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Abstract
Inclusion of a quantizingmagnetic field in a partially degenerate plasma has interesting effects on the
propagation of solitary and nonlinear periodic structures in coupled kinetic Alfven acoustic waves. In
this paper, we use two-potential theory to investigate the nonlinear structures using Sagdeev potential
approach and further analyze it using nonlinear dynamicalmethods. It is shown that the existence of
solitary structure is sensitive to small temperature effects and quantizingmagneticfield in a dense
plasmawith adiabatically trapped electrons. Thework presented here is useful in understanding the
low frequencywave propagation in a dense astrophysical environment like white dwarf stars and in
low beta laboratory plasmas e.g. intense laser-plasma interactions.

1. Introduction

Quantumplasmas have receivedmuch attention in the recent decades due to its presence and applications in
various interesting physical domains, including but not limited to quantumdots, carbon nanotubes andmicro-
electronics [1–4]. Degenerate plasmas are also observed naturally in astrophysical environment such as neutron
stars, white dwarfs, active galactic nuclei [5, 6] etc Linear electron oscillations in a quantumplasma have been
studied in the past decade or so [7–9]. Following up on this work, Tsintsadze developed a set offluid equations
for degenerate Fermi plasmas and discussed the dispersion relations of electrostatic waves propagating in that
medium [10]. Later on, nonlinear behavior of electrostatic waves in a degenerate plasma gained substantial
attention, including the effect of adiabatic trapping in the propagation of solitary waves in quantumplasmas
[11–14].

Trapping as amicroscopic phenomenon beganwith the seminal paper byGurevich [15, 16]whoproposed
that, in a slowly appliedfield, particles can get adiabatically trapped in a potential. This has a drastic effect on the
number density of the trapped particles, creating a peculiar 3/2 power non-linearity rather than the usual
quadratic one. Extension of the concept of trapping to quantumplasmas changes the nature of non-linearity
(from 3

2j to ( )1
3
2j+ ). Some authors have expanded ( )1

3
2j+ expression to get an exact solution for the

system, losing the fractional non-linearity in the process, to a trapping co-efficient (as in 3

2
j) [17]. In certain

cases [11–14, 18], ( )1
3
2j+ type of non-linearity is taken as it is, and the system is investigatedwithout

expanding that expression so that the 3/2 power nonlinearity bemaintained. Effect of trapping has been
extensively studied in the past decade for quantumplasmas, startingwith thework of Shah et al [11] for ion
acoustic waves in a dense plasma. This workwas later extended to a relativistic degenerate plasma [12] in the
presence of a quantizingmagnetic field [13]. Effect of trapping is also investigated for self-gravitating dusty
plasma [14], and for kinetic Alfvenwaves (KAWs) in the classical case [19] and later for a fully degenerate plasma
[18]. Recently, adiabatic trappingwas investigated in a dissipativemedium for ion acoustic waves in a
magnetized plasma, where Burgers equationwas derived, and nonlinear shockwave formation of different kinds
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was observed [20]. 3Dpropagation of suchwaveswas also studied recently in a homogeneousmulti-ion
magnetized quantumplasma [21].

Most of thework for the effect of trapping in quantumplasmas for low frequency regimes is done for
electrostatic waves, even in the presence of the quantizing and super-strongmagnetic fields [11–14, 17, 18, 22].
Sincemost dense astrophysical environments have a strong ambientmagnetic field, investigating the effect of
trapping in coupled kinetic Alfven-acoustic waves (CKAAWs)may yieldmore practical results. In this paper,
two-potential theory [23] is used to investigate nonlinear CKAAWs in degenerate plasmas. This theory is valid
for a low frequency (  ci

2 2w w ) and low beta plasma. Previously, finite amplitude solitary structures in
CKAAWswere studied using the two-potential theorywithMaxwellian distribution [24, 25] and later with
adiabatic trapping in a classical plasma [19]. Lately,much promisingwork is still ongoing for the propagation of
KAWs in non-Maxwellian kappa distributed electrons in space and upper atmospheric plasma [26, 27], but not
much is done for the aforementionedwaves in quantumplasmas or dense astrophysical plasmas. This concept
was extended by Sabeen et al [18] to quantumplasmas, where solitary structures were investigated for CKAAWs
in a fully degenerate plasma.

The presence of a sufficiently strongmagnetic field leads to Landau quantization [16], whereby themagnetic
field of electrons are quantized and themagnetic field affects the electron dynamics, even if only parallel
propagatingwaves are considered.

In this paper, wewill discuss the effect of trapping in nonlinear CKAAWs for a partially degenerate plasma in
the presence of quantizingmagnetic field [13, 22]. In section II, the basic set of equations is discussed, and the
linear dispersion relation is derived. In section III, non-linear properties of the system are observed using the
Sagdeev potential approach. In section IV, both solitary and non-linear periodic structures are investigated using
dynamical system analysis. Usingfixed points-analysis, we determine the nature of waves thatmay propagate in
such a system [28, 29]. SectionV contains results and discussions.

2.Mathematical preliminaries and linear analysis

In the present section, we begin by briefly introducing the two-potential theory [23]This approach is valid for
low b plasmas only ( m m1 e i/b> > ). In the case of quantumplasmas the plasma b is defined as ,f

c

v

2 sf

A

2

2b =

where csf m
f

i
=

e
is the ion acoustic velocity for a quantumplasma, mi is the ionmass, vA

B

m ni

0

0 0
=

m
is the

Alfven velocity and 0m is themagnetic permeability constant .We considermotion in the x–z direction, taking
B0 in the z direction and further by using the two -potential theory, the electricfield E is represented in terms of
two potentialsj and F in the followingmanner [23],

E
x

E
z

E B B, , 0 ,x z y z 0
j

= -
¶F
¶

= -
¶
¶

= =

Using the effect of adiabatic trapping in a dense plasma and keeping the effects of temperature and quantizing
magnetic field into account, the number density of partially degenerate electrons using Fermi–Dirac statistics
[13] is given as,

( ) ( ) ( ) ( ) ( )n
T

T
3

2
1 1

2
1 1 1

1
2

3
2

2 3
2 2 1

2h h h h= + Y + + Y - - + Y + + Y -- -

Where the potential Y is normalized as, e

f
Y = j

e
and the temperature is normalized as,T ,T

2 2 f

0= p
e

whereT0 is

the ambient temperature in energy units. Fermi energy is given by ћ ( ) ,f
n

m

3

2 e

2 2
0

2
3e = p the effect of quantizing

magnetic field is given through the parameter ћ ,ce

f
h = w

e ce
eB

me

0w = is the electron cyclotron frequency, B0

represents the ambientmagnetic field, which is a constant and the number density is normalized as n ,n

n
e

e0
=

where ne0 is the background number density.
Ions are treated classically due to their heavymass ( m mi e) and, therefore, the equation ofmotion of ions

is taken to be classical in nature. Thus, the ion equation ofmotion for the case of lowbeta plasma is given by,⎛⎝ ⎞⎠( ) ( ) ( )v
v v E v Bm

t
e. 2i

i i ii 0
¶
¶

+  = + ´

TheAmpere’s law,modifiedwith the two-potential theory, gives us [19],

( ) ( )
z x t z

j 3z

4

2 2 0

2
j m

¶
¶ ¶

F - =
¶

¶ ¶

Here jz is the current density.
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The ion continuity equation, in the given geometry reads as,

( ) ( ) ( )n

t x
nv

z
nv 0 4x z

¶
¶

+
¶
¶

+
¶
¶

=

From the electron continuity equation, we obtain the expression for the current density in z direction, which
can be expressed as,

( ) ( )j

z
e

n

t
e

z
nv 5z

z
¶

¶
=

¶
¶

+
¶
¶

Linearizing the above set of equations and solving them simultaneously by using a planewave solution gives us
the following linear dispersion relation for CKAAWs,

⎜ ⎟⎜ ⎟⎛⎝ ⎞⎠⎛⎝ ⎞⎠( ) ( ) ( )

( )

v k
T

T c k

v k

1 1
3

4

3

2
1

2
1

6

A z sf z

sf A z

2 2

2
2 1

2
2 3

2

2 2

2

2 2

2

w
h h h

w

l
w

- + + - - - -

=

-

Where sfl is the coupling parameter and is defined as ,sf
c ksf x

i

2 2

2l =
W

where i
eB

mi

0W = is the ion cyclotron

frequency.Here

k k k ksin , cosx xq q= =

Where q is the angle between ambientmagnetic field and propagation vector.
It is clear from the linear dispersion relation of CKAAWs for partially degenerate andmagnetically quantized

plasma that, for very high values of plasma beta( ),f
c

v

2 sf

A

2

2b = vA becomes insignificant in equation (6) andwe are

left with ion acousticmode only.
We note that here 1h < is taken for strongmagnetic fields and 1h > is taken for super-strongmagnetic

fields, which is not considered here and is beyond the scope of the present work.
If we put the normalized temperature and quantizingmagnetic field to be equal to zero, we retrieve the linear

dispersion for a fully degenerate plasma, in accordance with Sabeen et al [18]. Unlike the classical cases, the effect
of trapping remains visible as a 3/2 coefficient in the linear dispersion relation as well. The coupling term
appears on the right-hand side of equation (6). In the limiting case of k 0,x = equation (6) decouples and gives us
the linear dispersion relations for the ion acoustic waves andAlfvenwaves. In the next section, we shall
investigate the nonlinear behavior of CKAAWs.

3.Non-linear behavior and Sagdeev potential

Due to the nature of nonlinearity in the systemof equations, it is not possible tofind the exact solution.Onemay
expand the non-linear terms into leading orders, in terms of the potential ,Y but because of such an
approximation, the fractional nature of nonlinearity is lost. Retaining the fractional non-linearitymakes it
impossible tofind the exact solution of the system, therefore, we use the Sagdeev potentialmethod to investigate
the allowed regions of solitary wave propagation and nonlinear periodic waves.We shift to the co-moving frame
of reference, which is defined as,

K x K z Mtx za = + -

Here Kx and Kz are the directional cosines, The condition for directional cosines is K K 1;x z
2 2+ = where

K sinx = q and K cos .z q= Wehave used the following normalized parameters, M n t t, ,u

c

n

n i
sf o

= = = W

and v .v

csf
= Thenceforth, the dimensionless formof the systemof equations is as follows,

( )M
v

K v
v

K v
v

K 7z
x x

z
z z

z
z

a a a a
-

¶
¶

+
¶
¶

+
¶
¶

= -
¶Y
¶

( )v MK 8x x

2

2a
=

¶ F
¶

⎜ ⎟⎛⎝ ⎞⎠( ) ( )K K M
n

MK nv2 9x z f z z
2 2

4

4
2

2

2

2

2a
b

a a
¶
¶

F - Y =
¶
¶

-
¶
¶

( ) ( ) ( )M
n

K
nv

K
nv

0 10x
x

z
z

a a a
-

¶
¶

+
¶
¶

+
¶
¶

=

Integrating equation (7)using the boundary conditions that as ,a  ¥ the perturbed quantities v, , 0F Y 
and the number density n A, yields
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( )MA
v

K n 11z
z

a a
¶
¶

=
¶Y
¶

Where A is the integration constant given by

( ) ( )A T
3

2
1 1

3
2 2 1

2h h h= + - + - -

Here it is worth noting that, all the termswith T T T T, , ,2 2 2 2 4 4h h h and 2h are ignored since for a quantum
plasma T, 1h < and such termswill have little to no contribution to the results. Plugging the value of
equation (1) in equation (11) and integrating once gives,⎛⎝ ⎞⎠( ) ( ) ( ) ( )MAv K T B1

2

5
1 2 1 12z z

3
2

5
2 2 1

2h h h= + Y + + Y - + + Y - -

Where the integration constant B is given by

( ) ( )B T
2

5
1 2 1

5
2 2 1

2h h h= + - + -

Using equation (10), and integrating once and using the boundary conditions given above, we obtain

⎛⎝ ⎞⎠ ( )v
M

K

A

n

K v

K
1 13x

x

z z

x
= - -

Integrating equation (9) twice and then using equation (12) gives

[ ( ) ] ( )v

K M K K
M n A MK nv

2
14x

X

f

x z
z z

2

2 2 2
2

a
b¶ Y

¶
= - - -

Substituting the values of equations (2), (12) and (13) in equation (14) gives us,

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝⎛⎝ ⎞⎠⎞⎠

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

K A T

K

M A
T B

M

K
T A

A
T

B T

1 1
3

2
1 1

2
1

2

5
1 2 1

3

2
1 1 1

2

8

5
1

2

5
1

12

5
1

1
3

2
1 1 15

X

z f

A

A

z

f

2
2

2

3
2

5
2 2 7

2

2

2

3
2

5
2 2 1

2

2

2

1
2

3
2 2 1

2

3 4 2 2

3
2

1
2 2 1

2

a
h h h

b
h h h

h h h

b
h h h

h h h

¶ Y
¶

= - + Y - - + Y - + Y -

- + Y + + Y - + + Y - -

- + Y + + Y - + + Y - -

- + Y + + Y - + + Y -

- + Y - + + Y + + Y -

- - -

-

-

In the above expression, we have Taylor expanded the 1/n termwith respect to temperature and ignored the
higher order terms.Moreover, we have used the AlfvenicMach number which is defined as M MA f

2 1

2
2b= and

is the ratio of the speed of wave to the Alfven velocity.We express equation (15) through the Sagdeev potential
( )V Y in the usualmanner [11],

( )V
16

2

2a
¶ Y
¶

= -
¶
¶Y

Integrating equation (16) gives,

⎡⎣ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝⎛⎝ ⎞⎠⎞⎠ ⎤⎦⎥

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

V
K

A T

K

M A
T B

M

K
T A

A
T

B T C

1
2 1 1

2

5
1

2

2

5
1

4

35
1

4

3
1

1
2

5
1 2 1

2

2

5
1

2

25
1

4

5
1

1
2

5
1 2 1 17

X

z f

A

A

z

f

2

1
2

3
2 2 5

2

2

2

5
2

7
2 2 3

2

2

2

3
2

5
2 2 1

2

4 5 2 3

3
2

5
2 2 1

2

h h h

b
h h h

h h h

b
h h h

h h h

Y = - Y + + Y - - + Y - + Y -

- + Y + + Y - + + Y - - Y

- + Y + + Y - + + Y - - Y

+ + Y + + Y - + + Y -

- + Y + + Y - + + Y - +

- - -

Where, C is the constant of integration, which is found by using the standard boundary condition [11],
( )V 0,Y  when 0Y  and is given by,
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⎡⎣ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝⎛⎝ ⎞⎠⎞⎠⎤⎦⎥

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

C
K

A T

K

M A
T

M

K
T

A
T

B T

1
2 1

2

5
1

2

2

5

4

35
1

4

3
1

2

5
1 2 1

2

2

5

2

25
1

4

5
1

2

5
1 2 1 18

X

z f

A

A

z

f

2

1
2 2 5

2

2

2

7
2 2 3

2

2

2

5
2 2 1

2

5 2 3

5
2 2 1

2

h h h

b
h h h

h h h

b
h h h

h h h

= - - - -

- + - + -

- + - + -

+ + - + -

- + - + -

- -

In order to carry out numerical and graphical analysis of our results of the section above, we use the data from
the precincts of white dwarf stars [30]. It is believed that in the outer shells of supernovae, electrostatic structures
may exist [31]. Studying electromagnetic waves in such dense plasmasmay havemore interesting outcomes in
the future.We now examine nonlinear CKAAWswith adiabatically trapped electrons in the presence of
quantizingmagnetic field, numerically. For the above-mentionedmodel, we have plotted the effective Sagdeev
potential, phase portraits and corresponding structures.

Wefind the range ofmach number forwhich solitary waves exist. This is determined numerically for
n 1.8 10 m ,0

32 3= ´ - B 1 10 T,0
6= ´ 75 .q =  It is found that both compressive and rarefactive solitary

waves are obtained for  M0.05 0.07A and  M0.18 0.24,A and only rarefactive solitary structures are
obtained for  M0.08 0.17A as shown infigure 1(a). This shows that CKAAWsunder the given conditions is
a sub-Alfvenic wave. The variation of Sagdeev potential over the complete range of AlfvenicMach number is
clear in 3-dimensional plot as seen infigure 1(b).

It is observed that for the existence of solitary structure the range of AlfvenicMach number strongly depends
on the angle of propagation. Aswe increase the angle of propagation, the range of AlfvenicMach number
narrows down. For 85 ,q =  the range ofMach number is from M 0.015A = to M 0.085A = and for 86 ,q = 
the range of AlfvenicMach number decreases and is from M 0.012A = to M 0.068.A = Figure 2 shows that at
M 0.07A = the depth of Sagdeev potential decreases at 85 and 86q =  in comparison to 75°.

It is noted that the solitary structures are only found for a specific value of parameters and for the other
values, we have observed the existence of nonlinear periodic waves. This behaviorwas also investigated by Yu
et alwhere solitaryKAWswere studied in a classical plasma [25].

4.Dynamical analysis

In this section, we investigate the non-linear wave propagation using dynamical system analysis. The
significance of using thismethod is that it helps in understanding thewave trajectory in phase space and such
trajectories provide information about the solution. Dynamical equations corresponding to ordinary
differential equation (15) are as follows ⎡

⎣
⎢⎢⎢ ( )




z

z
z

19
2

2

a

a a

Y =
¶Y
¶

=

=
¶
¶

=
¶ Y
¶

Where
2

2a
¶ Y
¶

is given in equation (15).Wewrite theHamiltonian for this dynamical system as

⎡⎣ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝⎛⎝ ⎞⎠⎞⎠ ⎤⎦⎥

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

H z
z

K
A T

K

M A
T B

M

K
T A

A
T

B T C

,
2

1
2 1 1

2

5
1

2

2

5
1

4

35
1

4

3
1

1
2

5
1 2 1

2

2

5
1

2

25
1

4

5
1

1
2

5
1 2 1 20

X

z f

A

A

z

f

2

2

1
2

3
2 2 5

2

2

2

5
2

7
2 2 3

2

2

2

3
2

5
2 2 1

2

4 5 2 3

3
2

5
2 2 1

2

h h h

b
h h h

h h h

b
h h h

h h h

Y = - Y + + Y - - + Y - + Y -

- + Y + + Y - + + Y - - Y

- + Y + + Y - + + Y - - Y

+ + Y + + Y - + + Y -

- + Y + + Y - + + Y - +

- - -
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The value of constant C is given in equation (18). The second term inHamiltonian shows effective potential [32]
which in our case is the Sagdeev potential given in equation (17). The dynamical system in equation (19)
comprises of transcendental equations. In order to solve nonlinear equations for thefixed point, we opt for the
numerical approach.

The Jacobianmatrix of dynamical system in equation (19) gives eigenvalues and is given by

( ) ( )J
P
0 1

0
21=

Figure 1. Solitary structure for n 1.8 10 m ,0
32 3= ´ - B 1 10 T,0

6= ´ 75q =  and T 0.24.= (a) Sagdeev potential different for
values of AlfvenicMachNo. (b) 3-dimensional plot of Sagdeev Potential over the complete the complete range of AlfvenicMach
Number.
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Where

⎜ ⎟⎛⎝ ⎞⎠P
2

2a
=

¶
¶Y

¶ Y
¶

⎟

⎜ ⎟

⎜ ⎟

⎡⎣ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝⎛⎝ ⎞⎠⎞⎠⎤⎦⎥

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

P
K

A T

K

M A
T

M

K

T

A
T

B
T

1 3

2
1

15

4
1

7

2
1

2

3

2
1 1 1

3

4
1

3

2
1

2
1

2

24

5
1

8

5
1

24

5
1

3

2
1

3

4
1

2
1 22

X

z f

A

A

z

f

2

5
2

7
2 2 9

2

2

2

1
2

3
2 2 1

2

2

2

1
2

1
2

2 3
2

2 3 2

1
2

1
2

2 3
2

h h h

b
h h h

h h h

b
h h h

h h h

= - - + Y - + + Y + + Y -

- + Y + + Y - + + Y -

- + Y + + Y - - + Y -

- + Y + + Y - + + Y -

- + Y - + + Y - + Y -

- - -

-

- -

- -

If ‘I’ is the identitymatrix, then the characteristics equation is given as

( )det J I 0l- =

Using equation (21) in characteristic equation, we get the required eigenvalues

P
1 0l
l

-
-

=

( )P 23a b,l = 

Here, the eigenvalues are again calculated numerically for different values of M K K, , ,A x zh andT by keeping
the normalized density and backgroundmagnetic field constant.We get different eigen values for different
equilibriumpoints. It is clear from equation (23) that if P 0< for a given equilibriumpoint, we get centers and
for P 0,> we obtain saddle points [33].

Using the above-mentioned dynamical system,we first plot the phase portraits (equation 19) for different
values of theMach number.We obtain homoclinic orbits (Thick black line) for M 0.1A = and M 0.2,A =
corresponding to solitary structure as seen infigures 3(a) and (b) respectively. The closed orbits within these
homoclinic orbits shownonlinear periodic waves. For these trajectories, equilibriumorfixed points have been
calculated numerically. Eigenvalues for the equilibriumorfixed points are also calculated numerically using
equation (22). Figure 3(a) shows rarefactive solitary structure for M 0.1.A = Eigenvalues show thatfixed point
(0, 0) is a saddle point andfixed point (−0.586 13, 0) is a center. Figure 3(b) shows both compressive and

Figure 2. Sagdeev potential for different value of angles at n 1.8 10 m ,0
32 3= ´ - B 1 10 T,0

6= ´ M 0.07A = and T 0.24.=
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rarefactive solitary structures for M 0.2.A = Eigenvalues for these equilibriumpoints using equation (22) show
thatfixed point (0, 0) is a saddle point and fixed points (−0.571 38, 0) and (0.371 84, 0) are centers.

It is observed that for given values of density andmagnetic field, we get a particular temperature forwhich
solitary structure exists. Once solitary structure forms, it sustains itself only for the variation of AlfvenicMach
number MA and not for any variation of other parameters.We note that Yu and Shukla [25] have examined the
conditions for existence of solitary structures for KAWs and have shown that solitary KAWs exist only for
specific values of parameters in the classical plasma as well. In case of e–p–i plasma, Kakati andGoswami [34]
also investigated the existence conditions for solitary KAWs. In the present case when n 1.8 10 m ,0

32 3= ´ -

B 1 10 T,0
6= ´ we getT 0.24= for which solitary structure exists. For T0.24 0.35< and  T0 0.24<

we obtain homoclinic orbits which corresponds to non-linear pulses. ForT 0.35,> we get periodic waves only.

Figure 3.Phase portraits for n 1.8 10 m ,0
32 3= ´ - B 1 10 T,0

6= ´ 75q =  and T 0.24.= (a) For M 0.1A = (b) For M 0.2.A =

8
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Phase plot (from equation 19) infigure 4(a) shows a homoclinic orbit enclosing non-linear periodic orbits for
T 0.35.= Eigenvalues for these equilibriumpoints using equation (22) show thatfixed point (−0.152 52, 0) is a
saddle point and (−0.285 65, 0) and (0.332 99, 0) are centers. Figure 4(b) shows only periodic orbits for

Figure 4.Dynamical plots for n 1.8 10 m ,0
32 3= ´ - B 1 10 T,0

6= ´ 75q =  and M 0.06.A = (a)Homoclinic orbits at T 0.35=
(b)Periodic orbits at T 0.4= (c)Nonlinear pulses at T 0.35= corresponding tofigure 1(a). (d)The corresponding periodic wave
profile at T 0.4.=
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nonlinear periodic waveswith center at (0.331 63, 0). ForT 0.35= andT 0.4,= the corresponding amplitude
profiles are shown infigures 4(c) and (d), respectively.

Phase portrait of dynamical system in equation (19) for different values of quantizingmagnetic fields gives
homoclinic orbits, enclosing the periodic orbits. At 0.1,h = for background density n 1.8 10 m ,0

32 3= ´ -

magnetic field B 1 10 T,0
6= ´ normalized temperatureT 0.24 ,= Alfvenicmach number M 0.06A = and

angle of propagation is 75 .q =  we get homoclinic trajectory, which is corresponding to the solitary structure in
figure 5(a). Eigenvalues using equation (23) show thatfixed point (0, 0) is a saddle point andfixed points

Figure 5. (a)Phase portrait at 0.1h = for n 1.8 10 m ,0
32 3= ´ - B 1 10 T,0

6= ´ 75q =  and M 0.06.A = (b)Effective potential
( )V Y versus .Y (c)The periodic wave profile corresponding to (a) and (b).
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Figure 6. (a)Phase portrait at 0.2h = (b) phase portrait at 0.3h = (c)Nonlinear pulses at 0.2h = corresponding to figure 6(a) (d)
Nonlinear pulses at 0.3h = corresponding tofigure 6(b). For n 1.8 10 m ,0

32 3= ´ - B 1 10 T,0
6= ´ 75q =  and M 0.06.A =
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(−0.5537, 0) and (0.3407, 0) are centers.We get both compressive and rarefactive solitary structures that can
clearly be shown in the phase portraits and Sagdeev potential ( )V Y profiles infigures 5(a) and (b), respectively.
Figure 5(c) shows one of the corresponding time series of the plots offigure 5(a).

Infigures 6(a), (b), we see the variation in phase portrait and corresponding structures for quantizing
magnetic fieldwhen and 0.3.h = For a fixed value of n ,0 M ,A T and q wenote that the increase in h is a result of
the increasing ambientmagnetic field B .0 ,we get a homoclinic trajectory in phase portrait of dynamical system.
When 0.2,h = fixed point (0.0456, 0) is a saddle point and fixed point (−0.4785, 0) is a center infigure 6(a).
Figure 6(b) showsWhen 0.3,h = fixed point (0.1247, 0) is a saddle point and fixed point (−0.3786, 0) is a
center. Amplitude profiles for 0.2h = and 0.3h = shownonlinear pulses infigures 6(c), (d).

Figure 7. (a)Phase portrait at 0h = for n 1.8 10 m ,0
32 3= ´ - B 1 10 T ,0

6= ´ 75q =  and M 0.06.A = (b)Effective potential
( )V Y versus .Y
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In the absence of quantizingmagnetic field, we again get homoclinic trajectory corresponding to solitary
structure as shown infigure 7(a). In that case, thefixed point (0, 0) is a saddle point andfixed points
(−0.735 66,0) and (0.351 76, 0) are centers. Both compressive and rarefactive solitary structures are obtained
that can clearly be shown in phase portrait and Sagdeev potential ( )V Y profiles infigures 7(a) and (b),
respectively.

It is also examined that for fully degenerate plasma (T 0= ) and in the absence of quantizingmagnetic field
( 0h = ), we retrieve the results of Sabeen et al [18].

5. Conclusions

In this paper, we have investigated the effect of adiabatic trapping of electrons on the linear and non-linear
behavior of CKAAWs. Thesewaves have not been investigated before for a partially degenerate plasma in the
presence of a quantizingmagnetic field. Since thesewaves are expected to be found in dense astrophysical
environments which have strong ambientmagnetic field andmaybe partially degenerate. Taking Landau
quantization into accountmay lead tomore practical applications and to a better understanding of the
formation of non-linear structures in degenerate plasmas.We have observed through Sagdeev potential
approach that solitary structures exist only within a specific range of AlfvenicMach numbers, and this range
varies with the change of other parameters, including the angle of propagation. This result was confirmed by
using non-linear dynamical analysis.We have shown the existence of solitary pulses by obtaining homoclinic
orbits for certain parameters, and in general we observe the existence of nonlinear periodic waves.

We note that hadweTaylor expanded the expressionwhich yields Sagdeev potential in equation (15), we
would have clearly seen the competition between dispersion and non-linearity that can yield aKdV equation.
We have kept the problem general by preserving the degree and formof non-linearity in equation (1).
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