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ABSTRACT

The generation of zonal flows by small-scale coupled drift-ion-acoustic waves is investigated. The problem is analyzed in magnetized
electron–positron–ion plasmas by the system of the generalized Hasegawa–Mima equation and the equation of parallel motion of ions. It is
concluded that the inclusion of positrons enhances zonal flow growth rates.
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I. INTRODUCTION
The study of low-frequency coupled electrostatic drift and ion-

acoustic waves (DIAWs) is of great interest because of its applications
in many laboratory, space, and astrophysical systems. This problem
received much attention due to the possibility of the formation of spa-
tially three-dimensional different nonlinear solitary structures (vortices
and zonal flows) in multicomponent plasmas.1–8 The problem of
coherent structures has been extensively investigated in connection
with drift wave modes in tokamak plasmas. Solitary vortical structures
incorporate the so-called trapped particles, and traveling vortices pro-
duce additional anomalous transport of plasma transverse to a mag-
netic field. The other problem that is closely connected with drift wave
turbulence is the generation of sheared zonal flow spontaneously aris-
ing in laboratory plasmas as a consequence of the secondary instability
of plasma due to the nonlinear interaction between the primary oscil-
lations. Note that the existence of spatially isolated sheared zonal flows
is an integral property of many planetary atmospheres and laboratory
plasmas9 controlling anomalous transport of heat and particles across
the magnetic surfaces of plasma confinement systems due to the
energy transport toward large-scale structures as a result of inverse
energy cascade.

Nonlinear dynamics of drift waves in plasmas is primarily
described by the classical Hasegawa–Mima (HM) equation10,11 provid-
ing different structural solutions. It should be noted that the nonlinear
term in the standard (classical) HM equation is expressed by the

Jacobian Jða; bÞ ¼ ½ra%rb&z , where a and b are certain functions of
wave field. Such nonlinearity is known as a vector nonlinearity and pro-
vides for the existence of dipolar nonlinear structures. The importance
of Korteweg–de Vries (KdV) type nonlinearity / u2 in the nonlinear
theory of drift waves was indicated by Petviashvili.12 Scalar nonlinear-
ities are responsible for the existence of monopolar nonlinear structures.
The comprehensive analysis of both (monopolar and dipolar) types of
drift vortical structures was given by Mikhailovskii.13 Later, Nezlin14

and Nezlin and Chernikov15 elucidated the new localizing role of vector
and scalar nonlinearities in the process of formation of solitary nonlin-
ear structures and emphasized that depending on the wavelengths scale,
drift waves turbulence should be described by the more complex, so-
called generalized HM (GHM) equation involving both vector and sca-
lar nonlinearity. It was elucidated that small-scale structures (compared
to ion Larmor radius at the plasma electron temperature) may be
described in the framework of classical HM equation containing only
vector (Jacobian) nonlinearity. In other words, classical HM equation
only describes small-scale dipole vortical structures. As for the large-
scale electrostatic drift nonlinear waves (having dimensions larger than
the characteristic Larmor radius of plasma ions) such structures may be
described by a scalar nonlinearity of the KdV type. Consequently, soli-
tary structures of the intermediate size are formed by mutual compen-
sation of wave dispersion by both scalar and vector nonlinearities. As a
result, in the general case, a solitary structure becomes essentially aniso-
tropic and is a superposition of monopolar and dipolar vortices.
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Shukla et al.1 investigated linear and nonlinear properties of
obliquely propagating coupled low-frequency electrostatic DIAWs in a
strongly magnetized nonuniform electron–positron–ion (EPI) plasma
in the presence of sheared ion flow and showed that the DIAWs can
be unstable due to the ion sheared flow. Later it was shown that the
nonlinear Hasegawa–Mima (HM) equation with a vector nonlinearity
governing the dynamics of weakly interacting DIAWs admits vortex
solutions of two different classes, viz., a vortex chain and a double vor-
tex. Mirza and Azeem2 presented the system of nonlinear equations,
which governs the dynamics of DIAWs in a nonuniform EPI magne-
toplasma with sheared ion flows. In the linear limit, a dispersion rela-
tion is obtained, which admits new instabilities of drift-waves. It is
found that DIAWs can become unstable due to ion sheared flow. It
is also shown that the nonlinear interactions between these finite
amplitude short-wavelength waves give rise to quadrupolar vortices.
Mushtaq3 studied DIAWs stationary solitary solutions in the interme-
diate parametric range in both linear and nonlinear regimes in EPI
magnetoplasma analytically and graphically, and it was shown that it
is possible spatially limited region to derive a Zakharov–Kuznetsov
equation in the nonlinear regime. Mushtaq et al.4 studied linear and
nonlinear DIAWs in inhomogeneous, collisional pair ion–electron
plasma, and the Korteweg–de Vries–Burgers (KdVB) equation was
derived and its exact solution was derived by using modified tanh–
coth method for arbitrary velocity of nonlinear drift wave. Effects of
species density, magnetic field, obliqueness, and the acoustic to drift
velocity ratio on the solitary and shock solutions were investigated.
Wang et al.5 examined zonal flow (ZF) momentum balance in three-
dimensional systems and DIAWs were investigated, and it was estab-
lished that in a 3D system, conservation of potential vorticity (PV) is
violated due to fluctuating parallel flow compressibility. The coupling
between PV fluctuation and fluctuating parallel flow compression
defines a source/sink for fluctuating potential enstrophy density and,
thus, influences the wave momentum density modifies the zonal
momentum theorem.5 In addition, perpendicular ZFs can be excited
by stationary turbulence via compressional coupling, even in the
absence of a driving force and potential enstrophy flux. The coupling
drive involves both perpendicular and parallel dynamics and does not
require symmetry breaking in the turbulence spectrum. A new mecha-
nism for ZF generation was, thus, revealed. Adnan et al.6 investigated
linear and nonlinear coupled DIAWs in a nonuniform magneto-
plasma having kappa distributed electrons and positrons. In the linear
regime, the role of kappa distribution and positron content on the
dispersion relation was highlighted; it is found that strong superther-
mality and addition of positrons lowers the phase velocity due to
decreasing fundamental scale lengths of the plasmas. In the nonlinear
regime, first, coherent nonlinear structure in the form of dipoles
and monopoles were obtained and the boundary conditions in the
context of superthermality and positron concentrations were dis-
cussed. Second, in the case of scalar nonlinearity, the KdV-type equa-
tion was obtained, which admit solitary wave solution. Kaladze et al.7

presented generation of sheared zonal flow by low-frequency coupled
electrostatic DIAWs. Primary waves of different (small, intermediate,
and large) scales are considered, and the appropriate system of equa-
tions consisting of the generalized Hasegawa–Mima equation was
obtained, here the parallel ion motion was also taken into account. It is
shown that along with the mean poloidal flow with strong variation in
minor radius, mean sheared toroidal flow can also be generated.

According to laboratory plasma experiments, main attention to large-
scale DIAWs is given. Peculiarities of scalar nonlinearity due to the
electrons temperature non-homogeneity in the formation of the zonal
flow by large-scale turbulence are widely discussed. Namely, it is
observed that such type of flows needs no generation condition and
can be spontaneously excited. Kaladze et al.8 obtained the GHM equa-
tion to describe the nonlinear propagation of electrostatic DIAWs in
EPI plasmas. In Ref. 8, the appropriate set of 3D equations consisting
of GHM equation for the electrostatic potential and equation of paral-
lel to magnetic field motion of ions were obtained to describe the for-
mation of coherent dipole and large-scale monopole vortices. In
addition, density and temperature non-homogeneities of electrons and
positrons were taken into account.

In the present work, we investigate the possibility of generation
of the zonal flow for low-frequency coupled electrostatic DIAWs in an
electron–positron–ion plasma and its corresponding growth rate is
analyzed both analytically and numerically. We will draw our atten-
tion to the small-scale (k?q‡ 1, where q is the ion Larmor radius
defined at the electron temperature) solitary structures. The paramet-
ric interaction formulation is used to investigate the instabilities of
zonal flows driven by a monochromatic wave packet of primary
modes. In Sec. II, the methodology leading to the system of the general
Hasegawa–Mima equation for electrostatic potential and the parallel
to magnetic field ion equation of motion is developed. The linear
regime of the short-scale drift-ion-acoustic waves for the distinct fre-
quencies is also discussed. In Sec. III, the possibility of sheared zonal
flow generation by coupled electrostatic DIAWs for small wavelengths
is discussed. In Sec. IV, the numerical approach is discussed and the
enhancement of growth rate by varying distinct parameters has been
shown graphically. In Sec. V, the obtained results are pointed out.

II. MATHEMATICAL FORMULATION
Let us consider low-frequency electrostatic waves in the quasi-

neutral EPI plasma. We consider a local perturbation (with respect to
the unperturbed plasma environment) of the plasma potential
uðt; x; y; zÞ and assume that the external magnetic field B0 is taken in
the bz direction. The unperturbed plasma densities of electrons and
positrons neo xð Þ; npoðxÞ and corresponding temperatures TeoðxÞ,
TpoðxÞ are inhomogeneous and assumed to decrease monotonously
along the x-axis. The ions are considered “cold” and the equilibrium
quasi-neutrality condition Zni0 xð Þ¼ ne0 xð Þ'np0 xð Þ is fulfilled, where
Z is the charge number of positive ions.

Let us assume that in this system the plasma density perturbation
arises (corresponding to the plasma-potential perturbation, u), which
excites a drift wave. Assume that the plasma motion in the (x; y)-
plane is sufficiently slow so that electrons and positrons (fast moving
along the magnetic field) follow the Boltzmann equilibrium. Then,
from the plasma quasi-neutrality condition, the ion density is defined
by the relationship

Zni0 xð Þ ¼ ne0 xð Þexp
eu

Te xð Þ

! "
' np0 xð Þexp '

eu
Tp xð Þ

! "
: (1)

The equation of motion for the plasma-ion component under the
action of the crossed electric and magnetic, B0, fields has the form

dv
dt
¼ 'Ze

M
$uþ v % xci; (2)
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where d
dt ¼

@
@tþ v ) $, and v, n, xci ¼ ZeB0=M is the ion velocity,

density, cyclotron frequency of ions, Ze and M are charge and mass of
ions, respectively.

We take the drift wave’s coupling with ion-acoustic ones and
assume z-dependence of the fields is weak. Taking the curl of Eq. (2)
and by using the equation of continuity for ions, we get8

d
dt

Xþ xci

n

! "
¼ Xþ xci

n
:$

! "
v; (3)

where X ¼ $% v is the vorticity. Here, the new term on the right-
hand side describes vortex stretching and this equation is valid for the
three-dimensional perturbations.

We also take into account the polarization drift, which is a higher
order term in accordance with the ordering

e * 1
xci

@

@t
* 1

kzvTe;p

@

@t
* X

xci
* eu

Te;p
* a

L
+ 1;

where “a” is the perpendicular size of the structure, using the drift
wave approximation8 and L is the characteristic scale of the inhomoge-
neity. To express Eq. (3) in terms of potential u x; y; z; tð Þ, we repre-
sent the total particle velocity as v ¼ v? þ ezw. We obtain for the
perpendicular ion velocity

v?¼
Ze

Mxci
ez%r?u' Ze

Mx2
ci

@

@t
þ Ze
Mxci

ez%r?u:r?
! "

r?u; (4)

where the subscript ? represents the plane transverse to the external
magnetic field. Substituting Eqs. (1) and (4) into the z-component of
Eq. (3), we get the generalized Hasegawa–Mima equation for short-
scale structures having vector nonlinearity for an electron–positron–
ion plasma8

neo
nio
þ
np0
nio

Te

Tp

! "
@u
@t
' Z2q2 @

@t
r2
?u' Z2q2 n

0
i0

nio

@2u
@t@x

' Z2q2xci
n0i0
nio

@u
@y
' Z3exciq4

Te
J u;r2

?u
# $

þ ZTe

e
@w
@z
¼ 0: (5)

From the z-component of the equation of motion (2), we get an addi-
tional equation describing the parallel to magnetic field ions motion
having vector and scalar nonlinearity

@w
@t
þ q2xci J u; wð Þ ¼ 'v2s

@u
@z
: (6)

Here J a; bð Þ ¼ @xa@yb' @ya@xb is the Jacobian, r2
? ¼ @2

@x2 þ
@2

@y2 is

the two-dimensional Laplacian, and vs ¼ Te=Mð Þ1=2 is the ion acous-
tic speed. Equations (5) and (6) describe the initial closed system of
equations for short-scale DIAWs which is valid for k?q , 1. In both
equations, potential u is normalized by Te

e .
After differentiating Eq. (5) with respect to “t” and inserting the

ion parallel velocity w from Eq. (6), then for the propagation of
DIAWs of the form *e7x=2L eikx xþiky y'ixt, we obtained the following
dispersion equation:

bþ Zq2 k2? þ
1
4L2

! "! "
x2

k ' v-kyxk ' k2zv
2
s ¼ 0: (7)

Here,

b ¼ 1þ
npo
Znio

1þ Te

Tp

! "
;

1
L
¼ '

n0e0 ' n0p0
Zni0

; (8)

where b shows the contribution of both the number densities of elec-
trons and positrons and their respective temperatures Te and Tp. The
term 1

L denotes inverse scale length of the inhomogeneity. The roots of
dispersion equation are as follows:

x1;2 ¼
v-ky6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v-ky
# $2 þ 4 bþ Zq2 k2? þ 1

4L2

& '& '
k2zv2s

r

2 bþ Zq2 k2? þ 1
4L2

& '& ' ; (9)

where v- ¼ Zq2xci
1
L

# $
is the diamagnetic drift velocity calculated at

the electron temperature, k2? ¼ k2x þ k2y, the positive and negative
signs correspond to fast and slow coupled drift ion-acoustic modes,
respectively.7,16

The limiting cases for Eq. (9) are considered as follows:

(A) In case of kz ¼ 0, we have pure single drift wave

xk ¼
kyv-

bþ 1
4L2
þ k2?

: (10)

(B) In case of ky ¼ 0, we have only ion-acoustic waves

xk ¼ 6
kzvsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 1
4L2
þ k2?

r : (11)

(C) For the coupled drift-ion-acoustic waves

(i) When kz + ky, then we have the following mixed
frequencies:

x1 ¼
kyv-

bþ 1
4L2
þk2?

1þ k2z vs
2

kyv-
# $2 bþ 1

4L2
þ k2?

! " !
; x2 ¼'

k2zvs
2

kyv-
:

(12)

(ii) When ky + kz, then Eq. (9) acquires a simplified form
given by

x1 ¼
kzvsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 1
4L2
þ k2?

r 1þ
kyv-

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 1

4L2
þ k2?

r !

kzvs

0

BB@

1

CCA
;

x2 ¼
kzvsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 1
4L2
þ k2?

r '1þ
kyv-

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 1

4L2
þ k2?

r !

kzvs

0

BB@

1

CCA
:

(13)

III. ZONAL FLOWS IN EPI PLASMAS FOR SMALL
WAVELENGTHS

In this section, we present a system of dynamic nonlinear equa-
tions that can be used to study the zonal flow generation by the coupled
drift-ion-acoustic waves. In these equations, the nonlinear vector nonlin-
earity permits us to consider a three-wave interaction parametrically,17
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in which the coupling between the pump electrostatic drift-ion-acoustic
waves and sideband modes generates large-scale modes, called zonal
flows. By normalizing time with x'1ci , length by q, and ion parallel
velocity w by qxci, Eqs. (5) and (6) can be written as

b
@u
@t
' r2 ' 1

4L2

! "
@u
@t
' 1
L
@u
@y
' J u;r2u
# $

þ @w
@z
¼ 0;

@w
@t
þ @u
@z
¼ 'J u; wð Þ:

8
>>><

>>>:
(14)

Accordingly, perturbed quantities, i.e., the potential u and the
ion’s parallel velocity w are divided into the following three
components:

X ¼ eX þ bX þ X; (15)

where

eX ¼
X

k

eXþ kð Þ exp ik ) r' ixktð Þ þ eX' kð Þexp 'ik ) rþ ixktð Þ
( )

;

bX ¼
X

k

bXþ kð Þ exp ikþ ) r' ixkþtð Þ
h

þ bX' kð Þ exp ik':r' ixk' tð Þ þ c:c:
i
; (16)

X ¼ X0 kð Þexp 'iXtþ iqxxð Þ þ c:c:;

8
>>>>>>>>>><

>>>>>>>>>>:

where the symbols eX, bX, and X represent the pump, the secondary
small-scale modes, and the large-scale 1D zonal flow mode, respec-
tively. Here, X and qx are the frequency and wave number of the zonal
flow, respectively, and c.c. stands for complex conjugative. The zonal
flow mode amplitude X0 is considered uniform within the local
approximation.

The following conservation laws are fulfilled between three waves:
x6 ¼ X 6 xk and k6 ¼ qxbex 6 k. There exist small parameters

jXj
jxkj
* jqxj
jk?j
+ 1; (17)

which are typical condition for zonal flow generation.17

By substituting Eq. (16) into the dimensionless system of Eq.
(14), using the condition (17) and by neglecting the contribution of
small nonlinear terms from the system of pump DIAWs modes, we
get the normalized dispersion relation by averaging over fast small
fluctuations. The following basic system of equations describing the
evolution of mean electrostatic potential and parallel to magnetic field
flows is obtained:

'iXu0 ¼ R? ¼ '
q2x

bþ q2x þ
1
4L2

! "
X

k

kyr? kð Þ;

'iXw0 ¼ Rk ¼ qx
P

k kyrk kð Þ;

8
>>>><

>>>>:

(18)

where

r? kð Þ ¼ bvþeu' ' bv' euþ; rk kð Þ ¼ bkþeu' ' bk'euþ: (19)

On the right-hand sides of Eq. (18), we get the driving forces of zonal
flows, which are the mean electrostatic Reynolds stress r? and the

electromotive force rk, respectively. Note that the second equation in
(19) is the evolutionary equation of the parallel to magnetic field mean
flow. Auxiliary sideband amplitudes in Eq. (19) are determined by

bv6 ¼ qxbu662kxbu6; bk6 ¼ bw6 '
kz
xk
bu6: (20)

To calculate these driving forces, we need to calculate sideband
amplitudes. For these amplitudes, we get the following system of
equations:

x6 bþ k2?6 þ
1
4L2

! "
7

1
L

! "
ky

" #

bu67kzbw6

¼ 7i q2x ' k2?
# $

kyqxeu6u0;

x6bw6 ¼ 7i w0 '
kz
xk

u0

! "
kyqxeu66kzbu6 :

8
>>>>>>>><

>>>>>>>>:

(21)

The solution of the system (21) gives the amplitudes of the potential
bu6 and the z components of the velocity bw6 of the sideband modes,
respectively.

bu6 ¼ i
kyqxeu6

D6
'kzw0 þ u0

k2z
xk

7x6 q2x ' k2?
# $

" #( )

bw6 ¼ i
kyqxeu6

D6
7w0 x6 bþ k2?6 þ

1
4L2

! "
7

1
L

! "
ky

" #2

64

6u0
kz
xk

x6 bþ k2?6 þ
1
4L2

! "
7

1
L

! "
ky

7 q2x ' k2?
# $

xk

2

664

3

775

3

775;

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

(22)

where

D6 ¼ x2
6 bþ k2?6 þ

1
4L2

! "
7x6

1
L

! "
ky ' k2z : (23)

We rewrite Eq. (23) as

D6 ¼ 6D 1ð Þ þ D 2ð Þ6D 3ð Þ þ D 4ð Þ; (24)

where the superscripts “(1), (2),…” show the order with respect to qx
andX, and

D 1ð Þ ¼ 2qxkxx
2
k þ 2Xxk bþ 1

4L2
þ k2?

! "
' 1

L

! "
kyX;

D 2ð Þ ¼ X2 bþ k2? þ
1
4L2

! "
þ q2xx

2
k þ 4Xxkqxkx ;

D 3ð Þ ¼ 2qxX
2kx þ 2Xxkq2x;

D 4ð Þ ¼ q2xX
2:

8
>>>>>>>>>><

>>>>>>>>>>:

(25)

Finally, we have the expressions for rjj and r? by substituting Eq. (20)
in Eq. (19) under the condition (17)
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rjj kð Þ ¼
i qxky X

D 1ð Þ2 Ik u0
kz
xk
'X2 bþ 1

4L2
þ k2?

! "
bþ 1

4L2

! "
þ q2x k2z þ x2

k k2? ' 4k2x
# $# $

þ 2Xqxkx
xk

k2z ' 2x2
k bþ 1

4L2

! "! "* +,

þ w0 X2 bþ 1
4L2
þ k2?

! "2

þ q2x 4k2xx
2
k ' k2z

( )
þ 2Xqxkx xk bþ 1

4L2
þ k2?

! "
þ 1

L

! "
ky

 !" #)
; (26)

r? kð Þ ¼ '
i qxky IkX

D 1ð Þ2 u0 qx x2
kk

2
? bþ 1

4L2
þ k2?

! "
' 4k2xx

2
kk

2
? ' 8k2xk

2
z þ

k4z
x2

k
þ k2z bþ 2k2? þ

1
4L2

! " !

' 2Xkx
k2z
xk
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4L2

! "" #(

þ w0kz 2Xkx bþ 1
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þ k2?

! "
þ qx '

k2z
xk
' xk bþ 1

4L2
þ k2?

! "
þ 8k2xxk

 !" #)
: (27)

Here, Ik ¼ 2euþeu' ¼ 2 euþ
-- --2 is the intensity of pumping modes. Using Eqs. (26) and (27) into Eq. (18) gives the following system of coupled lin-

ear equations for the mean electrostatic potential u0 and parallel to external magnetic field motion w0:

u0 ¼ Iu?u0 þ Iw?w0

w0 ¼ Iuku0 þ Iwkw0
:

(
(28)

Here, Iu?, I
w
?, I

u
k , I

w
k can be called the transport coefficients, given as

Iu? ¼'
q3x

bþ q2x þ 1
4L2

X

k

k2yIk

D 1ð Þ2 qx x2
kk

2
? bþ 1

4L2
þ k2?

! "
' 4k2xx

2
kk

2
? ' 8k2xk

2
z þ

k4z
x2

k
þ k2z bþ 1

4L2
þ 2k2?

! "" #

' 2Xkx
k2z
xk

bþ 1
4L2

! "( )

; (29)

Iw? ¼ '
q3x

bþ q2x þ 1
4L2

X

k

k2ykzIk

D 1ð Þ2 2Xkx bþ 1
4L2
þ k2?

! "
þ qx '

k2z
xk
' xk bþ 1

4L2
þ k2?

! "
þ 8k2xxk

" #( )

; (30)

Iuk ¼ 'q
2
x

X

k

k2ykzIk

xkD 1ð Þ2 'X2 bþ 1
4L2
þ k2?

! "
bþ 1

4L2

! "
þ q2x k2z þ x2

k k2? ' 4k2x
# $( )

þ 2Xqxkx
xk

k2z ' 2x2
k bþ 1

4L2

! "* +, .
; (31)

Iwk ¼ 'q
2
x

X

k

k2yIk

D 1ð Þ2 X2 bþ 1
4L2
þ k2?

! "2

þ q2x 4k2xx
2
k ' k2z

( )
þ 2Xqxkx xk bþ 1

4L2
þ k2?

! "
þ 1

L

! "
ky

" #( )

: (32)

We express D 1ð Þ in terms of the group velocity

D 1ð Þ ¼ 2xk bþ 1
4L2
þ k2?

! "
' 1

L

! "
ky

" #

X' qxVg
# $

; (33)

with

Vg ¼
@xk

@kx
¼ ' 2kxx2

k

2xk bþ 1
4L2 þ k2?

& '
' 1

L

# $
ky
; (34)

being the pump wave group velocity of drift-ion-acoustic waves.
For the system (28), the zonal flow dispersion equation is given as follows:

1' Iu? þ Iwjj
& '

þ Iu?I
w
k ' Iw?I

u
k ¼ 0: (35)

For the pump monochromatic wave packet, i.e., we consider a single wave vector on the right-hand sides of Eqs. (29)–(32). Thus, the right-hand
sides of these expressions are relevant only in the case if the valueX' qxVg, is a small parameter. Then, the coefficients (29)–(32) can be calculated
at X . qxVg. We find

X' qxVg
# $2Iu?j X¼qxVg ¼ '

q4xk
2
yIk

1
L

! "
ky ' 2xk bþ 1

4L2 þ k2?
& '* +3

1
L

! "3

k3y þ
1
L

! "2

k2yxk 8k2x ' k2? ' 5 bþ 1
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! "* +(

þ 4
1
L

! "
kyx2

k k2x bþ 1
4L2
' k2?

! "
þ 2 bþ 1
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! "2

þ bþ 1
4L2
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! "
k2? ' 6k2x
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" #

þ 4x3
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4L2
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! "
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4L2
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4k2x ' k2?
# $

þ k2x 2k2? ' bþ 1
4L2

! "! "
' bþ 1

4L2
þ k2?

! "2
" #)

; (36)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 112109 (2022); doi: 10.1063/5.0123824 29, 112109-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


X' qxVg
# $2 Iw?jX¼qxVg

¼ '
q4xk

2
ykzIk
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L
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ky ' 2xk bþ k2? þ 1
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& 'h i3
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; (37)
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! "3

k3y '
1
L

! "2

k2yxk bþ 1
4L2

! "
þ 8k2x ' 6 bþ 1

4L2
þ k2?

! "* +(

þ 4
1
L

! "
kyx2

k '2k
2
x bþ 1

4L2

! "
' 3 bþ 1

4L2
þ k2?

! "2

þ bþ 1
4L2
þ 7k2x

! "
bþ k2? þ

1
4L2

! "" #

' 4x3
k bþ 1

4L2
þ k2?

! "
bþ 1

4L2
þ k2?

! "
bþ 1

4L2
þ 6k2x

! "
' 3k2x bþ 1

4L2

! "
' 2 bþ 1

4L2
þ k2?

! "2
" #)

; (38)

X' qxVg
# $2 Iwjj jX¼qxVg

¼'
q4xk

2
yxkIk

1
L

# $
ky' 2xk bþ k2?þ 1

4L2

& 'h i4
1
L

! "3

k3yþ
1
L

! "2

k2yxk 8k2x' 5 bþ 1
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! "
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þ 4x3
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4L2
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! "* +.
: (39)

This gives, Iu?I
w
k ' Iw?I

u
k ¼ 0 in the zonal flow dispersion relation given by Eq. (35); therefore, Eq. (35) reduces to

1' Iu? þ Iwjj
& '

¼ 0: (40)

Using Eqs. (36) and (39), we get the following general expression for the squared zonal flow growth rate:

X' qxVg
# $2 ¼ 'C2; (41)

where
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: (42)

We note here that in the absence of positrons for EPI plasmas, b! 1; 1
4L2 ! 0 our results reduce to Eq. (58) of Ref. 7.

We consider three limiting cases here: first, when kz ¼ 0 (drift wave), second for slow branch of coupled drift-ion-acoustic waves, and third,
when ky ¼ 0.

(1) For a single drift waves only (kz ¼ 0 and x1 ¼
kyv-

bþ 1
4L2
þk2?

), we get

C2 ¼
q4xk

2
yIkk

2
?

bþ 1
4L2 þ k2?

& '2 6' 5 bþ 1
4L2

! "
' 3k2x þ k2y '

6
k2?

bþ 1
4L2

! "2

þ 6
k2?

bþ 1
4L2

! "
þ 20k2x

k2?
' 20k2x

k2?
bþ 1

4L2

! "" #

: (43)

Therefore, the instability condition can be expressed as

6þ k2y þ
6
k2?

bþ 1
4L2

! "
þ 20k2x

k2?
> 5 bþ 1

4L2

! "
þ 3k2x þ

6
k2?

bþ 1
4L2

! "2

þ 20k2x
k2?

bþ 1
4L2

! "
: (44)
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The instability condition is the same as the electron–ion plasma
case discussed in Ref. 7 if the effect of positrons is neglected in
the term ðbþ 1

4L2Þ and the fastest growth rate is obtained when
kx ¼ 0:

(2) For the slow branches of the coupled drift-ion-acoustic waves:
(i) In case of kz + ky where kz ! 0ð Þ, for x1, we get analogous

growth rate of purely drift wave and for x2 ¼ ' k2z
kyv-

; we get

maximum value of the growth rate

C2 ¼ q4xk
2
yIk: (45)

So, unlike (44), the instability in this case needs no excitation
condition (i.e., exists spontaneously) and the growth rate
does not depend on kz.

(ii) In case of ky + kz, for x1;2 ¼ 6 kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 1

4L2
þk2?

p , where ky ! 0
# $

we get the growth rate of the case 3.
(3) For a single ion-acoustic branch x1;2 ¼ 6 kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 1
4L2
þk2?

p ,

C2 ¼
q4xk

2
yIk

4 bþ 1
4L2 þ k2?

& '2 bþ 1
4L2
þ k2?

! "
2 bþ 1

4L2

! "!*

'1þ k2x þ 4k2y

"
' k2x 9k2? ' 3 '1þ bþ 1

4L2

! ""+
:

 

(46)

The instability condition is given by

bþ 1
4L2
þ k2?

! "
2 bþ 1

4L2

! "
' 1þ k2x þ 4k2y

! "*

> k2x 9k2? ' 3 '1þ bþ 1
4L2

! "! "+
: (47)

Additionally, as in the case (2), the growth rate is not influenced
by kz and the fastest growth rate is obtained when kx ¼ 0:

IV. NUMERICAL ANALYSIS
This section analyzes the zonal flow growth rate C [Eq. (42)]

numerically. As the dependences on the various parameters are com-
plicated and cannot be established analytically, we, thus, rely on
numerical work to analyze the dependences of the growth rate on the
different parameters zonal wave-vector qx, b, and scale length L. The
laboratory plasma is considered in our model,3 with the magnetic field
of B¼ 3G, number density n0e ¼ 1% 1012 cm'3, and electron tem-
perature Te ¼ 3%102 K.

Figure 1 shows that when qx is increased, the zonal flow growth
rate increases along with ky. Plots are also made for other values of qx
that shows that it enhances the growth rate.

Figure 2 shows that growth rate increases with increasing values
of b ¼ 1þ npo

Znio
ð1þ Te

Tp
Þ, which indicates that positrons enhance

growth by keeping qx ¼ 0:6 and keeping the other parameters the
same as in Fig. 1.

It is found that b ¼ 1 for E–I plasma, and the dependence of
growth rate and ky is shown in Figs. 2 and 3, which may be taken as a
baseline graph. Furthermore, by increasing b to the values equal to
1:2; 1:5; 2; and 2:5, it is obvious from the graph (Fig. 2) that due
to the increasing contribution of the positrons, the growth rate
increases. Figures 3(a)–(c) illustrate the dependence of the growth rate

on the scale length L for different values of b when the other parame-
ters are kept constant. It is found that the growth rate increases as L
increases.

In Fig. 3(a), the graph showing the absence of positrons and
plasma appears as E-I at b ¼ 1.

As shown in Figs. 3(b) and 3(c), the graph illustrates that when
b ¼ 2 and 3, the growth rate increases with ky as the positron concen-
tration increases. A comparison of Fig. 3(a) with Figs. 3(b) and 3(c)
indicates that, as b increases, the crossing at b ¼ 1 disappears with an
increase in b, indicating the presence of positrons in plasma and
enhancement of growth rate as well.

In Fig. 4, the zonal flow growth rate C are plotted against kz. The
plots are made for different values of the zonal flow wave number qx ,
indicating that the growth rate increases as qx increases.

According to Fig. 5, when values of b are changed, the growth
rate C increases, while the growth rate C gets compressed on increas-
ing the values of wave vector kz.

Figures 6(a)–(c) explain the dependence of the growth rate on
the scale length L at different values of b. It is found that by fixing
other parameters, the growth rate increasing as L increases while at
higher values of kz, the growth rate C gets compressed.

FIG. 1. Dependence of the zonal flow growth rate C vs ky is shown for the following
parameters: L ¼ 1:5; kz ¼ 0:1; and b ¼ 1:2.

FIG. 2. Dependence of the zonal flow growth rate C vs ky is shown for the following
parameters: qx ¼ 0:6; L ¼ 1:5; and kz ¼ 0:1:
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V. CONCLUSION AND DISCUSSION
In the present paper, the zonal flow generation driven by coupled

low-frequency drift-ion-acoustic waves in laboratory EPI plasmas is
investigated. Here, attention is given to the small-scale waves
(k?qs ‡ 1); the carried out investigation provides an essential nonlin-
ear mechanism for the spectral energy transfer from small-scale drift-
ion-acoustic waves to large-scale enhanced zonal flows. The modified

parametric approach is developed for the monochromatic primary
modes. Accordingly, the interaction of a pump drift-ion-acoustic
waves, two satellites of the pump waves (sideband waves), and a
sheared zonal flow is studied. The driving mechanism of this instabil-
ity is the Reynold stress r? and the mean electromotive force rk. The
obtained results are applied to laboratory plasma experiments3,18–22

that were considered for the case when k?qs ‡ 1.
Section II describes the methodology and the mathematical for-

mulation of dealing with the basic system of nonlinear equations [see
Eqs. (5) and (6)] containing only vector nonlinearities for short-scale
DIAWs. The linear regime of coupled drift-ion-acoustic waves is dis-
cussed, along with the limiting cases [see Eqs. (10)–(13)]. Section III
discusses the generation of sheared zonal flows by coupled drift-ion-
acoustic waves in electron–positron–ion plasmas. It is shown that the
generation is due to the parametric excitation due to three-wave inter-
action, in which the coupling between the pump drift-ion-acoustic

FIG. 3. (a) Dependence of the zonal flow growth rate C vs ky is shown for the following
parameters: qx ¼ 0:6; kz ¼ 0:1; and b ¼ 1:(b) Dependence of the zonal flow growth
rate C vs ky is shown for the following parameters: qx ¼ 0:6; kz ¼ 0:1; and b ¼ 2:
(c) Dependence of the zonal flow growth rate C vs ky is shown for the following param-
eters: qx ¼ 0:6; kz ¼ 0:1; andb ¼ 3:

FIG. 4. Dependence of the zonal flow growth rate C vs kz is shown for the following
parameters: L ¼ 1:5; ky ¼ 2; and b ¼ 1:1:

FIG. 5. Dependence of the zonal flow growth rate C vs kz is shown for the following
parameters: qx ¼ 0:6; L ¼ 1:5; and ky ¼ 2:
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waves and sideband modes gives rise to large-scale modes, i.e., the
zonal flows [see Eq. (18)]. The driving mechanism of the instability is
due to the Reynolds stresses r? and the mean electromotive force rk
[see Eq. (19)] of the zonal flow.

The corresponding expressions for the growth rate are found for
small-scale ðk?qs ‡ 1Þ pump structures [see Eqs. (41) and (42)].
Here, the vector nonlinearity plays the role under certain excitation
conditions showing that the wave vector of fast mode is transverse to
that of the drift-ion-acoustic pumping wave [see Eqs. (43) and (44)].
For the limiting cases, explicit relations have been obtained for the
fastest growth rate [see Eqs. (45)–(47)], which shows that in

comparison to usual electron ion plasma, the presence of positrons in
the plasma gives modification in zonal flow growth rate as well as in
instability conditions. Numerically, it is shown that for the laboratory
plasma parameters for magnetized EPI plasmas, the growth rate is
enhanced. The growth rate also increases with the increase in qx and L.

The numerical estimation of growth rate is carried out from the
analytical expressions Eqs. (43)–(47)

C * xci
qx
ky

! "2
kyqs
# $3 e euþ

Te

----

----: (48)

For the experimental data3 xci * 108s'1; kyqs * 5; eeuþ
Te
* 10'1;

qx
ky
* 10'1, we get C * 107s'1. It is shown that such kinds of flows

need excitation conditions and they are not spontaneously generated.
The novelty in the present investigation appears through the ana-

lytical and numerical results. In Ref. 7, the authors considered an elec-
tron–ion plasma and the effect of the polarization drift was neglected in
comparison with the E% B drift. However, in this work, an EPI plasma
along with polarization drift for zonal flow is investigated. The EPI
plasmas, which are found abundantly in many naturally occurring and
laboratory plasmas, have already been discussed in Sec. I. In the present
work, the effect of positron density appears through the b term, which
increases by increasing Te

Tp
by fixing densities or by fixing Te

Tp
and increas-

ing npo
Znio

. It is found that by taking ðbþ 1
4L2Þ ¼ 1, the growth rate as well

as the instability conditions of Ref. 7 are retrieved. Thus, themathemat-
ical results and graphical analysis in this paper highlight the importance
of effects that have not been taken into account in earlier works.

This study shows that the parametric instability presented here is
a sufficient nonlinear mechanism to drive large-scale zonal flows in
EPI laboratory plasmas.23,24 The results obtained in the present study
may be applied to the large-scale inhomogeneities in density of the
universe25 and also to the astrophysical EPI jets,26 where ions concen-
trations are taken as small fractions of the electron–positron plasma
number densities.
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