛e − 𝑛p − 𝑧i𝑛i], (3)

where propagation vector or wave vector (k) is plotted along x -axis, and the magnetic force is plotted in the z direction (Boz).

For the reasons described in the introduction, the plasma will be treated as collisionless at low temperatures.

The last term of Equation (1) represents electron and positron exchange correlation potential, which is a complex function of

Fermi particles density and is given as 𝑈𝑗,𝑥𝑐 = 0.985𝑒2

𝜀
𝑛

1∕3

𝑗

[
1 + 0.034

𝑎𝐵𝑗𝑛
1∕3

𝑗

ln(1 + 18.37𝑎𝐵𝑗𝑛
1∕3

𝑗
)
]

,
[31] which is considered the attribute

of the spin effects in dense systems. For the readers, it is useful to find that, for the degenerate plasma, these affects have been

calculated comprehensibly in “Statistical Physics” book by Landau and Lifshitz,[13] while exchange correlations for the proton

interaction have been presented by Tsintsadze et al.[48] As this depends on the number density, we cannot ignore it in dense

plasma environments. In Equation (1), aBj = 𝜀ℏ2/mje2 is the well-known Bohr atomic radius.

Equation (1) is general and conveniently written; however, later, we will treat ions as classical particles. In Equation (1),

ℏ = h/2𝜋, qj the charge, mj mass, and c is the velocity of light in a vacuum of the sth species. Here, j = i (ion), j = e (electron),

j = p (positron or holes), qe = − e, qp = + e, and qi = Zie, with e being the magnitude of electronic charge and Zi the number of

charges on ions. In Equation (1), 𝑃F𝑗 =
(3𝜋2)2∕3ℏ2𝑛

5∕3

𝑗

5𝑚𝑗

is the pressure law for three-dimensional Fermi gas and can also be expressed

in terms of Fermi energy, such as
2

5
𝜀F(𝑛)𝑛, where kB is the Boltzmann constant, 𝑇Fs =

𝜀F

𝐾B

= ℏ2(3𝜋2𝑛0𝑗 )2∕3

2𝑚𝑗𝐾B

is Fermi temperature, and

ns = n0j + 𝛿nj the total number density with equilibrium number density n0j and perturbed number density 𝛿n1j of jth particles.

The ion component can be considered classical or quantum depending on the relevant parameters. However, in most of the

situations, ions are considered cold fluid when describing the ion wave. In these dense quantum and semi-classical plasmas,

the screened interaction potential cannot be characterized by the standard Debye–Huckel model according to the multi-particle

correlations and the quantum mechanical effects, such as the Bohm potential, quantum pressure, and electron exchange terms,
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as the average kinetic energy of the plasma particle in quantum plasmas is of the order of the Fermi energy. The thermal

temperature of ions is low compared to the electrons and positrons and is therefore ignored.

3 DISPERSION RELATION OF QUANTUM LOWER HYBRID WAVE

Here, we assume that the mass of electrons and positrons is different, which corresponds to electron–hole plasma in semi-

conductors. Because of the symmetry, we can assume the propagation vector to be kx and ky (magnetic field along Z) or only

kx.

We linearize Equations (1)–(3) to obtain the linear and exact dispersion relation of lower hybrid waves, and for this, we use

the solution of the plane wave. Below, we discuss two cases.

3.1 Case 1: Quantum-modified lower hybrid wave
In this case, we assume that 𝜔ce >𝜔>𝜔cp and that ions stay in the background; for this, the quasi-neutrality condition is given

as:

𝛿𝑛e ≃ 𝛿𝑛p (4)

𝛿𝑛e

𝑛0e

= −
𝑒𝜑

𝑚e

𝑘2
0[

Ω2
ce + 𝑘2

(
𝑉 2

Fe
+ ℏ2𝑘2

4𝑚2
e

)] (5)

and

𝛿𝑛p

𝑛0p

=

𝑒𝜑

𝑚p

𝑘2
0[

𝜔2 − Ω2
cp − 𝑘2

(
𝑉 2

Fp
+ ℏ2𝑘2

4𝑚2
p

)] , (6)

where Ωcs = (eB0/msc) denotes the cyclotron frequency of s species and 𝑉 2
FE

= 1

3
(3𝑣2

F𝑗
− 𝛼𝑗 − 2𝜂𝑗) represents the combination

of both Fermi velocity and exchange correlation effect. There, 𝑣2
F𝑗

= 2𝑘B𝑇F𝑗

𝑚𝑗

is the Fermi speed, 𝛼s = 0.985(𝑛1∕3

𝑗
𝑒2∕𝑚𝑗𝜀), and

𝜂𝑗 = 1 + (18.376𝑛
1∕3

𝑗
∕𝑎B)𝑚𝑗𝜀.

Now considering ions in the background and using the quasi-neutrality condition 𝛿ne = 𝛿np, we obtain a dispersion relation

for the lower hybrid waves propagating in electron positron ion plasma 𝜔2 ≫ 𝜔2
cp

𝜔2 = Ω2
LQ

+
(
𝑛0p

𝑛0e

)(
𝑈 2

FS
+ ℏ2𝑘2

4𝑚e𝑚p

)
𝑘2, (7)

where ΩLQ = [(np0/ne0)𝜔ce𝜔cp]1/2 and 𝑈FS = [𝑃 2
Fe
∕3𝑚e𝑚p]1∕2 are lower hybrid frequency and positron sound velocities in Fermi

plasma, respectively, whereas the last term represents the Madelung contribution. Deriving (7), we have assumed that the

effective mass of electron is less than that of positrons (i.e. mp >me). In semiconductors, for example, we often have situations

when the mass of the hole becomes much greater than the effective mass of the electrons, and so, TFp <TFe. In deriving (7),

𝜔ce >𝜔>𝜔cp has been taken into account. Equation (7) has a spatial dispersion term, the contribution of which comes from

the mass of positrons, and this term can play an effective role in the excitation of new modes. This also shows that the electron

Thomas Fermi screening length (𝜆 = 1

3
𝑣Fe∕𝜔pe) decreases as the strength of magnetic field increases, and thus, the particles in

the Debye cloud remain mostly confined [49].

3.2 Case 2: Ultra-low-frequency lower hybrid wave (QULH)
For the dispersion relation of QULH wave, ions are activated and the quasi-neutrality condition now reads as:

𝛿𝑛e = 𝛿𝑛p + 𝛿𝑛i (8)
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we obtain

𝜔2
L
=

[
Ω2

ULQ
+
(

𝑛i0

𝑛p0

)(
𝑉 2

FS
+

ℏ2𝑘2
L

4𝑚i𝑚p

)
𝑘2

L

]
, (9)

where condition 𝜔ce ≫𝜔cp ≫𝜔L ≫𝜔ci is satisfied, and ΩULQ =
√
(𝑛i0∕𝑛p0)𝜔cp𝜔ci, and 𝑉 2

Fs
= [𝑃 2

Fi
∕3𝑚p𝑚i]1∕2. For the readers,

it is interesting to note that quantum effects can also be important for the ions that are highly massive compared to electrons

and positrons, for example, T ≤ TFi at ni ≃ 1022 cm−3, mi ≃ 10−24 g, TFi ≃ 100 K, where T is thermal temperature.

4 EXCITATION OF QULH MODE

Now using the concept of non-linear wave–wave interactions, which are also known as resonant wave–wave scattering or the

decay instability, we consider the possible decay of the quantum lower hybrid wave with frequency 𝜔 and wave vector k into

two waves, a quantum-modified lower hybrid (QLH) wave having frequency 𝜔
′

and wave number k′
and a QULH wave with

frequency 𝜔L and wave number kL. This simple physical picture can be obtained from Equations (7) and (9), provided the energy

and momentum are conserved, that is,

𝜔 − 𝜔′ = 𝜔L

𝑘 − 𝑘′ = 𝑘L, (10)

where the components of momentum k, k′
, and kL are directed along the x-axis; thus, k and kL are scalars. From the above

relations, we obtain

𝜔 − 𝜔′ ≃
[(

𝑛i0

𝑛p0

)
𝜔cp𝜔ci

]1∕2

=
[(

𝑛p0

𝑛e0

)
1

𝜔cp𝜔ce

]1∕2 (
𝑣2

sp +
ℏ2𝑘2

4𝑚e𝑚p

)
𝑘(𝑘 − 𝑘′), (11)

here, propagation is in the x direction only. Thus, using this simple model, we have shown the possibility of the three-wave

interaction, which leads to the generation of the QULH waves. Here, we do not calculate growth rates for the three-wave resonant

interaction but will calculate more significant growth rates associated with the MI in Section 4.

5 CONSTRUCTION OF ZAKHAROV EQUATIONS

Now, for the excitation of the QULH mode, we will solve for the low frequency density variations and include in our consid-

erations the convective derivative term (𝜹vp ⋅ ∇ 𝜹vp), which leads to the ponderomotive force. Thus, we obtain the following

equations for the positrons

𝜕𝛿vul
p

𝜕𝑡
+ ⟨𝛿vp.∇𝛿vp⟩ = 𝑒

𝑚p

(
Eul + 1

𝑐
𝛿vul

p × B𝑜

)
−

𝑣2
Fp

𝑛p0

𝜕𝛿𝑛𝑢𝑙p

𝜕𝑥
+ ℏ2

4𝑚2
p

𝜕3𝛿𝑛𝑢𝑙p

𝜕𝑥3
, (12)

where the angular brackets denote the averaging over a typical lower hybrid wave period and wavelength, 𝜹vp is the positron

velocity for the QLH waves, and Eul is the electric field for the ultra-low frequency field. From the ion continuity equation, we

obtain

𝜕

𝜕𝑡

(
𝛿𝑛ul

p

𝑛0p

)
+ (∇ ⋅ 𝛿vul

p ) = 0. (13)

The ion dynamics are governed by the following equations of momentum and continuity:

𝜕𝛿vul
i

𝜕𝑡
= −𝑒∇𝜑ul

𝑚i

(14)

and

𝜕

𝜕𝑡

(
𝛿𝑛ul

i

𝑛0i

)
+ (∇ ⋅ 𝛿vul

i ) = 0. (15)
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here, the ponderomotive force effect on ions compared to positrons is ignored, and a heavier mass will not cause non-linearity to

appear in the ion dynamics. Using the quasi-neutrality condition 𝛿𝑛ul
p + 𝛿𝑛ul

i
= 0 and straightforward algebraic steps, we obtain

a Zakharov-like equation[1]:

(
𝜕2

𝜕𝑡2
+ Ω2

ulh
− 𝑛i0

𝑛p0

𝑉 2
FS

𝜕2

𝜕𝑥2
+ ℏ2

4𝑚p𝑚i

𝑛i0

𝑛p0

𝜕4

𝜕𝑥4

)
𝛿𝑛i

𝑛0i

= −
𝑚p

2𝑚i

𝑣2
𝜑
𝜕2

𝜕𝑥2

|||||
𝛿𝑛p

𝑛p0

|||||
2

, (16)

where v𝜑 = (𝜔/k), and the last term is the source term arising due to the ponderomotive force. Ponderomotive force comes from

the fast time scale in which positrons were involved, and it helps to excite the QULH wave on a slow time scale.

Now, to obtain the second Zakharov equation, which is also known as non-linear Schrodinger equation, we start with the

dispersion relation (7) and treat 𝜔 and k as operators given by
[
𝜔 = 𝜔0 + 𝑖

𝜕

𝜕𝑡

]
and

[
𝑘 = 𝑘0 − 𝑖

𝜕

𝜕𝑥

]
[34] and obtain

𝑖

(
𝜕

𝜕𝑡
+ 𝑣𝑔

𝜕

𝜕𝑥
− 𝛼

𝜕3

𝜕𝑥3

)
𝛿𝑛p + 𝛽

𝜕2𝛿𝑛p

𝜕𝑥2
− Δ𝜔𝛿𝑛p −

ℏ2

8𝑚e𝑚p

𝜕4𝛿𝑛p

𝜕𝑥4
+ ΩLQ

𝛿𝑛i

𝑛0p

𝛿𝑛p = 0, (17)

where ΩLQ = (np0/ne0(𝜔ce𝜔cp))1/2, vg( = 𝜕𝜔/𝜕k the group velocity), and 𝛼, 𝛽 and △𝜔 (the non-linear frequency correction) are

defined as:

𝑣g =
(
𝑛𝑒0

𝑛𝑝0

𝜔ce𝜔cp

)−1∕2 (
𝑈 2

FS
+ 3𝑘2ℏ2

2𝑚p𝑚e

)
𝑘 (18)

𝛼 =
(
𝑛e0

𝑛p0

𝜔ce𝜔cp

)−1∕2
ℏ2

2𝑚i𝑚p

𝑘 (19)

𝛽 = 1

2

(
𝑛e0

𝑛p0

𝜔ce𝜔cp

)−1∕2 (
𝑈 2

FS
+ 3

2

𝑘2ℏ2

𝑚p𝑚e

)
(20)

and

△𝜔 =

𝑛p0

𝑛e0

[
𝜔ce𝜔cp + 𝑘2

(
𝑈 2

FS
+ ℏ2𝑘4

4𝑚p𝑚e

)]
− 𝜔2

0

2𝜔0

; (21)

Equations (16) and (17) together make a set of Zakharov-like equations, which will be used in the following sections to study

the MI and stationary structures.

6 MI OF QLH WAVES

Now, we investigate the MI of the QLH waves, and to analyse the amplitude modulation of the QLH wave, we use Madelung's

representation[34] in the x direction only:

𝛿𝑛p ∼ 𝑎(𝑥, 𝑡)𝑒iS(𝑥,𝑡), (22)

where the amplitude a and the phase S are real, and substitution of (22) into (16) and (17) gives real and imaginary parts,

respectively.

−𝑎0

(
𝜕

𝜕𝑡
+ vg ⋅

𝜕

𝜕𝑥

)
𝛿𝑆 + 𝛽

𝜕2

𝜕𝑥2
𝛿𝑎 − 𝛾

𝜕4

𝜕𝑥4
𝛿𝑎 + ΩLQ𝑎0

𝛿𝑛i

2𝑛0p

= 0 (23)

𝜕

𝜕𝑡
𝛿𝑎 + vg

𝜕𝛿𝑎

𝜕𝑥
− 𝛼

𝜕3𝛿𝑎

𝜕𝑥3
+ 2𝛽𝑎0

𝜕2𝛿𝑆

𝜕𝑥2
= 0 (24)

and (
𝜕2

𝜕𝑡2
+ Ω2

ULQ
− 𝑛i0

𝑛p0

𝑉 2
FS

𝜕2

𝜕𝑥2
+ 𝑛𝑖0

𝑛p0

ℏ2

4𝑚p𝑚i

𝜕4

𝜕𝑥4

)
𝛿𝑛i

𝑛i0

= −
𝑚p

𝑚i

𝑎0
𝜕2𝛿𝑎

𝜕𝑥2
, (25)

where 𝛾 = ℏ2∕8𝑚p𝑚e

√
𝜔ce𝜔cp. To this end, we linearize Equations (23)–(25) with respect to the perturbations, which are

represented as a= a0 + 𝛿a, S= S0 + 𝛿S, where a0 and S0 denote the equilibrium values, and 𝛿a and 𝛿S are the small perturbations.



EHSAN ET AL. 7

We seek a plane wave solution proportional to exp[i(kL ⋅ r−𝜔Lt)]; here, kL and 𝜔L are the wave number and frequency of the

modulation, respectively. Finally, we obtain the following dispersion relation for the modulation of quantum lower hybrid wave

[(𝜔L − 𝑘Lvg)2 − 𝛼𝑘3
L
(𝜔L − 𝑘Lvg) − 𝛽𝑘2

L
(𝛽𝑘2

L
+ 𝛾𝑘4

L
)][𝜔2

L
− Ω2

L
] =

(
𝑚e

𝑚i

)(
𝑛0p𝑛0i

𝑛2
0e

)(
𝑈 2

FS
+ 3

2

ℏ2𝑘2
0

𝑚p𝑚e

)
𝑘4

L
𝑎2

0
, (26)

where Ω2
L
=
[
Ω2

ULQ
+
(

𝑛i0

𝑛p0

)(
𝑉 2

FS
+ ℏ2𝑘2

L

4𝑚i𝑚p

)
𝑘2

L

]
From (26), we see that the diffraction term stabilizes the instability. For

simplicity, we discuss three limiting cases of the dispersion relation (26).

6.1 Growth rates

Case 1. First, we will consider the case when 𝜔L ≫ 𝑘Lvg, 𝛼𝑘
3
L
, 𝛽𝑘2

L
(𝛽𝑘2

L
+ 𝛾𝑘4

L
), and 𝜔L ≫ΩL,; in this case, the growth rate of

instability is

Im𝜔L =

(
𝑚e

𝑚i

𝑛p0𝑛i0

𝑛2
e0

)1∕4(
𝑈 2

FS
+ 3

2

ℏ2𝑘2
0

𝑚p𝑚e

)1∕4

𝑎
1∕2

0
𝑘L. (27)

Case 2. Now, we assume 𝜔L − kLvg = Γ, (𝜔2
L
− Ω2

L
) ≃ (𝑘2

L
v2

g − Ω2
L
). Ω2

L
> (𝑘Lvg)2 + 𝛽𝑘2

L
(𝛽𝑘2

L
+ 𝛾𝑘4

L
); using this in (26) gives

us

Γ2 = −(𝑛p0𝜔ce𝜔cp)1∕2

[
2𝛽𝑚e𝑛0𝑖𝑎

2
0

𝑚i𝑛
3∕2

0e

]
𝑘4

L

Ω2
L

. (28)

Case 3. At resonance, 𝜔L − kLvg = Γ, 𝜔L −ΩL = Γ; with this, (26) becomes

Γ3 − 𝛼𝑘3
L
Γ2 − 𝛽𝑘2

L
(𝛽𝑘2

L
+ 𝛾𝑘4

L
) Γ = (𝑛0p𝜔ce𝜔cp)1∕2

2𝛽𝑚e𝑛0i𝑘
4
L
𝑎2

0

𝑚i𝑛
3∕2

0e

. (29)

In this case, the growth rate is much larger. Equation (29) is a well-known cubic equation of the form ax3 + bx2 + cx+ d = 0,

which has three solutions. We have plotted the growth rate (27) for different values of amplitude of modulation and propagation

vector, and it is obvious from the plot that, with an increase in the value of amplitude of modulation, the growth rate also

increases.

7 SOLITON SOLUTIONS

Stationary structures, like solitons that are usually formed from non-linearly propagating waves, have been rigorously investi-

gated in plasmas and other media. Here, we shall use the standard approach to investigate solitons, but we will restrict ourselves

to the consideration of stationary structures. Before we proceed further, let us assume in the second Zakharov Equation (17),

𝛽𝜕2/𝜕x2(𝛿np)≫𝛼𝜕3/𝜕x3 and ℏ2/8memp𝜕
4/𝜕x4(𝛿np), and shifting to a co-moving frame of reference 𝜉 = x− vgt such that the

perturbations vanish at 𝜉→ ±∞, which yields

𝜕2𝛿𝑛p

𝜕𝜉2
− Δ𝜔

𝛽
𝛿𝑛p −𝑄𝛿𝑛p

𝜕2𝛿𝑛2
p

𝜕𝜉2
= 0, (30)

where
𝑄 =

𝑛p0

𝑛e0

𝜔ce𝜔cp(
𝑈 2

𝐹𝑆
+ 3ℏ2

2𝑚p𝑚e

𝑘2
0

)
𝑘2

0

(31)

Δ𝜔 is the non-linear frequency shift of the solitary structure. Using (16) and (36), we shall consider two types of soliton

solutions.

7.1 Ordinary solitons
In the first case, we take the limit in (16): 𝜕2∕𝜕𝑡2 + Ω2

ulh
≪ (𝑛i0∕𝑛p0)𝑉 2

FS
𝜕2∕𝜕𝑥2 and obtain the following expression for the

perturbed density:

𝛿𝑛i =

(
𝑚p

2𝑛p0𝑚i

𝑣2
𝜑

𝑉 2
FS

)⟨𝛿𝑛2
p⟩. (32)
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F I G U R E 1 Plot of growth rate (27) for different values of

amplitude of modulation and propagation vector

Substitution of (32) into (30) and integration once yield

𝑑𝑃

𝑑𝑦
= 𝑃

√
1 − 𝑃 2, (33)

where

𝑃 =
(
ΩLQ

𝑚p

𝑚i

)1∕2
𝑣𝜑

𝑛p0𝑉FS

𝛿𝑛p (34)

and 𝑦 =
√

2Δ𝜔∕𝛽𝜉. Equation (33) has a solution of the form

𝑦 = log

[
𝑃

1 +
√

1 − 𝑃 2

]
. (35)

which represents a standard bright soliton structure. It is important to note that we have neglected higher-order terms, which

could be interesting; however, that analysis is beyond the scope of the present investigation (Figure 1).

7.2 Cusp soliton
Under the limit that first and third terms of (16) compensate each other, the following expression for the perturbed ion density

is obtained

𝛿𝑛i

𝑛0i

≈ −
𝛿𝑛2

p

2𝑛0i𝑛0e𝑘
2
0

𝜕2

𝜕𝑥2

(
𝛿𝑛2

p

𝑛0i𝑛0e

)
(36)

here, we notice the interesting feature that the density perturbation is proportional to the second derivative of the amplitude

of the density, which shows that the regions of higher amplitude of density correspond to highly depleted regions of local density

leading to cusp solitons. Substitution of (36) into (30) gives

(
𝑑𝐶

𝑑𝑧

)2

(1 − 2𝑄𝐶2) = 𝐶2, (37)

where C = 𝛿np/np0 and 𝑧 =
√
Δ𝜔∕𝛽𝜉. Introducing Ψ =

√
2𝑄𝐶 and integrating Equation (37) once, we obtain

𝑑Ψ
𝑑𝑧

√
1 − Ψ2 = Ψ. (38)

The above equation shows that, when Ψ reaches the maximum value (Ψ = 1), the first derivative goes to infinity (dΨ/dz→∞),

which shows evidence of the formation of cusp solitons. The integration of Equation (39) leads to the following solution

𝑧 =
√

1 − Ψ2 + log|Ψ| − log|1 +
√

1 − Ψ2| (39)
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F I G U R E 2 A schematic illustration of cusp soliton solution given

by (39) with general features of dΨ/dz→∞ at its maxima

F I G U R E 3 Cusp soliton with the variation of number density

or in terms of 𝜉 and amplitude of density.

𝜉 =
√

𝛽

Δ𝜔

√
1 − 2𝑄

𝑛2
𝑝0

𝛿𝑛2
𝑝 + log

||||||
√

2𝑄

𝑛𝑝0

𝛿𝑛𝑝

|||||| − log

||||||1 +
√

1 − 2𝑄

𝑛2
𝑝0

𝛿𝑛2
𝑝

|||||| (40)

the graph (Figure 2) of which exhibits an infinite discontinues slope (cusp) at its crest and justifies the term “cusp soliton”,

but all physical quantities remain constant. This type of soliton is quite different from the well-known smooth solitons because

of the infinite first derivative at its maxima.

In Figure 3, we have examined the effect of variations in the cusp with the number density for the typical plasma number

density of the order of n0e∼1.5× 1028 cm−3, with a very high ambient magnetic field B0∼1010G and using the physical constants

in cgs units viz., c = 3× 108 cm/s, me = 9.1× 10−28 g, mi = 1.67× 10−24 g, and ℏ = 1.057× 10−27 erg s. The pattern shows that

the amplitude of the density varies, and the width of the cusp changes substantially as the number density changes.
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8 CONCLUSIONS

During this research, a theoretical model was presented for the excitation of QULH oscillating at frequency. This model uses the

decay of a relatively high-frequency QLH wave into a relatively lower frequency QLH and QMLH based on three-wave resonant

interaction. MIs of QLH waves are investigated, and their growth rates are studied. In addition, one-dimensional, non-linear

localized structures of bright solitons and non-linear nonlocal structures like cusp solitons are obtained. The generation of

cusped solitary waves is considered by the modulation of the lower hybrid wave amplitude. We believe that such an approach

to lower hybrid waves is important and demands attention. To the best of the authors' knowledge, this stationary cusp soliton

solution has not been studied for the degenerate plasma system.
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