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Abstract The present study reveals the role of suprather-
mal particles on the destabilization of EMEC instability
modelled by kappa-Maxwellian distribution and the re-
sults are compared with bi-Maxwellian results. Presence of
suprathermal particles in the velocity distribution functions
indicates the highly nonthermal state of plasma having large
amount of free energy which is expected to enhance the ki-
netic instabilities. However, most of the studies on EMEC
waves using bi-kappa model showed the inhibiting effect of
suprathermal particles on the instability. To address this ef-
fect in kappa-Maxwellian plasmas, following Lazar et al.
(2015), we proposed two variants of kappa-Maxwellian
model to investigate the role of suprathermal particles on the
EMEC instability in kappa-Maxwellian plasma. In kappa-
Maxwellian Model-I, kappa and Maxwellian temperatures
are considered to be constant while thermal velocity for
kappa is taken larger than Maxwellian thermal velocity. In
kappa-Maxwellian Model-II, thermal velocities for kappa
and Maxwellian are considered constant while kappa tem-
perature is taken larger than the Maxwellian temperature.
We found that growth rate of EMEC waves based on the
Model-I remains larger but for Model-II remains smaller
than the Maxwellian growth rate. Thus in kappa-Maxwellian
plasmas the Model-I truly depicted the role of suprathermal
particles in enhancing the EMEC instability in contrast to
bi-kappa plasmas.

B M.N.S. Qureshi
nouman_sarwar@yahoo.com

1 Department of Physics, GC University, Lahore, 54000, Pakistan

2 Department of Physics, FC College (A Charted University),
Lahore, Pakistan

3 Shenzhen Graduate School, HIT Campus, University Town of
Shenzhen, Shenzhen, P.R. China

Keywords Kappa-Maxwellin distribution · EMEC waves ·
Effect of suprathermal particles · Kappa distribution
function

1 Introduction

In many space plasmas, the suprathermal populations are the
prevalent feature of solar wind, magnetospheric and auroral
plasmas. Many physical scenarios such as absence of inter-
actions and strong radiations in astrophysical plasmas, lack
of collisions in solar wind and presence of parallel elec-
tric fields in auroral plasma are the robust causes for the
presence of energetic/suprathermal particles in the profile
of velocity distributions (Lazar et al. 2015 and references
therein). The presence of such suprathermal particles are
the manifestation of the deviation of plasma from thermal
equilibrium. Direct observations of solar wind plasma ver-
ify this fact by providing evidence for the departure from
a Maxwellian distribution and also point towards the cause
of this deviation (Marsch 2006). Such nonthermal states de-
picted by particle velocity distributions are reflected by the
presence of temperature anisotropy in the distribution and
abundance of suprathermal particles reflected by the pres-
ence of high energy tails - these are common feature of space
plasma environment (Gaelzer et al. 2008; Pierrard and Lazar
2010; Lazar et al. 2012). The velocity distributions possess-
ing nonthermal features like enhanced high energy tails or
flat tops are usually characterized by non-Maxwellian ve-
locity distributions such as kappa distribution (Summers and
Thorne 1991; Lazar 2012) and generalized (r, q) distribution
function (Qureshi et al. 2004, 2014, 2019; Sehar et al. 2019).

Bi-Maxwellian distribution has been employed over
decades to depict the temperature anisotropy in the particle
velocity distributions and to describe associated waves and
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instabilities in solar wind, magnetosphere, auroral regions
etc. (Wu et al. 1989; Gary 1993; Treumann and Baumjo-
hann 1997). Solar wind observations of two component
velocity distribution functions showed that bi-Maxwellian
distribution is the most suitable distribution to fit the low
energy (core) component of the distribution which repre-
sents approximately 90 to 95% of whole population while
the suprathermal (halo) part is less dense but hot enough
and highly anisotropic such that it’s kinetic effects cannot
be ignored. It is well established that observed velocity dis-
tributions from space plasmas having enhanced suprather-
mal tails are well fitted via power law function rather than
by an exponential function. Amongst the power law func-
tions, kappa distribution is the most appropriate distribution
as it gives the best fit to the suprathermal tail of the distribu-
tion. In many physical situations it is expected that particle
distribution functions exhibit Maxwellian form due to equi-
librium and isotropization in the perpendicular plane with
respect to the ambient magnetic field and exhibit power law
tail because of the preferential acceleration in the parallel di-
rection. In such circumstances, a physically justified model
having the advantage of mathematical tractability is the
kappa-Maxwellian distribution first developed and applied
to electrostatic waves by Hellberg and Mace (2002). Veloc-
ity distributions possessing excess of suprathermal popula-
tion are ubiquitous in space plasmas and are often charac-
terized by kappa-Maxwellian distribution particularly when
magnetic effects become important (Hellberg et al. 2005;
Nazeer et al. 2018). The kappa-Maxwellian distribution
function comprises of 2-dimensional Maxwellian distribu-
tion in perpendicular plane and 1-dimensional kappa distri-
bution in the parallel direction with respect to the magnetic
field and has this been successfully employed in different
studies (Mace and Hellberg 2003; Hellberg et al. 2005;
Cattaert et al. 2007; Basu 2008; Sugiyama et al. 2015).
The kappa-Maxwellian model is more general than bi-
Maxwellian model which can be retrieved by using the limit
κ → ∞.

Generally it is expected that excess of free energy carried
out by the suprathermal population may be used to enhance
the growth or instability. However, in most of the studies
investigating the effects of suprathermal population on the
temperature anisotropy driven electromagnetic instabilities
showed that the results are contrary to the expectation, i.e.
the growth rates of these instabilities decrease with the in-
crease in the presence of suprathermal particles (Xue et al.
1993, 1996; Mace 1998; Hellberg et al. 2005; Lazar and
Poedts 2009; Lazar et al. 2011, 2013; Mace et al. 2011;
Lazar 2012). Recently, Nazeer et al. (2018) studied elec-
tromagnetic electron cyclotron (EMEC) instability by em-
ploying kappa-Maxwellian model but the influence of en-
hanced suprathermal population inhibited the growth rate of
the instability. In a recent paper, Lazar et al. (2015) stud-
ied the EMEC instability and clarified the effect of high

energy particles by revisiting the existing bi-kappa models.
They investigated two cases; case-I dealt with the models
usually considered in many studies in which temperatures
for Maxwellian and kappa distributions were taken constant,
i.e. T K⊥,‖ = T M⊥,‖ but modified thermal velocity was consid-

ered as kappa dependent, i.e. θ⊥,‖ =
√

1 − 3
2 κ

u⊥,‖. Here

u⊥,‖ =
√

2kBT⊥,‖
m

, T is the temperature, ⊥ and ‖ stand for
perpendicular and parallel directions w.r.t magnetic field re-
spectively, and κ and M stand for kappa and Maxwellian
distributions, respectively. Case-II dealt with the new pro-
posed model by Lazar et al. (2015) in which kappa temper-
ature was considered higher than the Maxwellian tempera-
ture as T κ⊥,‖ = 2 κ

2 κ−3T M⊥,‖ > T M⊥,‖ but thermal velocities were
taken constant for both cases, i.e. θ⊥,‖ = u⊥,‖.

The aim of present study is to apply the above said meth-
ods and investigate the destabilizing effect due to the pres-
ence of suprathermal particles on EMEC instability based
on kappa-Maxwellian distribution and its comparison with
the bi-Maxwellian model. EMEC waves are the right hand
circularly polarized waves that were observed first time in
the earth’s atmosphere as whistlers (Helliwell et al. 1956)
and subsequently in many studies such as those triggered by
suprathermal electrons and kinetic anisotropies (Mace 1998;
Lazar et al. 2008). Since EMEC waves are parallel propa-
gating waves, these are expected to play an important role in
solar wind and magnetospheric plasmas. In this manuscript,
we employ bi-Maxwellian distribution and two models;
Model-I and Model-II for kappa-Maxwellian distribution in
order to provide the comparative analysis and to unveil the
appropriate model that describes the destabilizing effect of
suprathermal plasma particles on EMEC instability.

2 Velocity distributions and models

The bi-Maxwellian function to model anisotropic distribu-
tion of velocities is

fM(v‖, v⊥) = 1

π
3
2 u2⊥u‖

exp

[
−v2‖

u2‖
− v2⊥

u2⊥

]
(1)

where

T M‖ = mu2‖
2kB

(2)

T M⊥ = mu2⊥
2kB

(3)

are the parallel and perpendicular Maxwellian temperatures,
respectively. The kappa-Maxwellian distribution, which is
the main distribution function under consideration, to model
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Fig. 1 Parallel cuts of kappa-Maxwellian distributions for case-I (blue), case-II (black) and bi-Maxwellian distribution (red). The dashed-dotted
lines represent fKM(v‖/c) = 10−2 and fKM(v‖/c) = 10−3

anisotropic distribution of velocities is

fKM(v‖, v⊥) = 1

π
3
2 u2⊥θ‖

Γ (κ + 1)

κ
3
2 Γ (κ − 1

2 )

×
(

1 + v2‖
κθ2‖

)−κ

exp

[
− v2⊥

u2⊥

]
(4)

where

T KM‖ = mθ2‖
2kB

(
κ

κ − 3/2

)
(5)

T M⊥ = mu2⊥
2kB

(6)

are the parallel and perpendicular temperatures, respec-
tively for kappa-Maxwellian distribution, where kappa in-
dex should satisfies the condition κ > 3/2. In the limit
κ → ∞ kappa-Maxwellian distribution Eq. (4) reduces to
the Maxwellian distribution Eq. (1). To investigate the in-
fluence of suprathermal population by making a comparison
between kappa-Maxwellian and bi-Maxwellian models, we
consider the following two models for kappa-Maxwellian
distribution.

Model-I: Following Lazar et al. (2015) first we take the
temperatures constant, i.e. T KM‖ = T M‖ and let only parallel

thermal velocities different as

θ‖ =
√

1 − 3

2κ
u‖ (7)

since in both models perpendicular motion is characterized
by the same manner. Moreover, temperature anisotropy re-

mains constant, i.e. AM ≡ T M⊥
T M‖

= AKM ≡ T M⊥
T KM‖

which leads

to
T M⊥

T KM‖
= AM = A.

Model-II: Alternatively, we consider the thermal ve-
locities to be the same and independent of kappa, i.e.
θ‖,⊥ = u‖,⊥ and higher kappa temperature as compared to
Maxwellian temperature such as

T KM‖ = mθ2‖
2kB

(
2κ

2κ − 3

)
= 2κ

2κ − 3
T M‖ > T M‖ (8)

Again we take the temperature anisotropy constant, i.e.

AM ≡ T M⊥
T M‖

= AKM ≡ T M⊥
T KM‖

but in this case Eq. (8) leads to

T M⊥
T KM‖

= AM( 2κ−3
2κ

) = A( 2κ−3
2κ

).

Figure 1 shows the parallel cuts of kappa-Maxwellian
distributions for Model-I (blue), Model-II (black) and bi-
Maxwellian distribution (red) with 2u⊥

c
= u‖

c
= 0.02. For

the Model-I of kappa-Maxwellian distribution we consid-
ered T KM‖ = T M‖ and thermal velocity θ‖ expressed through
Eq. (7). For the Model II we considered θ‖,⊥ = u‖,⊥ and
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Fig. 2 Contour plots of kappa-Maxwellian distribution for case-I
(left panel) and case-II (right panel) for different values of kappa at
fKM(v‖/c) = 10−3

T KM‖ > T M‖ as given in Eq. (8). Both the models of the
kappa-Maxwellian distribution reduce to the bi-Maxwellian
distribution in the limit κ → ∞..

Figures 2 and 3 show the contour plots of kappa-
Maxwellian models for different values of kappa and their
limiting bi-Maxwellian model Eq. (1) which can be ob-
tained in the limit κ → ∞. Upper panels of Figs. 2 and 3
depict the contours for Model-I of kappa-Maxwellian dis-
tribution when T KM‖ = T M‖ and θ‖ as given in Eq. (7) at

fKM(v‖/c) = 10−3 and fKM(v‖/c) = 10−2, respectively.
The contours are plotted for different values of kappa κ = 2

Fig. 3 Contour plots of kappa-Maxwellian distribution for case-I
(left panel) and case-II (right panel) for different values of kappa at
fKM(v‖/c) = 10−2

(orange), κ = 5 (black), κ = 10 (blue) and their limit-
ing Maxwellian form (red) with 2u⊥

c
= u‖

c
= 0.02. Lower

panels of Figs. 2 and 3 depict the contours for Model-II
of kappa-Maxwellian distribution when θ‖,⊥ = u‖,⊥ and
T KM‖ > T M‖ as given by Eq. (8) at fKM(v‖/c) = 10−3 and

fKM(v‖/c) = 10−2, respectively. The contours are plotted
for different values of kappa κ = 2 (orange), κ = 3 (green),
κ = 5 (black), κ = 10 (blue) and their limiting Maxwellian
form (red) with 2u⊥

c
= u‖

c
= 0.02. Comparison of upper and

lower panels of Figs. 2 and 3 shows a considerable dif-
ference between the anisotropies for the Models-I and II.
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The parallel anisotropy for the Model-II is much larger than
the anisotropy for the Model-I due to larger parallel kappa-
Maxwellian temperature. For both cases, contours tends to
become Maxwellian as kappa tends to become infinity.

From Fig. 1, we can note that the Model-II is much hot-
ter and shows a substantial high energy tail as compared to
the Model-I, thus possesses excess of free energy. There-
fore, Model-II in general could be more realistic case to ap-
ply the effect of suprathermal populations in the analysis to
investigate their role in the destabilization of waves (Lazar
et al. 2015). However, contour plots of kappa-Maxwellian
distributions show a large parallel anisotropy for the small
values of kappa and secondly the temperature anisotropy

A = T M⊥
T KM‖

reduces due to the presence of factor ( 2κ−3
2κ

), thus

could inhibit the growth of EMEC instability for the Model-
II kappa-Maxwellian distribution in contrast to the bi-kappa
model (Lazar et al. 2015).

3 Dispersion relation of EMEC waves

The general dispersion relation of electromagnetic mode
exhibiting right hand circular polarization and propagating
along the external magnetic field in spatially homogeneous
plasma is

c2k2

ω2
= 1 + ω2

pσ

2ω

∫
v⊥Ĝfσ (v‖, v⊥)d3v

ω + Ωσ − kv‖
(9)

where fσ (v‖, v⊥) denotes the velocity distribution of
plasma species σ = i, e, Ωσ = qσ Bσ /(mσ c) is the cyclotron

frequency, ωpσ = ( 4πnσ e2

mσ
)1/2 is the plasma frequency for

specie of σ kind and

Ĝ =
(

1 − kv‖
ω

)
∂

∂v⊥
+ kv⊥

ω

∂

∂v‖
(10)

is the operator in velocity space. By using distribution func-
tion given in Eq. (1) into Eq. (9), we can find that the general
dispersion relation for EMEC waves in Maxwellian plasma
as

c2k2

ω2
= 1 + ω2

pe

ω2

[
−1 + Ωe

ku‖
ZM(ξM) − 1

2

T M⊥
T M‖

Z′
M(ξM)

]

(11)

In above equation ZM(ξ) is the plasma dispersion func-
tion (Fried and Conte 1961), given as

ZM(ξ) = 1√
π

∫ ∞

−∞
exp(−s2)

(s − ξ)
ds (12)

where ξM = ω−Ω
ku‖ and Z′

M(ξM) = −2[1 + ξM ZM(ξM)] is
its derivative. Similarly by employing Eq. (4) in Eq. (9), we

can get the dispersion relation for EMEC waves in kappa-
Maxwellian plasma, as given by

c2k2

ω2
= 1 + ω2

pe

ω2

[
−1 + Ωe

kθ‖
ZκM(ξKM)

− 1

2(1 − 3/2κ)

T M⊥
T KM‖

Z′
κM(ξKM)

]
(13)

In above equation, ZκM(ξKM) is the modified disper-
sion function corresponding to kappa-Maxwellian distribu-
tion and Z′

κM(ξKM) is its derivative which can be expressed
in terms of hyper-geometric functions, respectively, as

ZκM(ξKM) = i
(κ − 1/2)

κ3/2

2F1

[
1,2κ;κ + 1; 1

2

(
1 + iξKM√

κ

)]
(14)

Z′
κM(ξKM) = − (κ − 1/2)

κ(κ + 1)

2F1

[
2,2κ + 1;κ + 2; 1

2

(
1 + iξKM√

κ

)]
(15)

where ξKM = ω−Ω
kθ‖ . In deriving the expressions given in

Eqs. (11) and (13), we have neglected the ion dynamics and
assumed Ωσ = Ωe and ωpσ = ωpe. By considering EMEC
waves as subluminal modes, i.e. ω2 	 c2 k2 and setting the

terms
T M⊥
T M‖

= AM and
T M⊥

T KM‖
= AKM the Eqs. (11) and (13)

take the form

c2k2

ω2
p

= −1 + Ωe

ku‖
ZM(ξM) − AM

2
Z′

M(ξM) (16)

c2k2

ω2
p

= −1 + Ωe

kθ‖
ZκM(ξKM) − AKM

2(1 − 3/2κ)
Z′

κM(ξKM)

(17)

In the limit κ → ∞, Eqs. (13) and (17) reduce to their
Maxwellian limits Eqs. (11) and (16), respectively.

4 Numerical solution

In this section, we plot the dispersion relations (16) and (17)
numerically to see the effect of suprathermal particles on the
growth rate of EMEC instability for a range of plasma beta
0.01 < β < 10 consistent with the observation from terres-
trial magnetosphere and solar wind and different values of
temperature anisotropy (Stverak et al. 2008). Figure 4 illus-
trates the variation in normalized real frequency (top panel)
and normalized growth rate (bottom panel) of EMEC waves
for the Model-I and its Maxwellian limit versus normalized
wave numbers for different values of suprathermal index κ
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Fig. 4 Dispersion curves of EMEC waves for Model-I with real fre-
quency (top panel) and growth rate (bottom panel) for various values
of kappa index when βM = 0.1 and A = 4

when βM = 0.1 and A = 4. The growth rate is enhanced
as well as the range of unstable wave numbers increases by
the presence of suprathermal population as compared to bi-
Maxwellian model. Moreover, the minimum and maximum
cutoffs of unstable wave numbers shift to their higher values
due to the increase of suprathermal particles. The growth
rate estimated by kappa-Maxwellian distribution for Model-
I first remains slightly lower than the bi-Maxwellian growth
rate at smaller wave numbers and then becomes higher than
the bi-Maxwellian growth rate as wave number further in-
creases.

Figure 5 depicts the variation in normalized real fre-
quency (top panel) and normalized growth rate (bottom
panel) of EMEC waves for the Model-I and its Maxwellian
limit versus normalized wave numbers for different values
of suprathermal index κ when βM = 0.5 and A = 4. The
general trend is the same as shown in Fig. 4, i.e. growth
rate enhances as well as the range of unstable wave num-
bers increases by the presence of suprathermal population as
compared to bi-Maxwellian model, however, growth rate is
much higher than the growth rate obtained in Fig. 4. More-
over, minimum cutoff of unstable wave numbers shifts to-
wards the lower wave numbers as compared to in Fig. 4

Fig. 5 Dispersion curves of EMEC waves for Model-I with real fre-
quency (top panel) and growth rate (bottom panel) for various values
of kappa index when βM = 0.5 and A = 4

but maximum cutoff of unstable wave numbers remains the
same.

In Fig. 6 the plots of normalized real frequency and nor-
malized growth versus normalized wave numbers are given
for Model-II to see the effect of suprathermal particles on
EMEC instability when βM = 0.1 and AM = 4. Figure 6 re-
veals that the real frequency is affected non-monotonically
by the presence of suprathermal population and shows first
decrease and then increase with the increase in normal-
ized wave number. It can also be seen in Fig. 6 that for
the Model-II the enhanced suprathermal population causes
EMEC wave to damp rather to grow and as suprathermal
population decreases wave starts to show growth for κ ≥ 3.
Moreover, growth rate for Model-II remains lower than the
bi-Maxwellian growth rate and range of unstable wavenum-
bers remains smaller than the bi-Maxwellian range.

Figure 7 depicts the normalized real frequency and
normalized growth rate of EMEC waves versus normal-
ized wave number for Model-II with same temperature
anisotropy AM = 4 as in Fig. 4 but for higher value of
plasma beta i.e., βM = 0.5. Figure 7 shows that growth is
obtained even for the lowest value of kappa index, i.e. κ = 2
but again growth rates for all values of kappa remains lower
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Fig. 6 Dispersion curves of EMEC waves for Model-II with real fre-
quency (top panel) and growth rate (bottom panel) for different values
of kappa index when βM = 0.1 and A = 4

than the bi-Maxwellian growth rate. Growth rate as well
as range of unstable wave numbers obtained in Fig. 7 both
show enhancement as compared to the corresponding values
obtained in Fig. 6. In Fig. 8, we plotted normalized real fre-
quency and normalized growth rate of EMEC waves versus
normalized wave number for kappa-Maxwellian Models-I
and II for different values of anisotropy A = 2, 3 when
βM = 2. We can note that real frequency as well as growth
rate increases with the increase in temperature anisotropy
for a constant value of plasma beta.

5 Discussion and conclusion

In this paper, we studied EMEC instability by employing
kappa-Maxwellian distribution and compare its results with
Maxwellian results to unveil the role of suprathermal par-
ticles on the destabilization of EMEC instability modelled
by kappa-Maxwellian distribution. Earlier studies on EMEC
instability in which role of suprathermal particles has been
investigated by employing kappa distribution assuming the
same effective temperature, resulted in inhibit the instability
by enhancing the suprathermal population, i.e. by decreas-

Fig. 7 Dispersion curves of EMEC waves for Model-II with real fre-
quency (top panel) and growth rate (bottom panel) for different values
of kappa index when βM = 0.5 and A = 4

ing the index κ . Since the presence of suprathermal parti-
cles indicates the highly nonthermal state of plasma having
large amount of free energy which is expected to enhance
the kinetic instabilities. This anomaly has been addressed by
Lazar et al. (2015) who proposed another variant of kappa
model by assuming larger temperature for kappa as com-
pared to Maxwellian but same thermal velocities for both
the models. By applying this new variant of kappa distribu-
tion, they found the destabilizing effect of EMEC instability
with the enhancement in suprathermal particles.

Following Lazar et al. (2015) we proposed two models
for kappa-Maxwellian distribution, Model-I and Model-II.
In Model-I kappa and Maxwellian temperatures are con-
sidered to be the same but thermal velocity for kappa is
taken larger than the Maxwellian. We found that EMEC in-
stability based on the kappa-Maxwellian Model-I enhances
with the suprathermal population and approaches towards
Maxwellian when suprathermal population decreases (κ →
∞). In Model-II, temperature for kappa distribution is con-
sidered larger than the Maxwellian temperature but ther-
mal velocities for both the distribution are considered to be
constant. In contrast to Lazar et al. (2015), the EMEC in-
stability based on the kappa-Maxwellian Model-II inhibits
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Fig. 8 Dispersion curves of EMEC waves for kappa-Maxwellian Mod-
els-I and II with real frequency (top panel) and growth rate (bottom
panel) for different values of anisotropy A = 2 (dash dotted line) and
A = 3 (solid line) when βM = 2 and κ = 3

with the suprathermal population and remains lower than the
Maxwellian growth rate although Model-II has pronounced
high energy tail as compared to Model-I and Maxwellian
as shown in Fig. 1. This contrast is due to the nature of
the kappa-Maxwellian distribution function such that the
resultant anisotropy decreases for Model-II as compared
to the Maxwellian anisotropy by a factor of ( 2κ−3

2κ
), i.e.

T M⊥
T KM‖

= AM( 2κ−3
2κ

) = A( 2κ−3
2κ

), which resulted in inhibiting

the growth rate as compared to the Maxwellian growth, and
the growth rate decreases with the increase of superthermal
populations, i.e. κ → 3/2. Figure 8 also depicts this fact that
is with the decrease in anisotropy the growth rate reduces.
Thus in kappa-Maxwellian plasmas the Model-I truly de-
picted the role of suprathermal particles in enhancing the
EMEC instability in contrast to bi-kappa plasmas.

In conclusion we note that the product kappa-Maxwellian
and bi-Kappa distributions are two entirely different distri-
butions and one cannot recover the kappa-Maxwellian from
the bi-kappa distribution in the limit κ → ∞, but to re-
duces to a product Maxwellian. Moreover, the same kappa
index for parallel and perpendicular directions in bi-kappa

distribution where as in kappa-Maxwellian kappa indices
for parallel and perpendicular directions are different. Due
to these reasons, the anisotropy parameter developed in the
dispersions relations for both the models are different. In
bi-kappa distribution the anisotropy parameter has parallel
and perpendicular temperatures for kappa distribution where
as in kappa-Maxwellian case the anisotropy parameter has
Maxwellian perpendicular temperature and kappa parallel
temperature. This difference in anisotropies causes the op-
posite results from that of bi-kappa distribution function.
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