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Abstract. The energy transport of circularly polarized waves (CPW) in bi-kappa distributed plasmas is
studied using kinetic theory. Energy flux is examined by taking into account the wave-particle interaction.
We investigate how the energy flux is affected by the variation of thermal speed, temperature anisotropy
(the parallel and perpendicular temperatures are different with respect to the direction of ambient magnetic
field, i.e., T⊥ > T‖), index κ and the wave frequency. It is found that the CPW transport their energy
rapidly over distances for smaller values of the thermal speed, the index κ and the wave frequency, whereas
for low values of temperature anisotropy the waves deliver their energy slowly. Thus the above-mentioned
parameters play an important role in the transport of wave energy. Possible applications of the present
analysis are discussed.

1 Introduction

Understanding the interaction of electromagnetic (EM)
waves with collisionless plasma is one of the important
problems in plasma physics. It has been studied exten-
sively how the wave attenuates spatially when it inter-
acts with the conducting medium [1–7]. This analysis
is helpful to understand the heating/excitation of EM
waves in plasma [8] in different fields like laser plasma
interaction [9], tokamaks [10,11], material processing [12]
and in inductively coupled plasmas [13,14]. For instance,
laser energy transmission and absorption in hot plasmas
is also predicted on the basis of spatial damping of the
wave [15].

Different velocity distributions have been employed to
examine the propagation of waves in various plasma envi-
ronments. The systems in which the particles are in ther-
mal equilibrium are well described by the Maxwellian
distribution function. However, when the particles are out
of thermal equilibrium, like in collisional [16] and collision-
less plasmas [17,18], kappa distribution function is more
suitable. Applications of kappa distribution have been dis-
cussed by many authors in space [19–23] and laboratory
plasmas [24]. Meige and Boswell [25] performed simulation
to confirm the experimental findings of kappa distribution
proposed by Granovski [26] and Godyak et al. [27].

From the in-situ observations the terrestrial magneto-
sphere and the solar wind show temperature anisotropic
electron velocity distribution [16,18,28]. The temperature
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anisotropies are the sources of free energies that can
trigger different kinetic instabilities [29–32]. The disper-
sion properties of the wave change significantly with the
parameters: plasma beta, temperature anisotropy, index
kappa and plasma to gyrofrequency ratio [33,34]. When
the perpendicular temperature of electrons is larger than
the parallel temperature with respect to ambient magnetic
field (A = T⊥/T‖ > 1) with the combination of plasma
beta and other plasma parameters, the whistler modes
destabilize. On the other hand when A = T⊥/T‖ < 1,
the firehose instability is driven [18,31]. In magnetospheric
environment, two distinct particle populations exist i.e.,
low temperature and high temperature which determine
the propagation characteristics and the instabilities of the
waves, respectively [35–37]. Temperature anisotropy plays
an important role in the electromagnetic fire-hose insta-
bility, electron cyclotron resonance (ECR), intense laser
matter interaction and plasma processing [38–41].

The energy flux density of the electromagnetic wave is
given by the Poynting vector. The divergence of Poynting
flux determines how the energy changes when the wave
propagates through a particular region. Poynting flux ana-
lyzer (PFX) on board the Akebono satellite [42] and the
plasma wave instrument (PWI) [43] are used to measure
the electric field and magnetic field components of the
wave. The electric field helps to understand the plasma
transport and acceleration in the magnetosphere. Ear-
lier, the spatial attenuation of electromagnetic waves has
been studied for laboratory plasma by various authors e.g.,
Ferrante et al. [7] and Kaganovich et al. [35,36], but not
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much attention has been given as to how the waves trans-
port their energy over distance.

The purpose of this study is to understand how the cir-
cularly polarized waves in kappa distributed plasma trans-
port their energy during the propagation. We discuss it by
taking into account the wave particle interaction (resonant
case). In the cyclotron resonance, the energy exchange
occurs only when the velocity of electrons is comparable
with the phase velocity of the wave.

2 Mathematical formulation

Using Vlasov-Maxwell set of equations, we get the gen-
eralized linear dispersion relation for parallel propagating
right circularly polarized waves (RCPW) as

ω2 = c2k2 − πωω2
pe
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−∞

dp‖
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0
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where ω is the wave frequency, k is the wavenumber, ωce
is the gyrofrequency of electrons, f0 is arbitrary equilib-
rium distribution function and p‖,⊥ is the momentum of
electrons in parallel and perpendicular direction to the
ambient magnetic field. We have employed here the tem-
perature anisotropic kappa distribution function given by
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Using the above distribution function and after exe-
cuting some algebraic steps, the dispersion relation (1)
reduces to

c2k2
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p
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[
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where ξ = ω−ωce

kθ‖
and Z(ξ) is the modified plasma disper-

sion function defined as [44–49]
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Γ(κ)√
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∞∫
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Although in literature the dispersion relation of parallel
propagating electromagnetic waves has been derived and
solved numerically by many authors to investigate the
instability/damping of waves, in the present paper our
focus is to examine the energy transfer of parallel propa-
gating electromagnetic waves over distance which has not
been reported in the literature earlier according to the

best of our knowledge. This work is based on the analyt-
ical approach in which we solve equation (6) for complex
wavenumber to get the imaginary wavenumber ki and then
use that ki in the Poynting flux theorem.

The expansion of plasma dispersion function for small
argument i.e., ξ � 1 is given by
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We use small argument expansion of plasma disper-
sion function in equation (3) and obtain the dispersion
relation as,
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The reason to take small argument of the plasma dis-
persion function is to have strong wave-particle interaction
whereas for large argument the wave-particle interaction
(the pole contribution term) would be rather weak and the
imaginary part of the wavenumber would be negligible.

Assuming k2
i � k2

r , the real part and the imaginary
part of the above dispersion relation are respectively

k2
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and
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where we have taken ω > ωce and θ2⊥/θ
2
‖ > 1. Using the

definitions of θ2⊥ and θ2‖ we may write A = T⊥/T‖.

To determine how the electromagnetic wave delivers its
energy to the plasma particles, we apply the Poynting flux
theorem for the steady state i.e.,∇.S = −P [50–53], where
P and S are the power dissipation and Poynting vector
defined as

P =
1
2

Re(J∗. E) , (9)

and
S =

Re
µ0

(E∗ ×B). (10)

In the preceding equations (9) and (10), J,E and µ0 are
the current density of electrons, perturbed electric field
and magnetic permeability, respectively.

The wave polarization is taken in such a way that the
ambient magnetic field B0 is along z-axis, the electric field
and magnetic field perturbations lie in x–y plane. Current
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Fig. 1. Poynting flux (S/S0) versus distance (zωp/c) for
isotropic Maxwellian case (A = 1, κ =∞).

Fig. 2. Poynting flux (S/S0) versus distance (zωp/c) for fixed
values of index kappa (κ = 2) and temperature anisotropy
(A = 2).

density is derived from the Ampere’s Law. Resultantly we
obtain the power dissipation as

P = −1
2

Re[ikµ0(BxEy −ByEx)]. (11)

On simplifying the expressions of P and S we recast the
energy flux theorem as

∂S

∂z
= −kiSz (12)

whose solution is

S(z) = S(0) exp[−ki z], (13)

where S(0) shows the energy at the point where the
wave starts to travel and ki is defined in equation (8).
It is important to note how the spatial damping factor ki
appears in the energy flux theorem.

Fig. 3. Poynting flux (S/S0) versus distance (zωp/c) for fixed
values of temperature anisotropy (A = 2) and thermal speed
(vt‖/c = 0.01).

Fig. 4. Poynting flux (S/S0) versus distance (zωp/c) for fixed
values of index kappa (κ = 2) and thermal speed (vt‖/c =
0.01).

3 Results and discussion

To examine the effect of temperature anisotropy and the
index κ on the energy flux of RCPW, we plot equa-
tion (13). The results obtained are applicable for the
plasma sheet region [54], having electron number density
n = 0.5 cm−3 and magnetic filed B0 = 10−4 G. Figure 1 is
plotted for isotropic Maxwellian plasma, it is noted that
for low values of thermal speed of electrons the waves
deliver their energy rapidly at shorter distances, whereas
for larger values of thermal speed the waves transport their
energy rather slowly over the longer distances. Figure 2
depicts that the waves deliver their energy at shorter dis-
tances when both the temperature anisotropy and index
kappa are taken into account. Figure 3 shows that for low
values of index kappa (κ), the wave transports its energy
rapidly. It may be due to more resonate particles for low
values of index κ. In Figure 4, we plot the energy flux
(S/S0) vs. normalized distance (zωp/c). It is seen from the
figure that the wave delivers its energy rapidly with the
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Fig. 5. Poynting flux (S/S0) versus distance (zωp/c) for
isotropic Maxwellian case (A = 1, κ = ∞) and thermal speed
(vt‖/c = 0.01).

Fig. 6. Energy flux (S/S0) versus distance (zωp/c) for fixed
values of anisotropy (T⊥/T‖ = 2), index kappa (κ = 2) and
thermal speed (vt‖/c = 0.01).

increase of temperature anisotropy (T⊥/T‖). The possible
explanation is the following. In the anisotropic plasma, the
number of resonant particles is more and thus the wave
transports its energy rapidly over distances. Figure 5 is
for the isotropic Maxwellian plasma which shows that the
wave transfers its energy over longer distances at higher
values of wave frequency. In Figure 6, the temperature
anisotropy and the index kappa are taken into account,
the same trend is observed as to Figure 5 but this time
the wave delivers its energy more rapidly over distances.

This approach may be helpful to explain the phys-
ical mechanism that may favour the transmission of
energy during the interaction of solar wind with mag-
netosphere, especially during magnetosheath irregulari-
ties observed deep inside the terrestrial magnetosphere by
various spacecrafts like the Radio Plasma Imager (RPI)
on the Imager for Magnetopause-to-Aurora Global Explo-
ration (IMAGE) satellite around the Earth [55–57].

In summary, we have used kinetic approach to study
the energy transport for the parallel propagating right
handed circularly polarized waves in bi-kappa distributed

plasmas. It is found that the energy flux changes signif-
icantly over distances with the variation of the thermal
speed, temperature anisotropy, index kappa and wave fre-
quency. From Figures 1 and 2, we see that the waves trans-
fer their energy over longer distances for larger values of
the thermal speed of electrons. Figures 3 and 4 show that
for large values of temperature anisotropy (T⊥/T‖ > 1)
and low values of index kappa, the wave would transfer
its energy rapidly. In Figures 5 and 6, we observed that
the waves transport their energy over longer distances at
higher values of the wave frequency. It is also noted that
the waves deliver their energy rapidly in kappa distributed
plasma, possibly due to the more high energy particles,
as compared to Maxwellian velocity distributed plasma.
The results may be applicable to the laser plasma interac-
tion, for understanding physical mechanisms involved in
the material processing where the distribution is expected
to be non-Maxwellian [58]. This analysis is extendable to
answer similar questions of Poynting flux for the relativis-
tic and ultra relativistic plasmas.
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