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Abstract
Within the framework of kinetic theory, the nonlinear interaction of electromagnetic waves
(EMWs) with a degenerate electron-ion plasma is studied to account for the electron quantum
mechanical effects. For this purpose, a specific quantum regime is considered, for which the
degenerate electron Fermi velocity is assumed to be of the order of the group velocity of
EMWs. This eventually leads to the existence of a nonlinear Landau damping rate for the
EMWs in the presence of electron ponderomotive force. The electron–ion density oscillations
may have arisen from the nonlinear interaction of EMWs, leading to a new type of nonlinear
Schrödinger equation in terms of a complex amplitude for electromagnetic pump waves. The
profiles of nonlinear damping rates reveal that EMWs become less damped for increasing the
quantum tunneling effects. The electrostatic response of the linear electrostatic waves is also
investigated and derived from a linear dispersion for the ion-acoustic damping rate. The latter is
a direct function of the electron Fermi speed and does not rely on the Bohm tunneling effect.
The obtained results are numerically analyzed for two microwaves of different harmonics in the
context of nonrelativistic astrophysical dense plasma environments, e.g. white dwarfs, where the
electron quantum corrections cannot be ignored.
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1. Introduction

The interaction of waves with a plasma medium is quite per-
tinent for understanding the basic plasma phenomena [1–4],
e.g. the Landau damping (LD) rates can be studied to show
the linear and nonlinear behavior of plasmas and indicate
the wave damping without any collisions. The concept of
collisionless wave damping was first theoretically presented
by a Russian Physicist, Landau, in 1946 [5]. Eighteen years
later, this effect was verified in laboratory experiments by
Malmberg and Wharton [6]. The investigation of linear and
nonlinear waves and more specifically, the analyses concern-
ing the nonlinear propagation of high-frequency electromag-
netic waves (EMWs) have been carried out for a long period
of time [7–14], investigating novel properties of classical plas-
mas. However, in recent years, the works [15–18] have mostly
been concerned with the LD of electrostatic and EMWs in
the classical regime and only limited investigations have been
analyzed to study the LD in quantum-dense plasmas, where
quantum collective waves and quantum scales become more
important and play a significant role in the behavior of plasma
particles. In fact, degenerate dense plasmas not only have rel-
evance in the laboratory, but in astrophysical environments
[19, 20]. Quantum effects have often been ignored in the study
of nonlinear wave–particle interactions, which may be incor-
porated to investigate the nonlinear LD phenomena [21–26].
Only a few investigations have been carried out with quantum
settings in the context of linear theory. Specifically, the impact
of degeneracy (arbitrary) of electrons has been examined with
regard to the linear LD of electrostatic waves [27], show-
ing the linear LD during an x-ray Thomson scattering exper-
iment [28]. Later, a 1D quantum Liouville–Poisson system
was employed to simulate the nonlinear LD [29], degeneracy
effects and linear LD caused by particle trapping. Moreover,
with utilization of numerical simulations in a 3D form, the
nonlinear LD associated with the plasma waves can carry a
finite orbital angular momentum, which is primarily trans-
ferred to the resonant electrons. In these studies, the plasma
waves are represented in the form of Laguerre–Gaussian pro-
files, and significant modifications occur in the LD [30]. Dir-
ect evidence of LD in a turbulent space plasma [31] suggests
that it has played a significant role in the dissipation process,
in which the energy can be transferred from the electric field
to the electrons. The nonlinear stage of the Langmuir wave
analysis [32] has also determined that Langmuir waves can
carry a finite amplitude and oscillation frequency that are lar-
ger than the damping rate (found in the linear approximation)
and one does not have a damping effect, while only showing
a periodic structure. However, the efforts [33–35] cannot be
ignored in studying the nonlinear LD in a degenerate Fermi
gas. In order to recognize the distinguishing role of quantum
effects [36–40], distinct features of the EMWs need to be stud-
ied through wave–particle interactions and nonlinear LD phe-
nomena at quantum scales.

Degenerate effects become relevant in plasmas if the elec-
tron thermal energy (kBTe) is comparable to or smaller than

the electron Fermi energy ϵFe
[
= ℏ2

2me

(
3π2ne0

)2/3]
, where ne0

(me) is the electron equilibrium number density (electron
mass). Degenerate species involving nonlocal effects intro-
duce new scales and coupling parameters in a plasma medium.
In this context, a quantum kinetic description is to be con-
sidered to identify the linear and nonlinear LD phenomena.
Various models have been adopted for this purpose in the lit-
erature. However, one of the most appropriate models has been
reported [41] recently for deriving a new class of quantum kin-
etic equations and modeling degenerate Fermi plasmas, rely-
ing on the original framework of kinetic theory. The main
objective is to identify the interaction scales where electro-
magnetic (EM) and electrostatic waves can be coupled in a
degenerate electron–ion (EI) plasma and where the quantum
nature of the plasma species cannot be ignored. A key aspect of
the present analysis is to calculate the singularity present in the
momentum integration. Since the phase speed of the EMWs
is greater than the speed of light, it results in the suppression
of the singularity in the usual Landau description and accord-
ingly the existing treatment of singularity may lead to linear
damping, which is not valid anymore. Consequently, one may
experience a nonlinear LD of EMWs in degenerate plasmas.

Since the Fermi speed of the plasma species does not reson-
ate with the phase speed of EMWs (the phase speed of EMWs
is often much greater than the speed of light), the Fermi speed
in degenerate plasmas may take the order of the group speed
of the EMWs because the group speed is always smaller when
compared to the speed of light. Hence, the nonlinear coup-
ling of EMWs with a degenerate plasma through the wave—
particle interaction leads to the generation of beat waves hav-
ing frequencies of ω0 −ω ′

0 and corresponding wave numbers
of k0 − k ′0, propagating with a group speed and resonating with

a Fermi speed as vg
[
=

ω0−ω ′
0

|k0−k
′
0 |

]
≡ vFe. This refers to the new

definition of the nonlinear LD, where vFe stands for the elec-
tron Fermi speed, as was defined in [24, 42] for classical plas-
mas. Thus, degenerate electrons with an electron Fermi speed
of the order of phase speed of EMWs are the most favor-
able candidates to exchange their energy via the wave–particle
interaction andmay lead to the nonlinear LD of EMWs. On the
other hand, if the assumption such as vg ≡ vFe does not remain
valid, then the only linear LD for electrostatic waves occurs,
where the wave phase velocity matches the thermal velocity of
plasma species. Consequently, the LD of the transverse EMWs
cannot be investigated.

When high-frequency EMWs interact nonlinearly with a
plasma medium, the distribution of plasma particles is sig-
nificantly affected, resulting in density oscillations or longit-
udinal waves that propagate along the electric field direction.
Recently, Zhu et al [43] studied the dispersive properties
of the electron waves and challenged the traditional condi-
tions attributed to low-temperature and high-density plasmas.
They obtained an expression for the LD rate by taking into
account the electron waves with quantum correction due to
the Bohm potential at normal temperatures and high densit-
ies. They noticed that the LD rate reduces in the presence
of quantum effects. In the present model, a study of density
oscillations is carried out that gives rise to local and nonlocal
nonlinearities and accounts for the nonlinear LD of transverse
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EMWs. In our analysis, the density oscillations in a degen-
erate EI plasma are calculated by using the Vlasov equation
for degenerate plasma particles. A new type of kinetic non-
linear Schrödinger equation (KNLSE) is obtained for fermi-
ons by making use of Maxwell equations. It is shown that
quantummechanical effects significantly modify the wave fre-
quency and group velocity and affect the consequent energy
transfer rate of the modulated EMWs. The nonlinear LD rate
is computed in the presence of electron Bohm potential and
electron degeneracy effects. Two different frequency regimes
are considered to modify the real linear frequencies of elec-
trostatic waves with quantum Bohm potential and reveal the
linear damping of electrostatic waves to be unaffected by the
Bohm tunneling effect.

2. Basic formulation

In order to study the nonlinear interaction of EMWs with a
quantum degenerate collisionless unmagnetized plasma, we
consider the well-known Vlasov equations for the jth plasma
species (j equals e for electrons and i for ions) and account
for the electron quantum Bohm potential and nonrelativistic
ponderomotive force effects. The EM wave is assumed to
propagate along the z-axis, whereas the degenerate species are
modeled with the Fermi–Dirac distribution. This specifically
gives rise to the quantum statistical effects [41] of the degen-
erate plasma species. Thus, the Vlasov equations along with
the charge-neutrality condition for a degenerate EI plasma can
be governed by the following:(

∂

∂t
+ vz

∂

∂z

)
⟨fe1⟩

+

(
e
∂Φ

∂z
−

∂Φpe

∂z
+

ℏ2

4mene0

∂

∂z
∇2ne1

)
∂ ⟨fe0⟩
∂pz

= 0, (1)

(
∂

∂t
+ vz

∂

∂z

)
⟨fi1⟩

+

(
−e∂Φ

∂z
+

ℏ2

4mini0

∂

∂z
∇2ni1

)
∂ ⟨fi0⟩
∂pz

= 0, (2)

and

ne1 = ni1, (3)

where fe1( fi1) is the perturbed electron (ion) distribution func-
tion with electron (ion) Fermi–Dirac equilibrium distribution
function fe0( fi0). The angular bracket denotes the averaging
over the spatio-scale and the temporal period of the EMWs
[44]. Here, the potentials have been assumed to be the func-
tion of slow time 1

ω0
and space 2π

k0
scales in equations (1)

and (2). The ponderomotive force of the electrons in the non-
relativistic limit can be defined as [45] Fze =−∂zΦpe with

Φpe =
e2

2mec2
|A⊥0|2 ,where e is the electronic charge, A⊥0 and c

are the amplitude of the high-frequency EM pump waves and
speed of light in vacuum, respectively. Note that equation (2)
is a simple equation modified with quantum correction, which
provides information about quantum particles.

Solving equations (1) and (2) by using Zakharov’s
approximation [44], i.e. by making use of the linear-
ization theory and Fourier transformation fe1,i1(k,ω,v)∼´
fe1,i1(r,v, t)exp[i(k · r−ωt)]drdt, we immediately obtain the

oscillating functions, respectively, as,

fe1(k,ω) =

{
eΦ(k,ω)−Φpe(k,ω)−

ℏ2k2

4me

ne1(k,ω)
ne0

}
× k

ω− kvz

∂fe0(ε)
∂pz

, (4)

and

fi1(k,ω) =−
{
eΦ(k,ω)+

ℏ2k2

4mi

ni1(k,ω)
ni0

}
k

ω− kvz

∂fi0(ε)
∂pz

.

(5)

It is important to mention here that only the ponderomotive
force of the electrons is taken into account for nonlinear coup-
ling and the corresponding force for ions neglected due to their
large mass. In addition, supposing that degenerate electrons
and ions both follow the well-known Fermi–Dirac distribu-
tions, which can be expressed in terms of the Heaviside func-
tion (or step function) as,

fe0,i0(ε) =
1

exp[ε− εFe,i]/kBTe,i+ 1
≡Θ(εFe,i− ε), (6)

where εFe = mev2Fe/2
[
εFi = miv2Fi/2

]
being the electron (ion)

Fermi energy, is much larger compared to the thermal energy
[41] of the plasma particles. The conversion of the derivative
of the step function into the delta function can easily be per-
formed through the relation,

∂εΘ=−δ(εFe,i− ε) =−δ

(
p2Fe,i
2m

− p2

2m

)
. (7)

Taking into account equations (6) and (7) and keeping in mind
the properties of the Dirac delta function, we may write,

k · ∂foe
∂P

=−k ·P
pFe,i

δ(pFe,i− p). (8)

Next, with the introduction of equation (8) into equations (4)
and (5) and integrating over the velocity, in a spherical polar
coordinate system, we may eventually obtain,

ne1(k,ω) =
3ne0

mev2FeFe
{eΦ(k,ω)−Φpe(k,ω)}

×
(
1− ω

2kvFe
ln

ω+ kvFe
ω− kvFe

)
, (9)

and

ni1(k,ω) =− 3n0i
miv2FiFi

eΦ(k,ω)

(
1− ω

2kvFi
ln

ω+ kvFi
ω− kvFi

)
,

(10)
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with

Fe,i = 1+
3ℏ2k2

4m2
e,iv

2
Fe,i

(
1− ω

2kvFe,i
ln

ω+ kvFe,i
ω− kvFe,i

)
,

where vFe,i = 2TFe,i/me,i and TFe,i are the EI Fermi temperat-
ures. Equations (9) and (10) show the perturbed EI number
densities incorporating quantum effects and can be used to
investigate the nonlinear LD of transverse EMWs in a degen-
erate EI plasma.

Next, to study the nonlinear LD rate of the EM waves in a
degenerate EI plasma, we need to first expand the density per-
turbations in equations (9) and (10) in the following frequency
regimes:

kvFi ≪ ω ≪ kvFe, (11)

obtaining, respectively, the relations,

ne1(k,ω) =
3ne0

mev2Fe {1+H2
e(1+ iAFe)}

×{eΦ(k,ω)−Φpe(k,ω)}(1+ iAFe), (12)

and

ni1(k,ω) =
ni0
mi

k2

ω2
eΦ, (13)

whereHe

(
=

√
3ℏk

2mevFe

)
represents the quantum effects caused by

the quantum Bohm potential and AFe
(
= πω

2kvFe

)
the damping

term involving the degenerate electrons, so that A2
Fe ≪ 1. In

deriving equations (12) and (13), we have used expansions of
the logarithmic arguments for x≪ 1 and x≫ 1, respectively,

and utilized ln[−1] =−iπ [42] and ln
(

1+x
1−x

)
= 2

(
x+ x3

3 + .
)

in equations (9) and (10). It should also be noted that the Bohm
tunneling effect of ions is neglected compared to the tunneling
effect of electrons. Thus, by substituting equations (12) and
(13) into equation (3), we eventually arrive at,

eΦ(k,ω) =
TFe
{
1+H2

e(1+ iAFe)
}

3ne0(1+ iAFe)
ni1(k,ω)+Φpe(k,ω).

(14)

In addition, by substituting equation (14) into equation (13),
we produce,

(ω2 + iω2Afe− k2v2s )
ne1(k,ω)
ne0

=
k2

mi
(1+ iAfe)Φpe(k,ω).

(15)

The ion–sound speed is now modified by the electron tunnel-
ing effect and can be expressed in the form vs = cs(1+H2

e)
1/2,

where cs = (TFe/mi)
1/2 is the usual Fermi speed for degener-

ate species and ne0 ≃ ni0.
Back substitution of the quantities, such as−iω = ∂t, ω2 =

−∂2
t , and k

2 =−∂2
x yields the following relation:

(
∂2

∂t2
− ∂2

∂z2
v2s

)
ne1
ne0

− 1
2

1
vFe

∂2

∂t2
℘

ˆ ∞

−∞

dz ′

z ′ − z
℘

ˆ z ′

−∞
dz ′ ′

∂

∂t
ne1
ne0

=
1
mi

∂2Φpe

∂z2
− 1

2mi

∂2

∂z2
1
vFe

℘

ˆ ∞

−∞

dz ′

z ′ − z
℘

ˆ z ′

−∞
dz ′ ′

∂Φpe

∂t
. (16)

Here, the formula |k|
k = 1

iπ℘
´∞
−∞

dz
z e

ikz is utilized in obtaining
equation (16), showing the symbol ℘ as the principal value of
the integral. Equation (16) is the generalization of Zakharov’s
set of equations [44], where the third term (in the LHS) and the
last term (in the RHS) govern the nonlinear LD phenomena.
Rewriting equation (16) by introducing a new moving frame
as,

ξ = z− vgt with
∂

∂t
≪ vg

∂

∂ξ
, Φpe(z, t)

= Φpe(ξ) and ne1(z, t) = ne1(ξ), (17)

we obtain

ne1(ξ)
ne0

+β℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ

ne1(ξ)
ne0

=
1

mi(v2g− v2s )
Φpe(ξ)+

1
mi

β

v2g
℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ
Φpe(ξ), (18)

where vg is the group speed and β = 1
2

1
v2g−v2s

v3g
vFe

. Mul-

tiplying both sides of equation (18) by an operator(
1−β℘

´∞
−∞

dξ
′

ξ ′−ξ

)
and using the following Poincare–

Bertrand formula [44]:

℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ
℘

ˆ ∞

−∞

dξ
′ ′
F(ξ

′ ′
)

ξ ′ − ξ
= (iπ)2F(z), (19)

we produce a new expression in the following form:

ne1(ξ)
ne0

=
1

1+β2π2

[
1

mi(v2g− v2s )

(
1−β℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ

)
Φpe(ξ)

+
π2

mi

β2

v2g
Φpe(ξ)+

1
mi

β

v2g
℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ
Φpe(ξ). (20)

2.1. Subsonic case

Next, we discuss the electron density oscillations in supersonic
and subsonic regimes. First, in the subsonic regime, i.e. vs ≫

vg, i.e. β

(
=− v3g

vFev2s

)
≪ 1, so the second and third terms in

the RHS of equation (20) may be neglected. As a result, the
electron density oscillations reduce to,

ne1
ne0

=

[
− 1
miv2s

Φpe(ξ)−
1
mi

vg
2vFev2s

℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ
Φpe(ξ)

]
.

(21)
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2.2. Supersonic case

In the supersonic regime vg ≫ vs and β2π2 ≫ 1, equation (20)
reduces to the form,

ne1 =
ne0
miv2g

Φpe(ξ) =
ne0
miv2g

e2 |A⊥0|2

2mec2
. (22)

Note that in the supersonic regime, the nonlocal nonlinear term
appears and nonlinear LD disappears. It is also clear from the
above equation that the density fluctuations of Fermi electrons
become a function of the amplitude of EM waves and are an
inverse function of the group velocity of the pump EM wave.

3. KNLSE for fermions

It is well-known [46] that mathematical representation of the
EM wave packet having the complex amplitude A⊥ is the
Schrödinger equation, where the scaled Planck constant (ℏ)
and potential energy are interchanged by the propagation num-
ber k(= 2π/λ) and refractive index, η(= ck/ω), respectively.
The Schrödinger equation becomes nonlinear due to the fact
that the refractive index is a function of the wave amplitude.
Hence, the possible competition between the nonlinearity and
diffraction termsmay lead to a wide spectrum of effects arising
during the nonlinear interaction of EM waves with the plasma
medium. We need to solve the Maxwell equations in this con-
text to obtain the nonlinear Schrödinger equation in terms of
an EM wave packet having a complex amplitude A⊥, as

−∇2A⊥ +
1
c2
∂2
t A⊥ =

4πeJ
c

, (23)

where J is the plasma current density in the presence of a
circularly polarized EM wave pulse. Since in our considera-
tion, we have assumed the amplitude of the EM wave to be
a slowly varying function of space and time coordinates, we
have to substitute A⊥(x, t) = A⊥0(x, t)exp i(k0z−ω0t) in the
above equation to obtain the NLSE for a degenerate plasma
medium as,

i

(
∂

∂t
+ vg

∂

∂z

)
A⊥0(x, t)+

c2∇2
z

2ω0
A⊥0(x, t)+ δ2A⊥0(x, t)

−
ω2
pe

2ω0

ne1
ne0

A⊥0(x, t) = 0, (24)

where vg = (k0c2/ω0) represents the group velocity of the EM
wave, A⊥0(x, t) is the time- and space-dependent amplitude of

the EM wave, δ =
[(
ω2
0 − c2k20 −ω2

pe

)
/2ω0

]1/2
is the nonlin-

ear correction shift of frequency of the EM wave with elec-

tron plasma frequency ωpe =
(
4πne0e2/me

)1/2
. It is pertinent

to mention that as the collisionless degenerate EI plasma under
study is isotropic, the contribution of the electron current dens-
ity is much larger in comparison to the ion–current densit-
ies in equation (24) [44]. Substituting the expression of ne1
into the Schrödinger equation (24), while taking into account

equation (17), we obtain a new NLSE containing both local
and nonlocal nonlinear LD terms, as{

2iω0
∂

∂t
+ c2

∂2

∂ξ2
+ δ2 +

ω2
pe

2miv2s

e2

mec2(
|A⊥0|2 +

1
2
vg
vFe

℘

ˆ ∞

−∞

dξ
′

ξ ′ − ξ
|A⊥0|2

)}
A⊥0(ξ, t) = 0.

(25)

The last two terms on the LHS of the above equation appear
due to the nonlinear interaction of EMWs with the plasma
under consideration such that; the third term is the local non-
linear term, whereas the last term is the nonlocal nonlinear
term governing the nonlinear LD phenomena. To derive the
nonlinear LD rate, we substitute A⊥0 = b0 + b1 exp[i(kξ−
ωt)]+ c.c with b0 being the constant. Using the identit-

ies ℘
´∞
−∞

dξ ′

ξ ′−ξ = 0 and ℘
´∞
−∞

dξ/

(ξ ′−ξ) exp ik(ξ
/ − ξ) = iπ,we

finally obtain the following result:

Imω =−π

4

ω2
pe

ω0

1
miv2s

e2 |b0|2

mec2
vg
vFe

. (26)

This describes the nonlinear LD of the transverse EM waves
in a degenerate EI plasma, which is significantly affected by
the Bohm quantum correction via the modified sound speed
vs. The nonlinear LD rate is found to be the direct function of
the amplitude of the EM wave.

4. Linear electrostatic waves

In order to study the linear properties of electrostatic waves in a
degenerate EI plasma, we need to first assume that EM waves
are absent and ignore the nonlinear ponderomotive force in
equation (1). By taking into account the collisionless damping
due to wave–particle interaction, we insert the expressions ne1
and ni1 into the charge-neutrality equation (3) to obtain,

1+
3ω2

pe

k2v2FeFe

(
1− ω

2kvFe
ln

ω+ kvFe
ω− kvFe

)

+
3ω2

pi

k2v2FiFi

(
1− ω

2kvFi
ln

ω+ kvFi
ω− kvFi

)
= 0. (27)

For high-frequency quantum electron waves, we consider the
electrons following the frequency regime ω ≫ kvFe in the
background of static ions. In this case, the series expansion
ln( 1+x1−x ) = 2(x+ x3

3 + x5

5 + ...) is to be used in equation (27),
which eventually yields,

ω =

(
ω2
pe+

3
5
k2v2Fe+

ℏ2k4

4m2
e

)1/2

. (28)

This clearly indicates that high-frequency degenerate electron
oscillations propagate in a collisionless plasma without deliv-
ering any energy to the medium, so there is no LD in this case.

5
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Next, we consider the intermediate frequency regime, i.e.
kvFi ≪ ω ≪ kvFe to study the ion-acoustic (IA) waves and
their linear damping rate. Hence, in this case, equation (27)
can be reduced to,

1+
3(1+ iAFe)

k2λ2
Fe

{
1+ 3ℏ2k2

4m2
ev

2
Fe
(1+ iAFe)

} −
ω2
pi

ω2
= 0. (29)

Using ω = ωr+ iωi in equation (29), where |ωi| ≪ |ωr|, one
can decompose the real and imaginary parts of the frequency,
as

ω2
r =

1
3
k2c2s (1+H2

e), (30)

and

ωi =− π

12
mekvFe
mi

, (31)

where cs [= ωpiλFe] is ion-sound speed with ion-plasma oscil-
lation frequency ωpi and electron Fermi length λFe. Note that
equation (30) is derived in the long-wavelength limit, repres-
enting the linear dispersion relation of IA waves. However,
equation (31) indicates the linear damping of the IA waves as
a direct function of electron Fermi speed only, so the degener-
ate electrons play a crucial role in absorbing the oscillations,
where the Bohm tunneling effect does not contribute to the
linear damping of IA waves in degenerate EI plasmas.

5. Numerical analyses

In order to illustrate our findings for the nonlinear LD
rate caused by the interaction between transverse EMWs
with a degenerate EI plasma at quantum scales, we solve
equations (22) and (26) numerically for nonlinear and lin-
ear damping responses. We also choose typical quantum
plasma parameters in the atmosphere of white dwarfs, where
the electron density is ne0 = (1024–1026) cm−3 [47, 48]
along with other physical constants in CGS units, e.g.
c= 2.997× 1010 cm s−1, me = 9.109× 10−28g, e= 4.8×
10−10statcoloumb, ℏ= 1.05× 10−27 cm2 gs−1 and kB =
1.3807× 10−16 cm2 gs−2 K−1. In order to satisfy the con-
ditions for nonlinear LD damping of EM waves, i.e. vg[=
ω0−ω ′

0

k0−k
′
0

]∼ vFe, we need to consider EM waves having different

harmonics, e.g. microwaves of typical frequencies of the order
of magnitude, ω0 = 40× 106Hz and ω ′

0 = 30× 106Hz with
corresponding wavelengths λ= 2000 cm and λ ′ = 5000cm,
respectively. As a result, these frequency ranges lead to group
speed of the order of vg ∼ 5.30× 108 cm s−1.We also take into
account the specific value of electron number density as ne0 =
4× 1024 cm−3 to find out the electron Fermi length λFe ∼
5.036× 10−9 cm, electron plasma frequency ωpe ∼ 1.128×
1017 s−1 and electron Fermi speed vFe = 5.682 × 108 cm s−1,
which is comparable to vg of the EM waves. In a subsonic
regime, the group velocity is always assumed to be much
smaller than the sound speed, i.e. vg ≪ vs and the nonlin-
ear LD rate in this regime can be studied by normalizing

Figure 1. Normalized density fluctuations of degenerate electrons(
ne1
n0e

)
are plotted against the amplitude (A0) of EMWs (as described

by equation (22)) at a fixed value of group velocity vg = 7.96× 107

cm s−1.

Figure 2. Normalized density fluctuations of degenerate electrons(
ne1
n0e

)
are plotted against the group velocity (vg) of EMWs (as

described by equation (22)) at a fixed value of A0 = 1703 cm.

equation (26) with scaled parameters as c̃= c/vFe, k̃= kλFe,
k̃0 = k0λFe and ω̃0 = ω0/ωpe. The quantum tunneling para-

meter then yields H̃e = (
√
3
2

ℏωpe

mev2Fe
k̃)≡ 0.176 for electron dens-

ity ne0 = 4 × 1024 cm−3 and normalized wave number k̃=
0.503. Thus, the nonlinear LD rate for microwaves in a degen-
erate quantum plasma turns out to be Im ω̃ =−6.637 for nor-
malized values of acoustic speed ṽs

[
= c̃s(1+ H̃2

e)
1/2
]
∼ 0.023

and group velocity ṽg(= k̃0c̃2/ω̃0)∼ 0.016.
Equation (22) is plotted in figure 1 to display the density

oscillations of degenerate electrons in a supersonic regime,
as a direct function of amplitude (A0) of the EMWs, whereas
the electron density fluctuations are an inverse function of the
group velocity of EMWs, see figure 2. Figure 3 represents
how the normalized nonlinear LD rate (Im ω̃) of microwaves
(of different harmonics) varies with the amplitude (b0) of the
EMWs in a subsonic regime, as shown in equation (26), as
a function of Bohm potential that corresponds to the specific
range of electron density concentration (3− 5)× 1024 cm−3.
It is evident from figure 3 that the nonlinear LD rate of
microwaves increases as the Madelung term decreases. In
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Figure 3. Normalized NLD rate of microwave Im ω̃(= ω/ωpe) is
plotted as a function of amplitude (b0) (as described by equation
(26)) for different values of Bohm tunneling potential: He ∼ 0.183
(green curve), 0.176 (red curve) and 0.168 (blue curve).

other words, as we move towards the laboratory plasma para-
meters, the Madelung term will start playing a significant role
in enhancing the nonlinear LD rate of the EMWs. In spite
of the fact that the diffraction (Madelung) term is usually
less than the pressure term in the momentum equation, in our
present consideration this term plays a crucial role in enhan-
cing the nonlinear LD rate of microwaves.

6. Conclusion

We have presented the nonlinear interaction of EM waves
in a degenerate EI plasma by using the kinetic treatment of
quantum species. In such a plasma, the group velocity (vg)
of the EM wave is approximately equal to the electron Fermi
velocity vFe. For nonlinear LD rate of the EMwaves, the prop-
erties of the step function and Fermi–Dirac distribution are
utilized to derive the perturbed densities of the degenerate
electrons and ions in the presence of electron ponderomotive
force. It is noted that in a supersonic regime, the kinetic NLS
equation includes only a local cubic nonlinearity and the non-
linear LD term disappears. Furthermore, the density oscilla-
tions of the Fermi electrons become a function of amplitude
of the EM wave, while its inverse relation is shown with the
group velocity of the EM waves in a supersonic regime. For
considering the nonlinear LD in a subsonic regime, we have
also obtained a KNLSEk, which involves both local and non-
local nonlinear terms, where the latter is responsible for the
nonlinear LD rate. Note that in the subsonic regime, the EM
wave damps via the nonlinear LD rate in such a way that the
Bohm potential plays a crucial role in the nonlinear LD rate
of the EM wave. Next, the electrostatic response of the linear
waves is studied accounting for the Bohm tunneling and Fermi
statistical effects. The linear damping rate for the IA waves
reflects that degenerate electrons play a key part in absorbing
the oscillations, but the Bohm tunneling effect does not con-
tribute to the linear damping in degenerate EI plasma. Numer-
ical graphs support our analytical results and may prove use-
ful for understanding the nonlinear damping of the EM waves

in dense astrophysical plasmas, such as white dwarfs, active
galactic nuclei, neutron stars, etc.
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