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A B S T R A C T   

Propagation of nonlinear coupled drift ion acoustic shock wave is investigated in an electron–positron-ion (epi) plasma in the presence of fully degenerate adia
batically trapped electrons. A novel complex nonlinear equation with fractional nonlinear terms is formulated. Phase plane theory of planar dynamical system is 
employed to investigate this nonlinear equation of epi plasma. The variations in nonlinear periodic orbits (NPO), nonlinear heteroclinic orbits (NHO), time series 
plots and shock profiles are demonstrated by varying the values of different controlling parameters such as the ratio of positron to electron number density, 
collisional frequency, magnetic field, drift velocity and angle of propagation. It is seen that a pair of shock structures are obtained – which is the most significant 
result of this work.   

Introduction 

Nonlinear wave structures in multi-component plasmas containing 
electrons, positrons and ions as their constituent species have been 
actively investigated in a variety of cases. The electron–positron-ion 
(epi) plasmas are abundantly found in nature due to the pair production 
in high energy phenomena such as dense astrophysical plasmas [1–3], 
intense laser beam induced plasmas [4], active galactic nuclei [5], solar 
environment [6] and pulsar magnetospheres [7,8], etc. Such plasmas 
can also be generated in laboratories [9–11]. In contrast to typical 
electron–ion (ei) plasmas, epi plasmas exhibit different behavior as the 
constituent species have the same charge to mass ratio [12]. The 
reciprocal of electron/positron characteristic plasma frequency is much 
greater than the electron–positron pair annihilation time period [13] 
implying that it is possible to investigate epi plasmas on a time scale 
smaller than the annihilation time. It is also well established in the 
literature that quantum mechanical effects become relevant in the in
teriors of astrophysical plasmas which are highly dense and hence 
degenerate [14–17]. Quantum plasmas have a wide range of direct ap
plications in microelectronics [18], carbon nanotubes, quantum dots 
and quantum wells [19–21]. 

An extensive amount of research has been carried out to study the 
characteristics of nonlinear solitary structures in both the ei and epi 
plasmas by employing various theoretical models and numerical 

simulations in classical and quantum regimes [22–24]. Solitary and 
shock wave structures are formed due to the interplay of nonlinearity 
with dispersive and dissipative behaviors of the wave respectively [25]. 
The ion temperature effect on the large amplitude ion acoustic waves in 
classical epi plasmas was studied initially by Nejoh [26]. It was reported 
that the upper limit of Mach number tends to increase but the amplitude 
decreases with the enhancement in temperature. Electromagnetic soli
tary waves in epi plasmas were investigated by Verheest [27] by deriving 
a vector equivalent of the modified Korteweg-de Vries (mKdV) equation. 
This equation becomes integrable for the linear polarized case only and 
its super Alfvenic solitary solutions were found by employing the 
McKenzie technique [28]. Furthermore, the analytical envelope solitary 
solutions were also studied for the unmagnetized epi plasmas [29,30]. In 
the domain of unmagnetized quantum epi plasmas, the linear and 
nonlinear characteristics of arbitrary amplitude ion acoustic waves were 
studied in Ali et al. [31] by obtaining the KdV equation and deriving an 
energy equation to elucidate the findings. The stability and propagation 
characteristics of ion-acoustic solitary structures in the presence of 
transverse perturbations were described in Mushtaq and Khan [32] by 
using the Quantum Hydrodynamic Model (QHD). 

In the past decade or so, nonlinear waves in plasmas have been 
investigated by employing methods for nonlinear dynamical systems. 
One of the earliest examples of using nonlinear dynamical analysis to 
investigate nonlinear plasma waves was given by Samanta et al. [33], 
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who investigated nonlinear waves in a nonthermal magnetized dusty 
plasma. Later, these methods were employed for quantum plasmas and 
the findings were reported in many papers e.g. [34–37]. Nonlinear 
dynamical methods revealed regions of existence of both solitary 
structures and nonlinear periodic waves. Recently, Saha [38,39] inves
tigated shock structures of the Burgers equation in dissipative non- 
extensive e-p-i plasmas. Such an analysis has been applied by El- 
Monier and Atteya [39] to four component dissipative dusty plasma 
via the KdV–Burgers (KdVB) equation. More recently, Saha et al. [40] 
have carried out a bifurcation analysis for kink, anti-kink and periodic 
waves in dense quantum plasmas. We note here that these methods for 
plasma physics are well laid out in the recent book by Saha and Banerjee 
[41]. 

An important nonlinear phenomenon is that of trapped particles in a 
stationary electrostatic wave potential which was described by Bern
stein et al. [42]. It was shown that there is a crucial dependence of the 
number density of trapped particles on the generation of solitary 
structures. Nonstationary adiabatic trapping as a microscopic phenom
enon was originally put forward by Gurevich [43] in classical plasmas 
which gives 3/2 power nonlinearity instead of the usual quadratic 
nonlinearity in the KdV case. It has also been investigated in various 
studies that the adiabatically trapped electrons exert a substantial effect 
on the nonlinear dynamics of degenerate plasmas [44–48]. The effect of 
the adiabatically trapped electrons in the trough of the slowly varying 
potential for degenerate plasma was first investigated by Shah et al. [44] 

which was later extended to study relativistic degenerate plasmas [45]. 
The generation of vortices has been studied by computing the general
ized Hasegawa Mima Equation for scalar and Jacobian nonlinearities 
concerning electron and positron inhomogeneities [46]. The charac
teristics of ion acoustic solitary waves have also been investigated under 
the effects of weak and strong magnetic quantization due to ambient 
magnetic field [49,50]. Fayyaz et al. have studied the quantum effects of 
adiabatically trapped electrons in coupled drift ion acoustic shock waves 
by considering the factual parameters of neutron stars [48]. Later, 
quantum drift ion acoustic solitary waves have also been investigated 
and non-linear analysis revealed that inhomogeneity and angle of 
propagation have a significant effect on solitary structures [47]. 

In a recent paper [48] (henceforth to be referred to as paper-1), we 
considered the effect of dissipation in a degenerate inhomogeneous ei 
plasma and obtained a novel Burgers like equation for coupled drift ion 
acoustic waves, where the nonlinearity was of the form (1 + ϕ)3/2, 
which yielded an exact shock solution. In the present work, we will 
investigate the effect of microscopic trapping (adiabatic) in a degenerate 
inhomogeneous epi plasma when dissipation is present via ion-neutral 
collisions. The inclusion of positrons substantially affects and enriches 
the results of paper-1 and qualitatively new results appear. We should 
mention here that shock formation can only be studied numerically in 
such a plasma, and to this end, we will use the nonlinear dynamical 
approach. The layout of the paper is as follows: In section 2, we give the 
mathematical preliminaries. In section 3, we develop the nonlinear 

Fig. 1. Phase portrait of the system (16) for α = 0.1, υin = 3× 1013s− 1, B0 = 1010G, vde = 0.4 and θ = 60◦ . The blue solid curve lines are the NHOs correspond to the 
shock profile while red and yellow dashed lines are the NPOs. F0(ϕ0,0), F1(ϕ1,0), F2(ϕ2,0), F3(ϕ3, 0) and F4(ϕ4,0) are the fixed points of the nonlinear dynamical 
system (16). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. The time series plots for the NPO2 with same parameters as used in Fig.-1.  
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evolution equation and in section 4, we present the nonlinear dynamical 
analysis extending the results of paper-1, and in section 5, we use the 
nonlinear dynamical approach to show numerically how a shock wave is 
obtained. Finally, in section 6, we give our conclusions about the for
mation of shock waves. 

Basic set of mathematical equations 

As stated earlier, we are interested in looking at drift ion acoustic 
waves in the presence of adiabatic trapping in a quantum epi 

magnetoplasma, where ions are treated as classical due to their heavy 
mass. The plasma is considered to be collisional, and the external 
magnetic field B0 is taken to be in the z-direction whereas the propa
gation of the wave is considered in the y-z plane and the density in
homogeneity is considered in the x-direction. The quasi-neutrality 
condition is given as follows 

ne0(x) = np0(x)+ ni0(x), (1)  

where, ni0, np0 and ne0 are the equilibrium number densities of the ions, 

Fig. 3. Phase portrait of the system (16) for different values of α = 0.1, 0.2 and 0.3. The other parametric values are υin = 3× 1013s− 1, B0 = 1010G, vde = 0.4 and θ =

60◦ . Three different phase portraits for different values of α and in these phase portraits the blue solid curve lines are the NHOs correspond to the shock profiles while 
red and yellow dashed lines are the NPOs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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positrons, and electrons respectively. For low frequency drift ion 
acoustic waves, the electrons and positrons are considered massless and 
follow the Fermi Dirac distribution function. Following the method of 
our earlier papers [44,47,51], we have for the electrons and positrons 
the following expressions of number densities respectively, which take 
into account the effect of adiabatic trapping. 

np = np0

(

1 −
eφ
εFp

)3/2

+ np0T2
p

(

1 −
eφ
εFp

)− 1/2

, (2)  

ne = ne0

(

1 +
eφ
εFe

)3/2

+ ne0T2
e

(

1 +
eφ
εFe

)− 1/2

. (3)  

Here, ne (np) denotes the total number density of electrons (positrons), 
Te (Tp) is the electron (positron) ambient temperatures, φ is the elec
trostatic potential, e is the charge of an electron, εFp and εFe are the 
positron and electron Fermi energies, respectively and are considered in 
standard form as εFp,Fe = ℏ2

2mp,e
(3π2np0,e0)

2/3. In our calculations, we will 
consider a fully degenerate plasma, thus Tp,e are taken to be zero. In the 
case of the zero-temperature limit, the chemical potentials in the Fer
mi–Dirac distribution function is μe,p = εFp,Fe. 

The ions on the other hand are taken to be classical, which is justified 
since mi≫me,p and thus quantum mechanical effects for the ions are 
taken to be negligible. We also consider the ions to be cold as in most 
cases of interest and temperature in energy units is Ti≪εFp,Fe. Using the 
standard drift approximation [52], the following expression for the 
perpendicular and parallel components of the ion velocities are ob
tained, respectively. 

vi⊥ = −
c

B0

(
∂φ
∂y

x̂ +
∂φ
∂x

ŷ
)

−
c

B0ωci

∂
∂t

∂φ
∂y

ŷ −
cυin

B0ωci

∂φ
∂y

ŷ, (4)  

Âvi‖ = −
e

mi

∂φ
∂z
. (5)  

Here, vi⊥ is the perpendicular component of ion velocity in the plane 
perpendicular to the ambient magnetic field B0, υin is the ion neutral 
collisional frequency and ωci =

eB0
mic is the ion gyro frequency, here mi is 

the ion mass and c is the velocity of light. The right hand side of Eq. (4) 
represents the different drift velocities, the first term is the dominant E ×

B drift, second term represents the polarization drift and the last term is 
the collisional drift. The operator Â is given by Â = ∂

∂t +υE • ∇⊥ +vi‖
∂
∂z 

and vi‖ is the parallel ion velocity. We note here that these are standard 
results from the drift approximation theory [52] and hence have not 
been derived here. For the sake of completeness, we give here the 
equation of continuity for ions. 

∂ni

∂t
+ ni(∇ • vi)+ vi • (∇ni) = 0, (6) 

and Poisson’s equation which is given by 

∇2ϕ = − 4πe
(
ni+np − ne

)
, (7)  

where, ϕ = eφ/εFe is the normalized potential. 
Now, following our earlier work [48] and using Eqs. (1) − (5) and 

substituting these in Eq. (6), we obtain the following nonlinear evolution 
equation, in dimensionless form, for collisional drift ion acoustic waves. 

Fig. 4. Time series plots (Fig. 4(a)) and the pair of 
shock profiles (Fig. 4(b)) of the system (20) for 
different value of α = 0.1,0.2 and 0.3. The values of 
other parameters are υin = 3× 1013s− 1, B0 = 1010G,
vde = 0.4 and θ = 60◦ . The time series plots corre
spond to the red dashed line of NPO2 in Fig. 4 while 
the pair of shock profiles correspond to the blue solid 
line of NHO1 and HNO2 in Fig. 3. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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∂2

∂t2(1 + ϕ)3/2
− α ∂2

∂t2

(

1 −
ϕ
α2

3

)3
2

− (1 − α) υin

ωci

∂
∂t

∂2ϕ
∂y2

+
3
2
vde(1 − α) ∂2ϕ

∂t∂y
− (1 − α) ∂2ϕ

∂z2 = 0.
(8) 

In obtaining Eq. (8), we have used the normalizations t = ωcit, y =
y
ρi 

and z = z
ρi
. Here, vde = − 2

3
cεFe
eB0

1
csne0

∂ne0
∂x , vdp =

2
3

cεFp
eB0

1
csnp0

∂np0
∂x are normalized 

(by the ion sound velocity) fluid drift velocities for the electrons and 
positrons, respectively and α is the ratio of number densities of positrons 
and electrons at equilibrium, i.e. α =

np0
ne0

, cs =
̅̅̅̅
εFe
mi

√
is the quantum ion 

acoustic speed and ρi =
cs
ωci 

is ion Larmor radius. Equation (8) is the 

nonlinear evolution equation for drift ion acoustic waves and the effect 
of adiabatic trapping on the nonlinearity (due to the quantum nature of 
the electrons and positrons) appears through the terms (1 + ϕ)3/2 and 
(
1 − ϕ

α2/3

)3
2, respectively. 

Before we go on to consider fully nonlinear Eq. (8), we investigate 
the linear properties of the epi plasma by deriving the linear dispersion 
relation for the drift ion acoustic wave. To this end, we linearize Eq. (8) 
using a plane wave solution, i.e. exp

{
ι
(
kyy + kzz − ωt

) }
(where, ky and 

kz are the wave numbers perpendicular and parallel to the external 
magnetic field, respectively and ω is the wave frequency) and obtain the 
following linear dispersion relation for drift ion acoustic waves in an epi 

Fig. 5. Phase portrait of the system (16) for different 
value of B0 = 1.2 × 1010G, 1.4 × 1010G and 
1.8 × 1010G. The values of other parameters are α =

0.1, υin = 3× 1013s− 1, vde = 0.4 and θ = 60◦ . Three 
different phase portraits for different values of B0 and 
in these phase portraits the blue solid curve lines are 
the NHOs correspond to the shock profiles while red 
and yellow dashed lines are the NPOs. (For interpre
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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plasma. 

3
2

(
1 − α1

3

)
ω2 +(1 − α)ky

(

ι υin

ωci
ky +

3
2
vde

)

ω − (1 − α)kz
2 = 0. (9) 

We note here that in our earlier paper-1, where an electron ion 
plasma was considered, we had obtained a nonlinear evolution equation 
similar to Eq. (8) but without positrons and showed that the equation 
was fully integrable and had a form structurally similar to Burgers 
equation and obtained shock solutions. However, in the present case, 
due to the presence of positrons, our nonlinear equation (Eq. (8)) is not 
fully integrable and thus we resort to a dynamical analysis, which we 
take up in the next section. 

Dynamical system of coupled drift acoustic shock wave in epi 
plasma and phase portrait analysis 

In this section, we will modify the nonlinear evolution Eq. (8) to 
express it in the form of coupled nonlinear dynamical equations. For 
this, we shift to a comoving frame of reference defined as follows. 

ξ = ηyy+ ηzz − vt, (10)  

where ηy and ηz are the directional cosines along the y-axis and z-axis, 
respectively, and v is the velocity of the nonlinear structure. The 

modified form of the Eq. (8) reads. 

v2 d2

dξ2(1 + ϕ)3/2
− αv2 d2

dξ2

(
1 − α− 2

3ϕ
)3

2
+Av

d3ϕ
dξ3 − (Bv + C)

d2ϕ
dξ2 = 0, (11)  

Here, A = η2
y(1 − α) υin

ωci
, B = 3

2 ηyvde(1 − α) and C = (1 − α) η2
z . Integrating 

Eq. (11) twice, we obtain 

v2(1 + ϕ)3/2
− αv2

(
1 − α− 2

3ϕ
)3

2
+Av

dϕ
dξ

− (Bv+C)ϕ+ c2 = 0, (12) 

In obtaining the above equation, we have used the boundary con
ditions, i.e., when ξ→ ± ∞ then ϕ→ϕR,L as considered in paper-1. The 
first constant of integration c1 becomes zero while the second constant of 
integration c2 is evaluated after applying the above-mentioned bound
ary conditions and is given below. 

v2(1 + ϕR)
3/2

− αv2
(

1 − α− 2
3ϕR

)3
2
− (Bv + C)ϕR = c2, (13)  

v2(1 + ϕL)
3/2

− αv2
(

1 − α− 2
3ϕL

)3
2
− (Bv+C)ϕL = c2. (14) 

The value of normalized ϕ ranges from − 1 to α2
3, where α2

3 ensures 
that the term remains real. We obtain an expression of the velocity v of 
the shock propagation by solving Eqs. (13) and (14) which reads as. 

Fig. 6. The time series plots (Fig. 6(a)) and the pair of 
shock profiles (Fig. 6(b)) of the system (16) for 
different value of B0 = 1.2 × 1010G, 1.4 × 1010G and 
1.8 × 1010G. The values of other parameters are α =

0.1,υin = 3× 1013s− 1, vde = 0.4 and θ = 60◦ . The time 
series plots correspond to the red dashed line of NPO2 
in Fig. 5 while the pair of shock profiles correspond to 
the blue solid line of NHO1 and HNO2 in Fig. 5. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   

v =
BϕA ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2ϕA + 4CϕA
(
ϕC + ϕLϕC − αϕD + α1

3ϕD − ϕB − ϕBϕR + αϕE − α1
3ϕRϕE

)√

2
(
ϕC+ϕLϕC − αϕD + α1

3ϕLϕD − ϕB − ϕBϕR + αϕE − α1
3ϕRϕE

) , (15)   
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Fig. 7. Phase portrait of the system (16) for different 
value of collisional frequency, υin = 2 × 1013s− 1, 4 ×

1013s− 1 and 6× 1013s− 1. The values of other param
eters are α = 0.1, B0 = 1010G, vde = 0.4 and θ = 60◦ . 
Three different phase portraits for different values of 
υin and in these phase portraits the blue solid curve 
lines are the NHOs correspond to the pair of shock 
profiles while red and yellow dashed lines are the 
NPOs. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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Here, ϕA = (ϕL − ϕR), ϕB =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ϕL

√
, ϕC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ϕR

√
, ϕD =

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 −

ϕL

α
2
3

√
, 

and ϕE =
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 −

ϕR

α
2
3

√
. 

Unlike the expression obtained for the ei plasma in paper-1, Eq. (12) 
cannot be integrated and, therefore, to proceed further, we transform 
the equation into a pair of first order nonlinear autonomous equations 
by following the work of Saha et al. [40]. 

dϕ
dξ

= y

dy
dξ

=
1

(A v)2

[

−
3
2
v2(1 + ϕ)

1
2 −

3
2
α1

3v2
(

1 − α− 2
3ϕ
)1

2
+ Bv + C

]

[

− v2(1 + ϕ)
3
2 + αv2

(
1 − α− 2

3ϕ
)3

2
+ (Bv + C)ϕ + c2

]

,

(16) 

We note the Hamiltonian of this system is given by 

H =
y2

2
−

1
2(Av)2

[

− 2c2(1 + ϕ)
3
2v2 − 2(1 + ϕ)

5
2v2(Bv + C)

+ (1 + ϕ)2
(

C2 + 2BCv + B2v2 + 3
(

1 + α2
3

)
v4
)
+(1 + ϕ)

(

2Cc2 + 2Bc2v − 3
(

1 + α2
3

)2
v4

)

+ 2α1
3

(
1 − α− 2

3ϕ
)1

2
v2
{(

1 + α2
3

)
c2

−
(

1 + α2
3

)
(1 + ϕ)

3
2v2 + (1 + ϕ)

5
2v2 − (1 + ϕ)2

(Bv + C) + (1 + ϕ)
((

1 + α2
3

)
C − c2 +

(
1 + α2

3

)
Bv

)}]

.

(17) 

Eq. (16) is a planar dynamical system with physical parameters α, B0, 
υin, υde and θ and to examine the dynamics of this nonlinear system, we 

employ the phase portrait analysis of the dynamical system equation 
(16). 

Phase portrait and time series analysis dependence on various 
physical parameters 

For this analysis, we have chosen the following parameter values α =

0.1, υin = 3× 1013s− 1, B0 = 1010G, vde = 0.4, θ = 60◦ . We can see in 
Fig. 1 that there are five fixed points F0(ϕ0, 0), F1(ϕ1, 0), F2(ϕ2, 0), 
F3(ϕ3,0) and F4(ϕ4,0). Here, F1(ϕ1, 0) and F3(ϕ3, 0) are the two centers, 
while F0(ϕ0,0), F1(ϕ1,0) and F4(ϕ4, 0) can be shown to be saddle points. 
We note that these fixed points are found numerically. Note that 
initially, we carry out this analysis for the positive root of v (upper sign 
in the expression (15)). We further determine the nonlinear heteroclinic 
orbits (NHOs) around the centers F1(ϕ1,0) and F3(ϕ3,0) and see these 
two orbits i.e., NHO1 and NHO2. We see that in Fig. 1, there are two 
types of qualitatively different nonlinear orbits. In the first type of 
nonlinear orbit, there are two pairs of NHOs and, in the second type, 
there are two families of nonlinear periodic orbits (NPOs). NHO1 is the 
first type which is formed by joining the points F0 with F2 and F2 with F0, 
whereas NHO2, the second type, is formed by joining the points F4 with 
F2 and F2 with F4. For these two pairs of NHOs represented by solid blue 
curves, we have a pair of shock structures that, to the best of our 
knowledge, is reported for the first time. Similarly, for the two families 
of NPOs, represented by red and yellow dashed lines, we have two 
families of nonlinear periodic wave orbits around the centers F1(ϕ1,0)
and F3(ϕ3, 0). The corresponding periodic wave solutions of red and 
yellow curves of NPO1 are shown in Fig. 2. (It is noted here that in the 
absence of positrons only one NHO is obtained which corresponds to one 
shock structure and this is discussed as a limiting case at the end of this 
section). We have presented a time series analysis of Eq. (16) for 

Fig. 8. Time series plots (Fig. 8(a)) and shock profiles 
(Fig. 8(b)) of the system (16) for different value of 
collisional frequency υin = 2 × 1013s− 1, 4 × 1013s− 1 

and 6× 1013s− 1. The values of other parameters are 
α = 0.1, B0 = 1010G, vde = 0.4 and θ = 60◦ . The time 
series plots corresponds to the red dashed line of 
NPO2 in Fig. 7 while the pair of shock profiles corre
spond to the blue solid line of NHO1 and HNO2 in 
Fig. 7. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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different periodic orbits as shown in Fig. 1. 
The influence of different physical parameters like the ratio of 

number densities of positrons to electrons α, collisional frequency υin, 
magnetic field B0, drift velocity vde and angle of propagation θ on drift 
ion acoustic waves in the presence of adiabatic trapping in a quantum epi 
magnetoplasma is investigated. In Fig. 3(a), (b) and (c), we present the 
phase portraits of the dynamical system Eq. (16) for different values of 
the positron concentration α. We note that fixed points are different for 
different values of α and as α decreases, the fixed points move closer to 
one another. In Fig. 4, we present the time series of ϕ(ξ) for different 
values of α. In Fig. 4a, we show the time series of the periodic orbits and 

in Fig. 4(b), we obtain the corresponding shock structures (i.e. the time 
series of the NHOs). The results shown in Fig. 4(b) clearly show pairs of 
shocks for different values of α, and we see that for a larger concentra
tion of positrons the steepness of the shock structures increases. 

Magnetic field B0 and the collisional frequency υin are the two other 
important parameters which affect the epi nonlinear wave structures. In 
Fig. 5, we present the phase portraits, time series plots and shock profiles 
for different values of B0. We see from Fig. 5a, b and c that by increasing 
the value of B0, the distance between the center points increases. In 
Fig. 6, we show the corresponding (to Fig. 5) time series of the periodic 
orbits and shock profiles respectively. In Fig. 7, the phase portraits are 

Fig. 9. Phase portrait of the system (16) for different 
value of vde = 0.3,0.5 and 0.7. The values of other 
physical parameters are α = 0.1,B0 = 1010G,υin = 3×

1013s− 1 and θ = 60◦ . Three different phase portraits 
for different values of vde and in these phase portraits 
the blue solid curve lines are the NHOs correspond to 
the shock profiles while red and yellow dashed lines 
are the NPOs. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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shown for the variation of the collision frequency keeping the other 
parameters fixed. We see from Fig. 7a, b and c that the distance between 
the center points F1(ϕ1, 0) and F3(ϕ3,0) decreases by increasing the 
value of υin, however, the positions of the fixed points remain the same in 
both cases. In Fig. 8(a), we show the corresponding (Fig. 7) time series 
evolution of periodic orbits, and it is observed that the wavelength in
creases. The shock profiles, shown in Fig. 8(b), manifest that by 
increasing the value of υin, the steepness of the shock profile decreases. 
Fig. 8(a) indicates that the wavelength of the periodic wave increases by 
increasing the value of υin. Furthermore, the steepness of the shock 
profile decreases by increasing the value of collision frequency υin (see 
Fig. 8(b)). 

Furthermore, two other parameters which modify the solutions of 
nonlinear periodic waves are the inhomogeneity vde and angle of prop
agation θ. We vary the value of vde from 0.3 to 0.7 (see Figs. 9 and 10) 
and θ from 60◦ to 70◦ (see Figs. 11 and 12). In Figs. 9 and 11, we find that 
by increasing the values of vde and, the distance between the center 
points F1(ϕ1,0) and F3(ϕ3,0) increases and the distances between the 
invariant points remain the same. In the case of θ, the increase in dis
tance between the centre points is very small. It is also observed that by 
increasing the value of vde and θ, the wavelength of the nonlinear peri
odic waves decreases (see Fig. 10(a) and Fig. 12(a)). According to Fig. 10 
(b) and Fig. 12(b), the steepness of the shock profiles increases by 
increasing the value of vde and θ. In Fig. 11, we note that small variations 
take place in the phase portraits by varying the angle of propagation as 
can be seen in time series plots in Fig. 12(a). 

In Fig. 13, we carry out the phase space analysis for the negative root 
of v (Eq. (15))) and we observe behavior similar to the positive sign, 
however, the numerical values are different. To avoid repetition, the 
figures are not shown here. 

Limiting case: Here for the sake of completeness, we present the 
phase portrait analysis in the absence of positrons i.e. extending the 
results of our earlier paper-1 to nonlinear dynamical analysis. In this 
case, Eq. (16) reduces to. 

dϕ
dξ

= y

dy
dξ

=
1

(A v)2

[

−
3
2
v2(1 + ϕ)

1
2 + Bv + C

]

[
− v2(1 + ϕ)

3
2 + (Bv + C)ϕ + c2

]
,

(18) 

and the coefficients A, B and C reduce to, A = η2
y ,

υin
ωci

, B = 3
2ηyvde and 

C = η2
z . The corresponding expressions of v and c2 reduce, respectively 

to. 

v =
BϕA ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2ϕA + 4CϕA{ϕC + ϕLϕC − ϕB − ϕBϕR}

√

2(ϕC+ϕLϕC − ϕB − ϕBϕR)
, (19)  

where ϕA = (ϕL − ϕR), ϕB =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ϕL

√
, ϕC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ϕR

√
and 

v2(1 + ϕR)
3/2

− (Bv+C)ϕR = c2,

v2(1 + ϕL)
3/2

− (Bv+C)ϕL = c2. (20) 

Fig. 14 shows the results of our phase space analysis of Eq. (18) 
(along with the expressions (19) and (20)) and we see that, as expected, 
only one shock structure is obtained. 

Fig. 10. Time series plots (Fig. 10(a)) and the pair of 
shock profiles (Fig. 10(b)) of the system (20) for 
different value of vde = 0.3,0.5 and 0.7. The values of 
other physical parameters are α = 0.1, B0 = 1010G,
υin = 3× 1013s− 1 and θ = 60◦ . The time series plots 
correspond to the red dashed line of NPO2 in Fig. 9 
while the pair of shock profiles correspond to the blue 
solid line of NHO1 and HNO2 in Fig. 9. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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Fig. 11. Phase portrait of the system (16) for different 
values of θ = 60◦

, 65◦ and 70◦ . The values of other 
parameters are α = 0.1, B0 = 1010G, vde =

0.4and υin = 3× 1013s− 1. Three different phase por
traits for different values of θ and in these phase 
portraits the blue solid curve lines are the NHOs 
correspond to the shock profiles while red and yellow 
dashed lines are the NPOs. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Fig. 12. Time series plots (Fig. 12(a)) and the pair of 
shock profiles (Fig. 12(b)) of the system (16) for 
different value of θ = 60◦

,65◦ and 70◦ . The values of 
other parameters are α = 0.1, B0 = 1010G, vde =

0.4and υin = 3× 1013s− 1. The time series plots corre
spond to the red dashed line of NPO2 in Fig. 11 while 
the pair of shock profiles correspond to the blue solid 
line of NHO1 and HNO2 in Fig. 11. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Fig. 13. Phase portrait of the system (16) with 
negative root of the velocity v for α = 0.1, υin = 3×

1013s− 1, B0 = 1010G, vde = 0.4 and θ = 60◦ . The blue 
solid curve lines are the NHOs correspond to the shock 
profile while red and yellow dashed lines are the 
NPOs. F0(ϕ0, 0), F1(ϕ1, 0), F2(ϕ2, 0), F3(ϕ3,0) and 
F4(ϕ4,0) are the fixed points of the nonlinear 
dynamical system (16). (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Summary and conclusion 

In this work, we have investigated ion acoustic shock waves in fully 
degenerate quantum epi plasmas in the presence of adiabatically trapped 
electrons. Using the QMHD model, we have derived a novel equation 
that contains terms with fractional nonlinearities. Complex non
linearities make it difficult to find the solution to this equation using the 
analytical approach and, therefore, phase plane theory has been used to 
solve the system under consideration. To justify our epi plasma results, 
the dynamical system of ei plasma [48] is also solved by using phase 
plane theory. The most significant finding of this work is the formation 
of a pair of shock structures which is reported for the first time in 
literature to the best of our knowledge. Furthermore, the effect of 
different controlling parameters such as the ratio of number of positrons 
and electrons α, collisional frequency υin, magnetic field B0, drift ve
locity vde and angle of propagation θ on phase portraits, time series plots 
and shock profiles have also been explored. 
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