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A B S T R A C T   

Obliquely propagating nonlinear fast and slow magnetosonic wave modes in a hot non-Maxwellian dissipative plasma are investigated in the current work. Modified 
temperatures have been derived for the non-extensive Q- and (r, q)-distributions that correspond to the physical properties of such non-Maxwellian plasmas. The 
reductive perturbation technique has been employed to derive the linear dispersion relation (LDR) and Kadomstev-Petvashvilli-Burgers (KPB) equation for slow and 
fast magnetosonic wave modes in two dimensions. We then investigated the effect of non-extensive parameter Q, spectral indices (r, q) and kinematic viscosity ν on 
the LDR and nonlinear propagation of KPB shock profiles for both the slow and fast mode magnetosonic waves. We found that linear and nonlinear propagation of 
fast and slow magnetosonic wave modes have been considerably modified in such non-Maxwellian plasmas. The results presented here would depict a realistic 
picture of the propagation of linear and nonlinear fast and slow magnetosonic wave modes in non-Maxwellian plasmas.   

Introduction 

A significant amount of research has been carried out since the dis
covery of magnetosonic waves in the fields of observations, theoretical 
investigations and simulations [1–9]. In the magnetohydrodynamic 
(MHD) picture, fast and slow modes of magnetosonic waves are the 
fundamental low frequency modes in magnetized plasma [10–13]. In 
addition to these low frequency modes, in ideal MHD when heat con
duction is added, there are two other roots as well, called entropy 
modes, characterized by non-propagating perturbations of thermody
namical properties of plasma with almost zero frequency [14]. Propa
gation of magnetosonic solitary waves has been the subject of interest 
for many researchers due to their importance in particle acceleration 
and heating in fusion devices, space and astrophysical plasmas. Board
sen et al. [2] observed the fast magnetosonic waves at large angles to the 
ambient magnetic field at the magnetic equator associated with the 
proton ring distributions. In the Earth’s magnetosphere, Horne et al. [3] 
investigated the generation, growth and decay of radially propagating 
fast magnetosonic waves and found that protons are heated as a result of 
these waves. Fast magnetosonic waves have also been found to be 
responsible for electron heating and are thought to play an important 
role in the dynamics of radiation belts [4]. Intense magnetosonic waves 
have been observed in the plasma sphere associated with the proton ring 
distributions which provide the free energy for their excitations [5]. 

Shah and Bruno [1] investigated obliquely propagating fast and slow 
magnetosonic modes in a hot plasma and derived the Kadomstev- 

Petvashvilli (KP) equation for arbitrary plasma beta. Mushtaq and 
Shah [10] studied nonlinear magnetosonic waves propagating obliquely 
to the external magnetic field in electron–positron-ion (epi) plasma and 
considered the effect of plasma beta on the propagation of fast and slow 
modes. Chakrborty and Das [11] studied the effect of finite Larmor 
radius on the oblique propagation of magnetosonic waves and where it 
was shown that these waves are governed by KP equation in a colli
sionless plasma with an additional dispersive term. Magnetosonic waves 
have also been studied using quantum-hydrodynamic (QHD) model in a 
dense plasma and where both the hump and dip soliton structures, were 
investigated for various plasma parameters [12]. The KP and cylindrical 
Kadomtsev-Petviashili-Burgers (CKPB) equations have been derived for 
nonlinear magnetosonic waves in quantum dusty magnetized plasmas 
[15,16]. 

In theoretical studies on the nonlinear magnetosonic waves 
mentioned above, collisions have been ignored which may occur be
tween neutrals and charged particles as well as between charged parti
cles [13]. Due to collisions (or any kind of dissipation) in various 
laboratory and space plasmas, the nonlinear evolution of magnetosonic 
waves modifies significantly. In a collisional plasma, one-dimensional 
propagation of magnetosonic waves has been governed by Korteweg- 
de Vries-Burger’s (KdV-B) equation [17]. In a two-dimensional warm 
collisional plasma, obliquely propagating magnetosonic waves have 
been governed by Kadomstev-Petvashvilli-Burger’s (KPB) equation 
[18,19]. In a dusty of inertialess electrons and ions and here it is shown 
that these waves are governed by the modified Korteweg-de Vries 
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(mKdV) equation [20]. Later, dissipative structures have been obtained 
by studying nonlinear magnetosonic waves in a pair-ion plasma in the 
presence of ion–electron collisions [21]. Considering ion-neutral colli
sions, the damped Korteweg-de Vries (DKdV) equation has been ob
tained for perpendicularly propagating magnetosonic waves and 
characteristics of damped soliton structures were examined [22–23]. 

Distribution function and modified temperature 

It is well known that space plasmas are tenuous and collisionless, 
therefore observations of distribution functions from various regions 
including solar wind and Earth’s magnetosphere, generally exhibit 
nonthermal features such as high energy tail [24–27] and flat top or 
spiky nature at low energies [28–31]. Distributions with high energy tail 
and Gaussian peak are well modeled with power law kappa (κ) distri
bution function, where κ index measures the strength of the high energy 
tail. For κ→∞, the distribution approaches a Maxwellian. However, 
when the observed distributions exhibit flat top or spike at low energies, 
the double spectral index distribution, i.e. the generalized (r, q) distri
bution function becomes the ultimate choice [32]. In the limiting cases, 
r = 0, q→∞ and r = 0,q→(κ + 1), Maxwellian and kappa distributions 
can be recovered from (r, q) distribution, respectively. Recently, (r, q) 
distribution has been employed in numerous studies and the results have 
shown that these are significantly improved both qualitatively and 
quantitatively [33–38]. Thus (r, q) distribution has stimulated new av
enues for studying the linear and nonlinear waves which are signifi
cantly different from the standard Maxwellian and power law 
distributions. The three-dimensional (r,q) distribution function has the 
form 

frq(v) =
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is the modified thermal velocity, Γ is the gamma 

function, m is the particle’s mass, T is the particle’s temperature in 
thermal equilibrium and kB is the Boltzmann constant. 

In recent times, there has been an increasing trend to use another 
power law distribution which is based on Tsallis statistics, known as 
non-extensive Q-distribution, which in the limit Q→1 reduces to Max
wellian distribution [39]. The non-extensive Q-distribution also shows 
flat top as well as Gaussian peak at low energies similar to (r, q) distri
bution, that is why we are going to employ both of these distributions in 
our study and present a comparison between these two. The three- 
dimensional non-extensive Q-distribution has the form [40–42] 

fQ(v) = B
(

1 − [Q − 1]
v2

v2
th

) 1
Q− 1

(3)  

where 

B =

Γ
(

1
1− Q

)

Γ
(

1
1− Q − 3

2

)

[
1 − Q
πv2

th

]3/2

for
1
3
< Q ≤ 1 (4)  

B =
3Q − 1

2

Γ
(

1
Q− 1 +

3
2

)

Γ
(

1
Q− 1

)

[
Q − 1
πv2

th

]3/2

for Q ≥ 1 (5)  
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(2kBT)/m

√
is the thermal velocity. In Fig. 1, we plot the (r,q) 

and non-extensive Q-distributions for different values of spectral indices 
r, q and Q-parameter. From Fig. 1(a), we can see that for Q < 1 and 
r < 0, both the distributions exhibit excess of superthermal particles 
with a Gaussian peak for Q-distribution and spiky peak for (r, q) distri
bution. However, for Q > 1, the Q-distribution exhibits smaller number 
of high energy particles as compared to the Maxwellian distribution and 
for r > 0, the (r, q) distribution exhibits flat top or shoulders at low ve
locities which becomes more prominent as r increases (Fig. 1(b)). For 
comparison, kappa and Maxwellian distributions are also given in Fig. 1. 

In most of the earlier studies, fluid treatment of magnetosonic waves 
was based on the assumption that the plasma is in thermal equilibrium 
and the pressure can be calculated by the ideal gas equation p = nkBT, 
where n is the total number density and T is the particle’s temperature. 
In the context of kinetic theory, pressure is defined as p = 1

3 nm < v2 >, 
where < v2 > is the mean square velocity of the particle, given as < v2 >

= 1
n
∫

f(v)d3v. The mean square velocity of the particle for the cases of (r,
q) and non-extensive Q-distribution can thus be calculated, respectively, 
as [42–43] 
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We can note that the standard expression of mean square velocity can be 
recovered from the above Eqs. (6) and (7) in the limits r = 0, q→∞ and 
Q→1, respectively. Thus the ideal gas equation for the cases of (r, q) and 
non-extensive Q-distributions can be written as 
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and 

TQ =
2
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T (11)  

are the modified temperatures representing the (r, q)-distributed and 
Q-distributed plasmas, whereas T is the temperature representing the 
system in thermal equilibrium. In the limit Q→1, TQ approaches to T 
[43–46], for r = 0, q→(κ + 1), Trq becomes Tκ =

2κ
2κ− 3 T which is the 

modified temperature for κ-distributed plasma 46–48 and for r = 0,
q→∞, Trq becomes T. It should be noted that to keep TQ, Trq and Tκ 
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positive, conditions Q > 3/5, q > 1andq(r+1) > 5/2, and κ > 3/2, 
respectively, should be satisfied [28 43,47]. 

To the best of the author’s knowledge, obliquely propagating mag
netosonic wave in a hot, dissipative nonthermal plasma has never been 
studied by deriving Kadomstev-Petvashvilli-Burger (KPB) equation. 
Hence, in this paper, we study the linear and nonlinear propagation of 
slow and fast magnetosonic wave modes in nonthermal plasma and 
derive the KPB equation. The effects of modified temperatures are 
investigated on the linear and nonlinear propagation of both the slow 

and fast magnetosonic wave modes. The foremost aim of this paper is to 
present the set of nonlinear equations for the hot, dissipative nonthermal 
plasma by incorporating the different nonthermal distributions, which 
would be used to describe the two-dimensional magnetosonic waves and 
provide the basis for future study. 

Basic equations 

We consider a magnetized plasma in which the ambient magnetic 

Fig. 1. Non-extensive Q-distribution (blue lines), (r, q)-distribution (red lines) and limiting forms of (r, q)-distribution, i.e. kappa (black thin line) and Maxwellian 
(black bold line) distributions for (a) Q < 1 and r < 0 and (b) Q > 1 and r > 0. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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field B0 lies in the (x,y) plane making an angle θ with the x-axis and 
propagation in the (x,z) plane with propagation vector k making an 
angle φ with the x-axis. In order to derive the KPB equation, we write the 
one-fluid magnetohydrodynamic (MHD) equations for an isotropic, 
isothermal non-Maxwellian plasma [1,49–50]. The mass conservation 
equation is 

∂ρ
∂t

+∇.(ρv) = 0 (12)  

Equations of motion for ions and electrons, respectively, are 

mini
dvi

dt
= nieE+

e
c
ni(vi × B) − ∇pi + λ∇2vi (13)  

mene
dve

dt
= − neeE −

e
c
ne(ve × B) − ∇pe (14)  

By considering electrons as inertialess (me= 0) and using the quasi
neutrality condition ni ≈ ne, above Eqs. (13) and (14) can be solved to 
get the one fluid equation of motions as 

ρ dv
dt

=
1
c
(j × B) − ∇pe + λ∇2vi (15)  

In the above equation, we considered ∇pi = 0 for Ti≪Te which is true for 
most of the space plasmas, v= vi is the hydrodynamic velocity, j =

en(vi − ve), mi + me ≈ mi, ρ = mini, pe = nkBTα is the pressure where α =

rq,Q and d
dt =

( ∂
∂t +v.∇

)
. 

Now multiply Eq. (13) by mi and Eq. (14) by me and subtracting Eq. 
(14) by Eq. (13), and neglecting the d

dt for slow motions where inertial 
effects are unimportant, we obtain the generalized Ohm’s law as 
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The Maxwell’s curl equations are 
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Upon using Eq. (18) into (15), we obtain 
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By eliminating E from Eq. (16) using (17), we get 
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= ∇× (v × B) −
1
ρ∇× [(∇ × B) × B ] (20) 

In the above Eqs. (12), (19) and (20), normalizations are taken as: 
v = v/vA, B = B/Bo, ρ = ρ/ρ0, p = P/po, ∇ =∇(Ωi

vA
), t = t/Ω− 1

i
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is the kinematic viscosity, where ρ0 = min0, Ωi =
eBo
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(
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∂x2 +
∂2

∂z2

)
. We note that β′(= c′2

s /v2
A) contains all the nonthermal features, 

where c′
s = (Tα/mi)

1/2 is the modified acoustic speed, Tα is the modified 
temperature given in Eqs. (10) and (11), and vA = B0/

̅̅̅̅̅̅̅̅̅̅
4πρ0

√
is the 

Alfven speed. 

Derivation of KPB equation 

Linear dispersion relation 

Using the standard reductive perturbation method [1,51–53], we 
derive the KPB equation to study nonlinear magnetosonic waves prop
agating in two dimensions. We expand the various fluctuating quantities 
in dimensionless form with respect to small quantity ∊, that measures 

the weakness of nonlinearity, as 

ρ = 1 + ∊ρ1 + ∊2ρ2 + ⋯

vx = ∊vx1 + ∊2vx2 + ⋯
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(21)  

and the stretched variables are introduced, as 
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2t
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2ν

(22)  

where V = Vp/vA is the normalized phase velocity. 
Upon using Eqs. (21) and (22) into set of Eqs. (12) to (20), and 

equating terms in lowest order of ∊, we obtain the first order equations 
as 

V
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V
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From the above set of Eqs. (23), we obtain the linear quantities, as 

vx1 =
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Vsinθ
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V2 − β′)

)

By1

vy1 =

(
cosθ

V

)

By1

ρ1 =

(
sinθ

(
V2 − β′)

)
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(24)  

which results in linear dispersion relation (LDR) for magnetosonic waves 
propagating in two dimensions, as 

V2 =
1 + β′

2

⎡

⎣1 ±

(

1 −
4β′cos2θ
(1 + β′)2

)1
2
⎤

⎦ (25) 

In the above LDR, fast magnetosonic mode in the super Alfvenic 
regime is represented by the upper sign (+) and slow magnetosonic 
mode in the sub-Alfvenic regime is represented by the lower sign (-). It 
should be noted that if θ = 90◦ and the propagation is considered along 
x-axis, i.e. φ = 0 in Eq. (25), LDR represents the pure magnetosonic 
wave for the case of fast mode. However, if θ = 0◦ and the propagation is 
again considered along x-axis, i.e. φ = 0 in Eq. (25), LDR represents the 
pure Alfven wave for the fast mode and represents sound waves for the 
slow mode. 

Fig. 2 depicts the linear phase velocity V = Vp/vA against the angle θ 
for fast mode (FM) as well as slow mode (SM) for non-extensive Q-dis
tribution, (r,q)-distribution and limiting forms of (r,q)-distribution, i.e. 
kappa and Maxwellian distributions. Fig. 2(a) and 2(b) are plotted for 
Q < 1 and r < 0, in which we can see that phase velocity for FM in
creases but for SM decreases with θ. We can also note that for the FM 
(Fig. 2(a)) as well as for the SM (Fig. 2(b)), the phase velocity is highest 
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for (r, q)-distribution (r = − 0.31, q = 5) exhibiting maximum spiky 
distribution with high energy tail and least for Maxwellian (Fig. 2(a) and 
2(b)). Fig. 2(c) and (d) are plotted for Q > 1 and r > 0, in which for the 
FM we can see that phase velocity increases with θ but for SM it de
creases with θ. We can also note that for the FM (Fig. 2(c) as well as for 
the SM (Fig. 2(d)), the phase velocity is highest for κ-distribution (κ =

2) exhibiting maximum high energy tail and least for (r, q)-distribution 
(r = 4,q = 2) showing broader shoulders at low energies. 

Nonlinear treatment 

In order to develop KP equation for both slow and fast modes, we 
write the ∊2 and ∊5/2 order terms using Eqs. (11) and (12) into Eqs. (1), 
(9) and (10), respectively, and get 

V
∂vz1

∂ξ
= sinθ

∂By1

∂η − cosθ
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∂ξ
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(27) 

From the Eqs. (14) and (17), we get the following equations. 

∂Bz1

∂ξ
=

V2cosθsinθ
(
cos2θ − V2

)(
V2 − β′)

∂By1

∂η −
Vcosθ

(
cos2θ − V2

)
∂2By1

∂ξ2 (28)  

∂vz1

∂ξ
= −

V3sinθ
(
cos2θ − V2

)(
V2 − β′)

∂By1

∂η +
cos2θ

(
cos2θ − V2

)
∂2By1

∂ξ2 (29) 

Rather monotonous but simple algebraic operations leads to the 
following KPB equation. 

∂
∂ξ

[
∂By1

∂τ +CBy1
∂By1

∂ξ
− D

∂2By1

∂ξ2 +E
∂3By1

∂ξ3

]

+F
∂2By1

∂η2 = 0 (30)  

where, C = b/a, D = c/a, E = d/a, F = e/a, and 

Fig. 2. (a) and (b) depict the linear phase velocity V vs. θ for fast and slow modes, respectively, when Q = 0.65 (dashed blue line), Q = 0.9 (solid blue line), r =
− 0.1, q = 5 (dashed red line), r = − 0.31, q = 5 (solid red line). (c) and (d) depict the linear phase velocity V vs. θ for fast and slow modes, respectively, when Q = 1.1 
(dashed blue line), Q = 1.4 (solid blue line), r = 1, q = 2 (dashed red line), r = 4, q = 2 (solid red line). In Fig. 2(a)-(d), thin black line represents kappa distribution 
(κ = 2) and bold black line represents Maxwellian distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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a =
1

V2
(
V2 − β′)2

[
V6 +V4(1 − 2β′)+V2β′( 1 − 3cos2θ + β′)+ β′2cos2θ

]

b =
sinθ

(
V2 − β′)3

[
3V5 − Vβ′( 6V2 − 3β′ − 2sin2θ

) ]

c =
− V4 + β′( 2V2 − β′)cos2θ

V2
(
V2 − β′)2 ν  

d =
Vcos2θ

(
cos2θ − V2

)

e =
V5sin2θ

(
V2 − cos2θ

)(
V2 − β′)2 

Equation (30) is a nonlinear partial differential equation that con
tains both dispersion and dissipation for which the most efficient and 
convenient method to solve such equation is the tanh method [53–55]. 
In our model, we considered viscosity, however, if we add collisions in 
our model we get non-stationary solutions, e.g. Raut et al. [56] derived 
the damped forced KP equation using the reductive perturbation method 
to obtain the non-stationary solitary solution for ion acoustic waves. 
Therefore, the solution of Eq. (30) using the tanh method, can be written 
as [57] 

By =
6D2

25CE

[

1 − tanh
(

D
10E

χ
)]

+
3D2

25CE

[

sech2
(

D
10E

χ
)]

(31)  

where we have assumed By = By1. Also in the above solution, χ = (kξξ +

kηη − Ωτ), where Ω = 6D2

25E +F is the frequency of nonlinear structure, kξ =

kcosφ and kη = ksinφ. The solution Eq. (31) of KPB equation (30) is for 
fast and slow modes of magnetosonic waves and valid for kξ > kη only as 
the stretched variable ξ is of lower order than the coordinate η given in 
Eq. (22). We note that the structure of the KP equation (30) is the same 
in the current manuscript and in Maxwellian plasma, however, the only 
difference is in the definition of β′ which contains all the nonthermal 
features, and in the Maxwellian limit β′→β [1,10]. 

Numerical solution 

In this section, we plot the solution (Eq.(31)) of KPB equation for 
different values of spectral indices Q, (r, q) and kinematic viscosity ν. 
Fig. 3 depicts the shock profiles of FM and SM magnetosonic wave for 
different distributions. Fig. 3(a) and (b) represent the FM rarefactive and 
SM compressive shock profiles, respectively for Q < 1 and r < 0. We can 
see that the strength and steepness of FM shock profile is maximum for 
(r, q)-distribution (r = − 0.4, q = 5) and least for Maxwellian whereas 
the strength and steepness of SM shock profile is maximum for Max
wellian and least for (r, q)-distribution (r = − 0.4,q = 5). A comparison 
of Fig. 3(a) and 3(b) shows that the non-Maxwellian FM shocks are 
steeper than the SM shocks but have less shock strength. Fig. 3(c) and 3 
(d) represent the FM rarefactive and SM compressive shock profiles, 
respectively for Q > 1 and r > 0. We can see that strength and steepness 
of FM shock profile are maximum for κ-distribution (κ = 2) and least for 
(r, q)-distribution (r = 4, q = 2) whereas strength and steepness of SM 

Fig. 3. (a) and (b) depict the fast mode rarefactive and slow mode compressive shock profiles, respectively, when Q = 0.65 (dashed blue line), Q = 0.9 (solid blue 
line), r = − 0.1, q = 5 (dashed red line), r = − 0.4, q = 5 (solid red line). (c) and (d) depict the fast mode rarefactive and slow mode compressive shock profiles, 
respectively, when Q = 1.1 (dashed blue line), Q = 1.4 (solid blue line), r = 1, q = 2 (dashed red line), r = 4, q = 2 (solid red line). In Fig. 3(a)-(d), ν = 0.02, θ =

80o, thin black line represents kappa distribution (κ = 2) and bold black line represents Maxwellian distribution. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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shock profile are maximum for (r, q)-distribution (r = 4, q = 2) and 
least for κ-distribution (κ = 2). Comparison of Fig. 3(c) and 3(d) shows 
that the SM shocks are much steeper and have more shock strength than 
the FM shocks. 

Fig. 4 depicts the shock strength for different values of spectral 
indices r < 0, Q < 1 and kinematic viscosity ν but for a fixed value of χ. 
Fig. 4(a) and (b) portray the shock strength of FM and SM shock profiles, 
respectively, for r < 0. In Fig. 4(a), we can see that shock strength in
creases with ν, however, it increases much faster with ν when the dis
tribution becomes more spiky, i.e.r→ − 0.4 than it becomes less spiky, i. 
e.r→ − 0.1. In Fig. 4(b), we can see that shock strength increases with ν, 
however, it increases much faster with ν when the distribution becomes 
less spiky, i.e.r→ − 0.1 than it becomes more spiky, i.e.r→ − 0.4. Fig. 4(c) 
and (d) portray the shock strengths of FM and SM shock profiles, 
respectively, for Q < 1. In Fig. 4(c), we can see that shock strength in
creases with ν, however, it increases much faster when the distribution 
contains high energy tail, i.e.Q→0.64 than the distribution when it tends 
to become Maxwellian, i.e.Q→1. In Fig. 4(d), we can see that shock 
strength increases with ν, however, it increases much faster when the 
distribution tends to become Maxwellian, i.e.Q→1 than the distribution 
when it contains high energy tail, i.e.Q→0.64. Comparison of Fig. 4(a) 
and 4(c) shows that the FM shock strength is higher for (r, q)-distribution 
than for Q-distribution for the same values of ν, however, for Fig. 4(b) 
and 4(d), SM shock strength is higher for Q-distribution than for 
(r, q)-distribution for the same values of ν. The shaded areas in Fig. 4 
represent the values for which the solution becomes non-physical, i.e. 

⃒
⃒By1

⃒
⃒ > 1. It is also noted that as the viscosity increases, the amplitude of 

the soliton increases but the width of the shock front decreases which is 
evident in Fig. 3. 

Fig. 5 depicts the shock strength of the shock profiles for different 
values of spectral indices r > 0, Q > 1 and kinematic viscosity ν but for 
fixed value of χ. Fig. 5(a) and 5(b) portray the shock strength of FM and 
SM shock profiles, respectively, for r > 0. We can see that shock strength 
increases with ν for FM (Fig. 5(a)) as well as for SM (Fig. 5(b)), however, 
it increases much faster with ν for SM when the distribution exhibits 
conspicuous shoulders, i.e.r→4 (Fig. 5(b)). We can also note that shock 
strength remains almost the same for the change in r (Fig. 5(a)). Fig. 5(c) 
and (d) portray the shock strength of FM and SM shock profiles, 
respectively, for Q > 1. We can see that shock strength increases with ν 
for FM (Fig. 5(c)) as well as for SM (Fig. 5(d)), however, it increases 
much faster with ν for SM when the distribution exhibits a broader 
Gaussian peak with a smaller number of high energy particles as 
compared to Maxwellian, i.e.Q→1.4 (Fig. 5(d)). It can also be noted that 
shock strength for FM almost remains the same for the change in Q 
(Fig. 5(c)). Comparison of Fig. 5(a) and 5(c) shows that the FM shock 
strength is almost the same for (r, q)- as well as for Q-distributions for the 
same values of ν, however, for Fig. 5(b) and 5(d) tells us that SM shock 
strength is lower for Q-distribution than for (r, q)-distribution for the 
same values of ν. Again it can be noted that as the viscosity increases, the 
amplitude of the soliton increases but the width of the shock front de
creases which is evident in Fig. 3. 

Fig. 4. (a) and (b) depict the variation of shock strength of fast mode rarefactive and slow mode compressive shock profiles for (r,q)-distribution, respectively, for 
different values of negative r and ν but fixed value of χ. (c) and (d) depict the variation of shock strength of fast mode rarefactive and slow mode compressive shock 
profiles for non-extensive Q-distribution, respectively, for different values of Q < 1 and ν but fixed value of χ. In Fig. 4(a)-(d), θ = 80o. 
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Summary and conclusion 

We derived the LDR and KPB equation for slow and fast magneto
sonic wave modes in nonthermal plasmas. Fro Q < 1 and r < 0, linear 
phase velocity for FM as well as for SM remains highest for (r, q)-dis
tribution showing maximum peak at low energies and least for the 
Maxwellian. For Q > 1 and r > 0, the linear phase velocity for both fast 
and slow modes is highest for κ-distribution exhibiting high energy tail 
and maximum peak at low energies and least for (r, q)-distribution 
exhibiting flat top or broader shoulders at low energies. For the 
nonlinear propagation, when Q < 1 and r < 0, we found that the 
strength and steepness of FM shock profile is maximum for (r, q)-dis
tribution exhibiting spiky nature at low energies and least for the 
Maxwellian whereas strength and steepness of SM shock profile is 
maximum for the Maxwellian and least for (r, q)-distribution having 
spiky nature at low energies. For Q > 1 and r > 0, the strength and 
steepness of FM shock profile is maximum for κ-distribution exhibiting 
maximum peak at low energies as well as high energy tail and least for 
(r, q)-distribution having flat top at low energies whereas strength and 
steepness of SM shock profile is maximum for (r, q)-distribution with flat 
top and least for κ-distribution. The dependence of shock strength on the 
kinematic viscosity ν is also studied. It is found that the shock strength 
for both the fast and slow modes increases with the increase in ν for all 
the distributions. 

This paper presented the investigations on the obliquely propagating 
fast and slow magnetosonic wave modes in a hot nonthermal plasma by 

incorporating the modified temperatures derived from non-extensive 
Q-distribution, (r, q)-distribution and limiting forms of (r, q)-distribu
tion, i.e. kappa and Maxwellian distributions. For the case of Q < 1 and 
r < 0, we found that low energy particles are responsible for the increase 
in the FM as well as SM linear phase velocities whereas for the case of 
Q > 1 and r > 0, high energy particles are responsible for the increase in 
the FM as well as SM linear phase velocities. For the nonlinear propa
gation, we found that distribution with both the peak at low energies as 
well as high energy tail are responsible for the increase in steepness and 
strength of FM shock profile, however, for the SM shock profiles a dis
tribution with more low energy particles having broader shoulders or 
Gaussian peak is responsible for the increase in steepness and strength. 
We also found that the shock amplitude increases with the kinematic 
viscosity for all distributions. We note here that the main aim of this 
manuscript is to investigate the effect of nonthermal distribution func
tions on the propagation of slow and fast mode shock structures. Our 
numerical results are general since we have used the normalized pa
rameters, so we can apply our results to any region of space and astro
physical plasmas. For example, if we consider the observations of 
magnetosonic waves near the Earth’s magnetic equatorial plane, for 
which B0 = 10nT, n0 = 0.25cm− 3 and β = 0.5 [58], the shock strength 
for fast mode ranges from 0.035nT to 0.12nT and for slow mode, it 
ranges from 0.35nT to 0.83nT when ν = 0.02. By increasing the value of 
viscosity, shock amplitude can also be increased to match the observa
tional values. We, thus found that linear as well as nonlinear propaga
tion of slow and fast magnetosonic wave modes are significantly altered 

Fig. 5. (a) and (b) depict the variation of shock strength of fast mode rarefactive and slow mode compressive shock profiles for (r,q)-distribution, respectively, for 
different values of positive r and ν but fixed value of χ. (c) and (d) depict the variation of shock strength of fast mode rarefactive and slow mode compressive shock 
profiles for non-extensive Q-distribution, respectively, for different values of Q > 1 and ν but fixed value of χ. In Fig. 5(a)-(d), θ = 80◦ . 
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in the non-Maxwellian plasmas in which nonthermality is incorporated 
by taking into account the modified temperatures. 
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